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Abstract: This study applies artificial neural network (ANN) to achieve more 
accurate parameter estimations in calculating job-priority-data of jobs and the 
same is applied in a proposed dispatching rule-based greedy heuristic algorithm 
(DR-GHA) for efficiently scheduling a burn-in oven (BO) problem. The 
integration of ANN and DR-GHA is called as a hybrid neural network (HNN) 
algorithm. Accordingly, this study proposed eight variants of HNN algorithms 
by proposing eight variants of DR-GHA for scheduling a BO. The series of 
computational analyses (empirical and statistical) indicated that each of the 
variants of proposed HNN is significantly enhancing the performance of the 
respective proposed variants of DR-GHA for scheduling a BO. That is, more 
accurate parameter estimations in calculating job-priority-data for DR-GHA via 
back-propagation ANN leads to high-quality schedules w.r.t. total weighted 
tardiness. Further, proposed HNN variant: HNN-ODD is outperforming 
relatively with other HNN variants and provides very near optimal/estimated 
solution. 
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1 Introduction 

Scheduling of a batch processing machine (BPM) or batch processor (BP) problem has 
been continuously addressed by many researchers due to its complexity in terms of 
problem parameters and their attributes (Table 1). The BPM is a processor which 
processes simultaneously more than one job as a batch. The basic principle in batch 
processing is that the jobs in each batch will be processed with common starting and 
ending times. The main reasons for concentrating on the scheduling of BPMs are due to 
the very high processing time requirement of batch operation when we compare with 
other processes and batching decision may affect the performance of the entire 
manufacturing/service industry (Table 2). 

Table 1 BPM problem parameters and their attributes in scheduling of BPM 

BPM problem parameters Attribute 

Number of BPM Single BPM 

Multiple and homogeneous type BPM 

Multiple and heterogeneous type BPM 

Capacity restriction of BPM Bounded 

Un-bounded 

Family of jobs Single family of jobs 

Multiple and compatible job-families 

Multiple and in-compatible job-families 

Size of the jobs Identical job size 

Non-identical job size 

Dimension/volume of the 
jobs 

Identical job dimension/volume 

Non-identical job dimension/volume 

Splitting of jobs between the 
batches 

Allowed 

Not allowed 

Batch processing time Dependent on the jobs in the batch 

Independent of the jobs in the batch 

Set-up time Included in the processing time 

Not-included in the processing time 

Scheduling objective Completion time-based 

Due-date based 

Cost-based 

Number of scheduling 
objectives 

Single 

Multiple 

Date availability Deterministic and known 

Stochastic 

Fuzzy 

Scheduling problem nature Static 

Dynamic considering only future arrival of jobs 

Dynamic considering future arrival of jobs and real-time events 
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Table 2 Scheduling of BPM in various industry (in alphabetical order) with a sample latest 
reference 

Batch operations/processor Industry Sample latest reference(s) 

Furnace for bending phase Automotive safety glass 
manufacturing facility 

Mora et al. (2020) 

Hardening of synthetic parts 
using oven 

Aircraft industry Van der Zee et al. (2001) 

Furnaces used to heat the 
aluminium Ingots 

Aluminium manufacturing Jia et al. (2016) 

Hardening and soaking/ 
heat-treatment furnace 

Automobile gear 
manufacturing 

Ravindra and Mathirajan 
(2014) 

Batch distillation process Chemical industry Tang and Yan (2009) 

Dyeing machine Clothing industry Zhang et al. (2017) 

Environmental stress screening 
(ESS) chambers 

Electronics manufacturing 
industry 

Damodaran, et al. (2009) and 
Alipour et al. (2020) 

Thermal chamber Electronics manufacturing 
industry 

Damodaran and Wiechman 
(2015) 

Cutting machine Furniture manufacturing Ogun and Alabas-Uslu 
(2018) 

Dry Kiln Furniture manufacturing 
industry 

Yaghubian et al. (2001) 

Annealing Kiln Glass container industry Fachini et al. (2017) 

Tissue processors Hospital histopathology 
laboratory 

Leeftink et al. (2018) 

Washer – washing of reusable 
medical devices 

Hospital sterilisation services Ozturk et al. (2010) 

IP machine used in watch and 
clock industry 

Ion plating (IP) industry Chan et al. (2007) 

Multi-head hole-punching 
machine 

Iron and steel industry Oulamara (2007) 

Heat-treatment furnace (HTF) Metalworking industry Dupont and Dhaenens-Flipo 
(2002) 

Bake-out/box-oven Multi-layer-ceramic 
capacitor 

Koh et al. (2004) 

Pottery Kiln Pottery manufacturing Jia et al. (2020) 

Diffusion furnace/machine Semiconductor 
manufacturing 

Rani and Mathirajan (2020) 

E-beam writer Semiconductor 
manufacturing 

Hung (1998) 

Etching tank Semiconductor 
manufacturing 

Sung and Kim (2002) 

Baking machine in wafer probe Semiconductor 
manufacturing 

Huang and Lin (1998) 

Pallet in assembly stage Semiconductor 
manufacturing 

Cheng et al. (1996) 
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Table 2 Scheduling of BPM in various industry (in alphabetical order) with a sample latest 
reference (continued) 

Batch operations/processor Industry Sample latest reference(s) 

Burn-in oven Semiconductor 
manufacturing 

Li et al. (2019) 

Cleaning multiple subtracts of 
sensors/bath 

Sensor manufacturing facility Rojas-Santiago et al. (2017) 
and Maya et al. (2014) 

Hole punching Sheet metal industry Boudhar (2003) 

Carousel Shoe manufacturing factory Fanti et al. (1996) 

Heat treatment furnace (HTF) Steel casting industry Mathirajan and Sivakumar 
(2006b) 

Soaking bit furnace Steel Ingot production Li et al. (2011) 

HTF Steel manufacturing Zheng and Li (2009) 

Annealing furnace Steel production Ozturk (2020) 

Aging test operation Thin film transistor liquid 
crystal displays (TFT-LCD) 

manufacturing 

Chung et al. (2009) 

Tyre curing/mould Tyre manufacturing Bellanger and Oulamara 
(2009) 

Sterilisation machine Professional waste disposal 
services 

Tsai and Chou (2016) 

This study particularly addresses the scheduling of the burn-in process, that is scheduling 
of burn-in oven (BO) (a BPM), of the final testing stage of the back-end manufacturing 
operation of semiconductor manufacturing (SM). The purpose of the burn-in process is to 
bring out latent defects due to infant mortality of chips. To achieve this, the chips of each 
lot (job) are loaded on specific burn-in boards and exposed to a high temperature and 
voltages for a long period. Chips are stressed electrically and thermally, that is, they are 
placed in an oven at temperatures up to 150°C and voltage, which may be as high as 1.5 
times the normal operating voltage, which are then applied, at high temperature for a 
period of time which may be as short as a few hours or as long as 48 hours. 

The analysis of the literature indicated that dispatching rule-based greedy heuristic 
algorithm (DR-GHA) provides efficient solution as quick as possible in scheduling (Sarin 
et al., 2011). Furthermore, it is observed that, DR-GHA is widely used in industries such 
as SM industry (Varadarajan and Sarin, 2006; Hildebrandt et al., 2010; Chen and Wang, 
2012). The reasons for its utilisation are mostly based on the fact that DR-GHAs perform 
efficiently in a wide range of environments and particularly these algorithms are 
relatively easy to understand, easy to implement, require only minimal computational 
time and can cope with dynamic changes (Nguyen et al., 2013). 

By and large all the DR-GHAs consider job-priority-index, computed based on 
dispatching rule and the job-priority-data, as a criterion to construct a batch for 
scheduling in BO (Lee et al., 1992; Mathirajan et al., 2010; Li et al., 2019). The quality of 
the DR-GHA for scheduling a BPM is expected to vary when the job-priority-data is  
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changed. Thus, this study proposes an application of a back-propagation artificial neural 
network (ANN), which is an extension of Parsa et al. (2019), to achieve more accurate 
parameter estimations in calculating the job-priority-data for the jobs and to enhance the 
performance of the DR-GHA for scheduling a BPM. 

The overall arrangement of the paper is as follows. Problem description with 
assumptions is discussed in Section 2. In Section 3, the closely related literature on 
scheduling of BO with due-date based scheduling objectives is presented. The proposed 
multiple variants of 

a DR-GHA 

b machine learning (ML) approach, implemented based on back-propagation neural 
network, are discussed in Section 4. 

Results of the computational experiments to evaluate the performance of the multiple 
variants of ML approach are discussed in Section 5. Finally, the conclusion of the study 
along with the implications, limitations and the directions for future research is presented 
in Section 6. 

2 Problem description and assumptions 

IC chips (called as product) arrive at the burn-in area in lots. Each lot consists of several 
IC chips of the same product type. Each lot or product is referred to as a job. In the  
burn-in operation, IC chips of each job are loaded onto boards (often product-specific). 
As each job has different lot sizes, the number of boards required to place the entire lot 
(job) is different. The boards are then placed into a BO. Typically, an oven’s capacity is 
measured in terms of number of boards placed in an oven. Each IC chips of a lot has a 
pre-specified minimum burn-in time, depending on its type and/or the customer’s 
requirements. With these basic briefs on burn-in operation, in this study, there are ‘N’ 
jobs (lots) that need to be scheduled in a BO. Accordingly, each of the jobs has different 
job size of Sj (that is, number of boards required for each job), processing requirement of 
Pj, due-date of Dj, weight (job-priority-data) of Wj, and non-zero release time of Rj (at 
which it becomes available for processing, and consider all future arrival of jobs until the 
decision making time epoch for scheduling a batch to capture the dynamic nature of 
scheduling), and the release time(s) and due-date(s) are non-agreeable [that is,  
job-processing need not necessarily follow the first-in-first-out, based on the release time 
(that is, if Ri ≤ Rj not-implied Di ≤ Dj)]. The release time of a batch for scheduling is 
given by the longest ready time of all jobs in the batch. As IC chips may stay in the BO 
for a period longer than their minimum required burn-in time, the processing time of each 
batch equals the longest minimum exposure time among all the products (jobs) in the 
batch. 
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In the competitive global environment, customers’ voices have forced production 
managers to consider on-time delivery as an important management performance. So, for 
the research problem characteristics defined here, the scheduling objective is to minimise 
total weighted tardiness (TWT). TWT is defined as the sum of product of size and 

tardiness of job ‘j’ (that is, 
1

,
N

j j

j

TWT S T


   where Tj and Sj are tardiness and size of 

job ‘j’, respectively). And Tj is defined as how much late the job ‘j’ is completed as 
compared to the due-date (that is, Tj = max (0, Cj – Dj), where Cj and Dj are completion 
time and due-date of job ‘j’, respectively). The reason for considering the scheduling 
objective of minimising TWT is that it is a measure that incurs a penalty for each job that 
finishes processing after its committed due-date. As this penalty increases with the 
magnitude of the tardiness, schedules that minimise the weighted sum of the penalties 
provide good on-time delivery performance (Perez et al., 2005). 

The research problem described here can be concisely represented using the  
three-field notation of Graham et al. (1979) as “1/p-batch, dynamic job-arrivals,  
non-identical job sizes, non-identical processing time, due-dates, release time,  
non-agreeable release time(s) and due-date(s)/TWT” and we make the following 
assumptions: 

 Data required for dynamic scheduling of a BO problem defined in this study are 
assumed to be deterministic and known a priori. This assumption is a valid one as in 
practice, particularly in SM, estimates of the required parameters’ values for this 
problem can be obtained from the existing shop-floor computerised information 
system. 

 Each job requires one operation, and all jobs are independent. 

 The BO has a capacity ‘B’, measured in terms of number of boards it can hold. The 
number of boards required for any job (that is Sj) must be less than or equal to ‘B’. 
That is, splitting of lot for processing is not permitted. 

 Once processing of a batch is initiated, it cannot be interrupted, and other jobs cannot 
be introduced into the BO until processing of the batch is complete. 

3 A closely related literature review 

Scheduling of BPM was very first time studied by Ikura and Gimple (1986). Though 
there are many studies addressing on scheduling BPM across various industries (Table 2), 
most of the studies are related to SM and particularly related to scheduling of: 

a diffusion furnace 

b BO only (Mathirajan and Sivakumar, 2006a; Monch et al., 2011). 

Since, this study is pertaining to scheduling of BO problem; the existing studies on 
scheduling of BO are reviewed and classified based on the type of BPM problem 
parameter considered. Accordingly, all the existing studies on scheduling of BO  
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problems can be grouped into completion time-based scheduling objective and due-date 
based scheduling objective. As this study is concentrating on due-date based scheduling 
objective, all the existing studies considering due-date based scheduling objective are 
reviewed and discussed in this section. However, for the existing studies considering 
completion time-based scheduling objective, we refer to Parsa et al. (2016), Jia et al. 
(2017), Beldar and Costa (2018), Chung and Sun (2018) and Alizadeh and Kashan 
(2019). Furthermore, all the existing studies are grouped into single objective and  
multi-objectives. As this study is related to single due-date based scheduling objective, all 
the existing studies considering single due-date based scheduling objective which are 
reviewed and discussed in this section. Whereas the existing studies considering multi 
objectives we refer to Tsai and Chou (2016), Zhang et al. (2017), Feng et al. (2020) and 
Jia et al. (2020). 

The problem of scheduling burn-in operation in SM was first introduced by Lee et al. 
(1992) in which jobs are of the same size, same processing time and different arrival 
time. The batches were constrained by the number of jobs that could be included, as the 
jobs are assumed to have the same size. Number of problems considering single and 
parallel BO(s) were studied with single and multi-objectives such as minimising 
maximum tardiness, number of tardy jobs, maximum lateness, and makespan. They 
proposed dynamic programming (DP)-based algorithms. Based on the computational 
analyses, they showed that some of the problems studied may be solved in polynomial 
time, but others are NP-hard. 

Dynamic scheduling of a BO problem with jobs having identical job sizes,  
non-identical processing time and agreeable release time(s) and due date(s)to minimise 
number of tardy jobs is addressed by Hochbaum and Landy (1994). Due to computational 
intractability in solving large size problems they proposed simple greedy heuristic 
algorithms (GHAs). 

Wang and Uzsoy (2002) extend the problem configuration considered in Hochbaum 
and Landy (1994) by including non-agreeable release time(s) and due date(s) to minimise 
maximum lateness (Lmax). They combine a DP-based algorithm, with a random key 
encoding scheme to develop a genetic algorithm (GA) for the problem configuration 
considered in their study. Ventura and Kim (2000, 2003) extend the problem 
configuration considered in Wang and Uzsoy (2002) by introducing parallel identical BPs 
and non-identical job-size with the scheduling objective of minimising the  
earliness-tardiness for the static and dynamic situation along with additional constraint on 
number of boards required to fill the lot (job). Further, Ventura and Kim (2003) assumed 
that all job processing times are same. 

Mönch et al. (2006) consider the scheduling of the single BO with jobs having an 
unrestrictive late common due-date using a combination of dominance properties and a 
GA with the objective of minimising the earliness-tardiness of the jobs. They also include 
a constraint on the maximum allowable tardiness. Subsequently, Mönch and Unbehaun 
(2007) extend this research by considering the case of parallel identical BOs and 
proposed DP. 

Raghavan and Venkataramana (2006) considered a static version of scheduling of 
multiple and identical BOs problem with jobs having identical job sizes, non-identical 
processing time and agreeable release time(s) and due-date(s) to minimise TWT. They 
proposed mixed integer linear programming (MILP) model. Due to computational 
intractability of the proposed MILP model, they proposed ant colony algorithm (ACO) 
for efficiently addressing large sized real-life static scheduling problems. 
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Li and Chen (2014), Cabo et al. (2015), Li et al. (2015) and Parsa et al. (2017a, 
2017b) considered the same job characteristics of the problem studied by Raghavan and 
Venkataramana (2006) for a single BO problem to minimise number of tardy jobs, 
minimise the maximum lateness, minimise earliness and tardiness, and minimise the total 
tardiness, respectively and proposed GHA, and GA respectively. Moreover, Li and Chen 
(2014) considered non-agreeable release time(s) and due date(s) as additional constraint 
and Li et al. (2015), and Parsa et al. (2017a, 2017b) considered non-identical job size. 

Chou and Wang (2012) and Xu and Bean (2016) considered dynamic scheduling of 
multiple and non-identical BOs with non-identical job size, non-identical processing 
time, and non-agreeable release time(s) and due-date(s) to minimise TWT. Both the 
studies proposed MILP model. Due to computational difficulty in getting optimal 
solution they proposed simulated annealing (SA) and GA respectively. Hulett et al. 
(2017) considered the problem studied by Chou and Wang (2012) with static situation 
and agreeable release time(s) and due date(s). This study also proposed MILP model. 
Due to computational difficulty in getting optimal solution they proposed particle swarm 
optimisation (PSO). 

Dynamic scheduling of a BO problem with jobs having non-identical job sizes,  
non-identical processing time and non-agreeable release time(s) and due date(s) to 
minimise TWT is addressed by Chou and Wang (2008), Mathirajan et al. (2010) and 
Wang (2011). They proposed MILP model and demonstrated its computational 
intractability in solving real-life sized problem on scheduling a BO. First two studies 
proposed meta heuristics: GA, SA respectively and other two studies proposed GHA, for 
efficiently addressing large sized real-life problems on scheduling a BO. 

Condotta et al. (2010) and Zhou et al. (2018) studied the same problem addressed in 
Chou and Wang (2008) with scheduling objective of Lmax and proposed simple GHA 
and meta heuristic: PSO, respectively. However, Condotta et al. (2010) assumed an 
identical job size, identical processing time. 

Li et al. (2019) considered static scheduling of single BO with non-identical job size, 
multiple job-families and non-identical processing time to minimise the maximum 
lateness. They proposed MILP model and due to its computational difficulty in getting 
optimal solution for large sized problem they proposed simple GHA. Very recently 
Keshavarz (2021) developed a lower bound method, based on column generation 
approach, for a static scheduling of single BO with non-identical processing time and 
non-identical job-size to minimise the total earliness and tardiness. Further, this 
researcher empirically proved that the proposed lower bound method could enhance the 
lower bound around 41% in average comparing with the best known lower bounding 
method in the literature. 

A summary on the review of closely related existing studies on scheduling of BO 
with due-date based objective, discussed in this section, is presented in Table 3. From 
Table 3, one can observe that a scant treatment has been given in the literature on 
scheduling of a BO with non-agreeability of release time(s) and due-date(s), non-identical 
job-sizes, and non-identical processing times to minimise the customer-based scheduling 
objective of TWT. 
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Table 3 A summary on closely related scheduling of BO with due-date based single 
scheduling objective 
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Though, the analysis of the literature indicated that the application of ML approach for 
scheduling is not a new to the scheduling (Aytug et al., 1994; Priore et al., 2014), ML, 
and neural networks are not developed enough to solve the scheduling problem (Melnik 
and Nasonov, 2019) in general. Particularly there is a very scant treatment has been given 
towards ML approaches for scheduling BPM. Furthermore, though there are two studies 
proposed ML approaches for scheduling a BO with completion time-based scheduling 
objective (Shao et al., 2008; Parsa et al., 2019), there has been no research for scheduling 
a BO with the problem configuration, close to the reality, defined in this study that has 
proposed a ML approach. Furthermore, it is observed from the literature that ML 
approaches can be used to capture complex processing environments in a way such that 
scheduling policies, in particular dispatching rules, can be derived (Benda et al., 2019). 
Thus, this study proposes a ML approach, particularly a back-propagation ANN to 
achieve more accurate parameter estimations in calculating the job-priority-data of the 
jobs and integrated the same with a few proposed dispatching rules based GHA for 
scheduling a BO problem defined in this study. 

4 Proposed approaches 

The research problem, on scheduling a BO, defined in this study is empirically shown to 
be NP hard by Mathirajan et al. (2010). Due to the computational intractability in getting 
optimal solution for real-life large sized instances, a hybrid neural network (HNN) 
algorithm is proposed in this study to find an efficient solution. The proposed HNN is an 
integration of the ANN approach and a simple DR-GHA. So, before presenting the 
proposed HNN algorithm, we first give a quick review of different dispatching rules 
considered for: 

a developing GHA, 

b applying a back-propagation ANN to achieve more accurate parameter estimations in 
calculating the job-priority-data of the jobs and in turn for scheduling the research 
problem considered in the study. 

Dispatching rules considered for scheduling a BO: the analysis of the literature indicated 
that simple GHA, based on dispatching rules, are developed to obtain efficient solution as 
quick as possible in scheduling (Sarin et al., 2011). It is also noticed that dispatching 
rules are widely used in manufacturing industry, especially industry like SM (Hildebrandt 
et al., 2010). The reasons for the popularity could be due to fact that they perform 
reasonably well in a wide range of environments, relatively easy to understand and need 
only minimal computational time. In addition to that, they are easy to implement and can 
cope with dynamic changes (Nguyen et al., 2013). Accordingly, keeping the importance 
of various job characteristics associated with burn-in operations as well as the better 
performing dispatching rules as claimed in the literature, the following dispatching rules 
are used for developing multiple variants of greedy algorithms: 

 Highest job size (HJS): it is a function of the job characteristic ‘size (Sj)’ of a job. As 
per HJS rule jobs available in-front of BO will be sorted, at the decision-making time 
epoch, based on size of the job (highest to lowest), and based on that the job-index is 
developed and assigned as follows: 
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Job-Index( ) jj S  

 Longest processing time (LPT): it is a function of the job-characteristic ‘processing 
time (Pj)’ of a job. Based on LPT rule jobs available in-front of BO will be sorted, at 
the decision-making time epoch, based on processing-time of the job (longest to 
least), and based on that the Job-Index is developed and assigned as follows: 

Job-Index( ) jj P  

 Earliest release time (ERT): it is a function of the job-characteristic ‘release time 
(Rj), at which job becomes available for processing’. According ERT rule, jobs 
available in-front of BO will be sorted, at the decision-making time epoch, based on 
release-time of the job (earliest to late), and based on that the Job-Index is developed 
and assigned as follows: 

Job-Index( ) jj R  

 Earliest due-date (EDD): it is a function of the job characteristic ‘due-date (Dj)’. As 
per EDD rule, jobs available in-front of BO will be sorted, at the decision-making 
time epoch, based on due-date of the job (earliest to late), and based on that the  
job-index is developed and assigned as follows: 

Job-Index( ) jj D  

 Flow due-date (FDD): FDD is proposed by Jayamohan and Rajendran (2000). 
According to FDD rule jobs available in-front of BO will be sorted, at the  
decision-making time epoch, based on FDD of the job (least to longest), and based 
on that the job-index is developed and assigned as follows: 

1

Job-Index( ) +
m

j jq

q

j R P


   

where 

Pjq process time required for job ‘j’ for the operation ‘q’ 

m current operation. 

Note: It is to be noted that this study concerns about only one operation: burn-in 
operation, the total processing time of job ‘j’ till the operation ‘m’ (here m = 1) is 
equal to the processing time of job ‘j’ (Pj) for burn-in operation. Accordingly, this 
study modified the job-index of job ‘j’ using FDD is as follows. 

Job-Index( ) +j jj R P  

 Operational due-date (ODD): Rose (2003) probably is the first one applied ODD as 
dispatching rule in scheduling SM problem. Based on ODD rule jobs available  
in-front of BO will be sorted, at the decision-making time epoch, based on ODD of 
the job (least to longest), and based on that the Job-Index is developed and assigned 
as follows: 
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1

Job-Index( ) +
m

j jq

q

j R c P


   

where 

c Due-date allowance factor (and it is assumed to be equal to 3). 

Note: a note given for FDD is applicable to ODD also. So, the job-index becomes as 
follows. 

Job-Index( ) +j jj R c P   

 Latest start time (LST): this rule is adopted from Mathirajan et al. (2010). LST is 
defined as the difference between the due-date of the job and the processing time of 
the job. This is fundamentally the latest time at which the job has to be started to 
process so that it can be finished before its due-date. Accordingly, the job-index is 
developed and assigned as follows: 

Job-Index( ) j jj D P   

 Composite index (CI): this rule is adopted from Mathirajan et al. (2010). We 
introduce a CI that attempts to obtain the jobs that have early latest start time, a short 
processing time and a large job size first. With this, the job-index is developed and 
assigned as follows: 

 Job-Index( ) /j j j jj D P P S       

The first four dispatching rules (HJS, LPT, ERT, and EDD) considered in this study are 
simple (as we considered a single criterion to sort the available jobs) and static in nature 
(as they are not dependent on time). The dispatching rules: FDD, ODD, LST and CI are 
composite (as we considered multiple characteristics of a job as criterion to sort the 
available jobs) and static in nature. 

4.1 Proposed DR-GHA 

A simple DR-GHA is developed by following five steps to schedule a batch for 
processing in BO. In the first step, by applying dispatching rule, every job is assigned an 
index, called as job-index. In the second step, if there is a job-priority-data for each job is 
given then job-index is computed appropriately using both dispatching rule and the  
job-priority-data and is called as job-priority-index. If job-priority-data is not given, then 
both job-index and job-priority-index are one and the same (or it is assumed that the  
job-priority-data for each job is given as same and constant). In the third step, the jobs are 
sequenced or sorted based on the computed job-priority-index. In the fourth step, a set of 
jobs are selected, to form batches parallel, from the top of the sorted-listed-jobs until the 
batch capacity constraint is satisfied. Finally, the constructed batches are scheduled in the 
BO. This five-step process is repeated until all the jobs are scheduled for the given 
planning period. The working mechanism of this simple DR-GHA is given in Figure 1. 
Considering each of the 8 different dispatching rules defined in this section we have 
coded these eight variants of DR-GHA in Python for scheduling a single BO problem 
defined in this study. 
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Figure 1 Working mechanism of the proposed DR-GHA 
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4.2 Proposed HNN algorithm 

By and large, the quality of the dispatching rule based scheduling algorithm is expected 
to vary when the job-priority-data (nothing but a weight for penalising tardiness) is 
changed (Park et al., 2000). Due to that, this study integrates an application of ANN to 
enhance the performance of DR-GHA for scheduling a BO by learning and generating 
efficient job-priority-data. This integrated approach is called as HNN algorithm (Parsa  
et al., 2019). 

That is, in the HNN, we applied a back-propagation ANN to achieve more accurate 
parameter estimations in calculating the job-priority-data for scheduling a BO by utilising 
the proposed DR-GHA. To get the benefit of HNN for scheduling a BO problem defined 
in this study, the ANN is integrated with the proposed DR-GHA, like the HNN proposed 
in Parsa et al. (2019). So, the proposed HNN is an extension to the existing HNN for 
scheduling a BO problem with six main differences (please refer to Table 4) between 
Parsa et al. (2019) approach and that of ours in this paper. However, all the important 
parameters of HNN: maximum number of epochs, learning rate, initial weights, and 
reinforcement factor are assumed to have the same values set in Parsa et al. (2019), as 
this study is also related to scheduling a BO. With these additional features on the 
existing HNN, the working mechanism of the HNN is as follows: 
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Table 4 Difference between the proposed HNN and the existing HNN 

No. Current study Study by Parsa et al. (2019) 

1 Introduced additional job-characteristics (close to 
real-life) such as different release time, different 
due-date, and non-agreeable release time(s) and 
due-date(s) requirement to describe the research 
problem on scheduling BO. 

Job characteristics: processing time 
and non-identical job-sizes are only 
considered for scheduling BO. 

2 Considered dynamic scheduling (that is, in this 
study jobs are having different release time and 
considering all the future arrivals of jobs until the 
decision-making epoch of the scheduling of BO) 

Considered static scheduling (that is, 
jobs are having release time equal to 
zero or constant) 

3 Considered customer perspective objective, that 
is minimisation of TWT. 

Considered organisation perspective 
objective, that is minimisation of 
total completion time. 

4 Applied a back-propagation ANN on each of the 
variants of GHAs (proposed for scheduling the 
research problem considered in this study) to 
achieve more accurate parameter estimations in 
calculating the job priority-data. With this there 
are eight variants of HNN developed for 
scheduling a BO. Furthermore, the performance 
evaluation of each of the proposed eight variants 
of: 

Applied a back-propagation ANN on 
only one GHAs FFLPT (first-fit 
longest processing time) to achieve 
more accurate parameter estimations 
in calculating the job priority-data. 
And developed HNN algorithm for 
scheduling a BO. Furthermore, the 
performance evaluation of the 
proposed HNN algorithm is carried 
out in comparison with a set of 
existing GHAs and random 
algorithm, in comparison with the 
lower bound obtained using the 
procedure given in Uzsoy (1994). 

 a DR-GHA 

 b HNN is carried out in comparison with 

  1 optimal solution (on 160 small 
instances) 

  2 estimated optimal solution (on 640 large 
scale instances) obtained using the 
procedure given in Rardin and Uzsoy 
(2001). 

5 Number of epochs and minimum TWT (= Zero), 
as there is a possibility of getting TWT as zero, 
are given as stopping conditions of the ANN. 

Number of epochs and minimum 
total completion time (= lower bound 
obtained, using the procedure in 
Uzsoy (1994)) are given as stopping 
conditions of the ANN. 

In our study, initially, the job-priority-data (that is weight Wj) for all job are constant and 
equal to 1. Now, in the proposed HNN and at epoch = 1, the job-priority-index is 
computed based on the dispatching-rule-criterion w.r.t. DR-GHA and the job-priority-
data. The computed job-priority-index is utilised in each of the iterations of the proposed 
DR-GHA for scheduling a BO. During the next epoch of the HNN, the weight Wj are 
modified for all jobs based on ANN and recalculate all job-priority-index and re-apply 
the same DR-GHA. The modified weights will generate new schedule in the next epoch. 
If an improvement on TWT happens in an epoch, the ANN tends to reinforce the current 
weights and stores the best TWT known at this point. If no improvement on the TWT, the 
ANN continues without reinforcement. 

Furthermore, if there is no improvement on TWT for a particular number of epochs 
(= 50), the ANN assumes that the last acceptance of the solution is not appropriate, so the 
ANN backtrack to the last best set of values of job-priority-data of the jobs (that is 
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weights). Subsequently a certain number of epochs are implemented; the best TWT is 
stored, and reported. That is, in the proposed HNN we monitor improvement and 
reinforce the values of the job-priority-data of the jobs (that is weights) that lead to 
improvements and backtrack to the last set of best values of the job-priority-data of the 
jobs if no improvement achieved for a predefined number of epochs. The idea of 
reinforcement is a classical feature of neural network learning. By reinforcing the weights 
of the previous epochs applying a reinforcement factor, the relative weights are 
essentially retained for a few epochs and the probability of finding better weight 
combinations will be increased in the new few epochs. 

Figure 2 Working mechanism of the proposed HNN 
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It is clear from the above brief on the proposed HNN, after a number of epochs, it is 
expected that neural network learns a proper set of estimated values of the  
job-priority-data of each job that would generate efficient solution in comparison with 
applying only the DR-GHA without integrating it with the neural network. With these, 
the working mechanism of the HNN, explained briefly here, is represented in Figure 2. 
For more technical details on the working mechanism of the HNN the readers are 
requested to refer the study by Parsa et al. (2019) as this study exactly followed the 
technical aspects presented in that study. Furthermore, in the proposed HNN, we use 
eight different DR-GHA for embedding into the neural network. And in this process, we 
have eight different versions of HNN. Python is used to code all these eight variants of 
HNN for dynamic scheduling of a BO. 

5 Computational experiments 

To understand the efficiency of the proposed 16 approaches: eight proposed variants of 
DR-GHA and eight proposed variants of HNN, for dynamic scheduling of a BO, a series 
of computational experiments is carried out. To perform appropriate computational 
experiments, we need to have experimental design, benchmark solution (BS) procedure, 
and performance measure(s). The required details of these are presented in this section. 

5.1 Experimental design 

The aim of the experimental design is to generate the required suitable data for the 
problem defined under study. Accordingly, the two experimental designs presented in 
Mathirajan et al. (2010) are used for generating suitable data, as the problem 
configuration defined in the current study is exactly matching with the problem 
configuration defined in Mathirajan et al. (2010). Accordingly, the summary on the 
experimental designs considered in this study are given in Table 5 and Table 6. 

Table 5 A summary of experimental design for generating small scale problem instances 

No. Parameters Levels Number of levels 

1 Number of jobs (N) 10, 12 2 

2 Release time of jobs 
(Rj) 

Uniform distributions [1, 20], [1, 30] 2 

3 Processing time of 
jobs (Pj) 

Uniform distributions [1, 10], [1, 15] 2 

4 Due-date of jobs (Dj) Rj + Pj + uniform distributions [1, 30], 
[1, 45] 

2 

5 Size of jobs (Sj) Uniform distributions [4, 10], [4, 14] 2 

Number of problem configurations 2  2  2  2  2 = 32 

Problem instances per configuration 5 

Total problem instances 160 

Source: Mathirajan et al. (2010) 
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The experimental design summary given in Table 5 is used particularly for generating 
small scale problem instances, which are possible to solve and obtain optimal solution 
using exact approach in a reasonable computational time. Particularly, the experimental 
design summary given in Table 5 is used for two cases. In the first case, it is used to 
understand the closeness of the solution of each of the proposed 16 approaches: eight 
variants of DR-GHA and eight variants of HNN in comparison to optimal solution 
(obtained from the MILP model proposed in Mathirajan et al., 2010). In the second case, 
the quality of the estimated optimal solution (which could be used as BS for large sized 
real-life problem of burn-in operation and can be obtained for each of the problem 
instances using the procedure given in Rardin and Uzsoy, 2001) will be analysed in 
comparison to the optimal solution obtained on small scale instances. The experimental 
design summary given in Table 6 is used for generating large scale problem instances, 
which are possible to solve by each of the proposed 16 approaches within a reasonable 
computational time. These large sale instances are used to understand the performances 
of each of the proposed 16 approaches in comparison to estimated optimal solution. 

Table 6 A summary of experimental design for generating large scale problem instances 

No. Parameters Levels Number of Levels 

1 Number of jobs (N) 25, 50, 75, 100 4 

2 Release time of jobs 
(Rj) 

Uniform distributions [1, 20], [1, 30] 2 

3 Processing time of 
jobs (Pj) 

Uniform distributions [1, 10], [1, 15] 2 

4 Due-date of jobs (Dj) Rj + Pj + uniform distributions [1, 30], 
[1, 45] 

2 

5 Size of jobs (Sj) Uniform distributions [4, 10], [4, 14] 2 

Number of problem configurations 4  2  2  2  2 = 64 

Problem instances per configuration 10 

Total problem instances 640 

Source: Mathirajan et al. (2010) 

5.2 BS procedure 

For small-scale problem, optimal solution obtained from the MILP model proposed in 
Mathirajan et al. (2010) is considered as a BS for performance evaluation of the proposed 
16 approaches: eight variants of DR-GHA and eight variants of HNN. Whereas for  
large-scale problem, estimated optimal value is considered as BS. 

5.3 Performance measures 

Since the efficiency of each of the proposed approaches may vary over a range of 
problem instances, the efficiency is analysed both empirically and statistically. For 
empirical analysis, the performance measures: deviation/proximity, average relative 
percentage deviation (ARPD), and IRANK are used. For statistical analysis, this study 
conducts descriptive statistics and Kruskal-Wallis test. The details of these measures are 
given below. 
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 Deviation/proximity: for each problem instance and for each variant of DR-GHA and 
for each variant of HNN, we compute the ‘deviation’ as per equation (1). 

 ij ij iD FS BS   (1) 

where 

i Problem instances and i  [1, 160] for small scale instances and i   
[1, 640] for large scale instances. 

j Proposed eight variants of DR-GHA and eight variants of HNN and j   
[1, 16]. 

FSij Feasible solution obtained for ith problem instance using jth proposed 
approach. 

BSi Equal to optimal value of ‘ith’ problem instance, for small-scale problem. 

BSi Equal to estimated optimal value of ‘ith’ problem instance, for large-scale 
problem. 

Dij Deviation (or proximity) between the solution obtained from jth variant of 
the proposed algorithm and the optimal (benchmark) solution for the ith 
instance. 

 ARPD: for each problem instance and for each variant of DR-GHA and for each 
variant of HNN, we first compute the relative percentage deviation as per  
equation (2): 

 / 100ij ij iRPD D BS   (2) 

where 

RPDij relative percentage deviation of ‘jth’ variant of the proposed algorithm 
for ‘ith’ problem instance 

After computing RPD score, next we compute the average of RPD (ARPD) score for 
each of the proposed 16 approaches: eight variants of DR-GHA and eight variants of 
HNN over the number of problem instances planned in each problem configurations 
as well as the total number of problem instances in the experimental design as per the 
equation (3). 

1
/

N
j ij

i
ARPD RPD N


  (3) 

where 

ARPDj average relative percentage deviation of ‘jth’ proposed variant. 

N = 5 when ARPD is computed problem configuration wise for small scale 
problems. 

N  = 10 when ARPD is computed problem configuration wise for large scale 
problems. 

N  = 640 when ARPD is computed considering entire large scale problem 
instances. 
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 IRANK: for each of the proposed approaches, this study computes IRANK for 
triangulating the performance analyses using performance measures: deviation (for 
the small-scale instances) and ARPD (for large scale instances), as per the  
equation (4). 

 
1 1

{ ( , ) } ( , )
Maxrank Maxrank

j
r r

IRANK a r j r a r j
 

    (4) 

where 

r rank and r  [1, 16] 

j proposed approach j  [1, 16] 

a(r, j) number of times the ‘jth’ proposed approach in rank ‘r’ 

Maxrank Maximum rank possible (Maxrank = 16 = number of proposed 
approaches). 

IRANKj integrated rank of ‘jth’ proposed approach. 

For statistical analysis, this study first computes descriptive statistics (mean, median, 
standard deviation and 95% confidence interval), for each of the proposed 16 approaches; 
eight variants of DR-GHA and eight variants of HNN. As the normality test is failed over 
the obtained RPD scores, Kruskal-Wallis tests (a non-parametric test) on the medians are 
conducted to compare the proposed approaches (Beldar and Costa, 2018). 

5.4 Experimental results and analysis 

For evaluating the performance of the proposed 16 approaches: eight variants of  
DR-GHA and eight variants of HNN for scheduling a BO problem, defined in this study, 
the following empirical and statistical performance analyses are carried out: 

5.4.1 Empirical performance analyses 

In the empirical performance analyses, the proposed 16 approaches are evaluated in 
comparison with: 

a optimal solution on 160 small scale instances 

b estimated optimal solution on 640 large sale problem instances. The details of these 
empirical analyses are as follows: 

Performance analysis in comparison with optimal solution on small scale instances: the 
160 small scale problem instances generated and used by Mathirajan et al. (2010), 
including the optimal solution obtained, are used in this study for performance analysis of 
the proposed 16 approaches in comparison with optimal solution. Accordingly, each of 
the 160 problem instances are applied on each of the proposed 16 approaches and 
obtained feasible solution with TWT. Some of the small-scale instances, out of 160 
instances, when applied with the MILP model proposed in Mathirajan et al. (2010) 
resulted the optimal solution as zero (that is zero TWT). Due to this, finding RPD scores 
on TWT in comparison with the optimal solution becomes ‘infinite’. To avoid this, for 
understating the performance of the proposed 16 approaches w.r.t. optimal solution, we 
used the performance measures ‘deviation/proximity’, and IRANK. Accordingly, using 
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equation (1) the ‘deviation/proximity’ score is obtained, for each of the proposed 
approaches and for each of the 160 problem instances, considering bench-mark solution 
as an optimal solution. Considering this score, we computed and presented (Table 7) for 
each of the proposed approaches: 

1 number of times the optimal solution yielded 

2 minimum, mean, maximum, and variance on the deviation score w.r.t. optimal 
solution over the 160 small scale instances. 

Table 7, clearly indicates that each of the HNN variants are performing efficiently in 
comparison with its respective DR-GHA, which is not integrated with ANN. From this, 
particularly based on small scale problem instances, we infer that the back-propagation 
ANN is providing more accurate parameter estimations in calculating the  
job-priority-data for the jobs and in turn used in DR-GHA for obtaining efficient solution. 

Table 7 Performance of the proposed 16 approaches based on ‘deviation/proximity’ w.r.t. 
optimal solution 

No. Proposed 
approaches 

Variants 
No. of times 

yielded optimal 
solution 

Deviation from optimal solution over 160 
instances 

Minimum Mean Maximum Variance 

1 GHA HJS 0 8 883.53 2,493 1,983.81 

2 LPT 0 30 887.73 2,808 2,521.37 

3 ERT 7 0 349.95 1,776 743.98 

4 EDD 18 0 353.44 2,105 1,034.17 

5 FDD 8 0 332.09 1,730 592.33 

6 ODD 5 0 383.1 1,509 530.72 

7 LST 16 0 376.68 2,456 1,109.56 

8 CI 2 0 937.84 3,087 2,324.7 

9 HNN ANN-HJS 114 0 65.52 883 77.46 

10 ANN-LPT 73 0 76.34 883 82.82 

11 ANN-ERT 133 0 58.55 888 76.72 

12 ANN-EDD 132 0 61.08 875 74.02 

13 ANN-FDD 134 0 57.56 875 74.58 

14 ANN-ODD 122 0 59.1 875 75.04 

15 ANN-LST 120 0 60.01 875 77.56 

16 ANN-CI 113 0 61.275 875 76.17 

In addition, Table 7 clearly indicates, by and large, the proposed HNN variants:  
ANN-FDD and ANN-ODD are outperforming. The rule ODD seeks to minimise the 
deviation of completion times of a job from its operation due-date, and hence good 
performance for this rule is observed. Basically, the rule FDD defines a milestone for 
every operation of a job, and hence attempts to ensure the timely completion of 
operations. Further it is important to note that when the allowance factor, (i.e., c) is equal 
to 1, both FDD and ODD are same. 
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Table 8 Ranking matrix – 160 small scale instances 
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To triangulate the inferences obtained based on the performance measure: 
Deviation/Proximity, we consider the performance measure: IRANK. To obtain IRANK 
for each of the proposed 16 approaches, first we computed ranking matrix considering the 
TWT scores obtained for each of the 160 instances using each of the proposed 16 
approaches. The computed ranking matrix (16 approaches  16 ranks) considering the 
160 small scale instances is presented in Table 8. The value aij in the ranking matrix 
(Table 8) represents number of times the ith proposed approach resulted jth ranking 
solution out of j = 1, 2,…16 approaches. Using the ranking matrix, the IRANK score for 
each of the proposed 16 approaches is computed using the equation (4) and the same is 
given in Figure 3. Table 8 and Figure 3 clearly endorse the same inferences obtained 
based on the performance measure: deviation/proximity. 

Figure 3 Performance of the proposed approaches, on small instances, based on IRANK 
performance measure (see online version for colours) 

 

In general, the findings obtained considering small-scale instances, on the performances 
of the proposed approaches, cannot be extrapolated for large scale instances for any 
conclusion and generalisation. So, this study carried out the performance analyses of the 
proposed approaches considering 640 large scale instances and the details of the same is 
discussed as follows: 

Performance analysis in comparison with estimated optimal solution: writing a 
Python code and using the experiential design given in Table 6, 640 problem instances 
are generated. For each of the 640 problem instances, each of the proposed approaches 
are applied and obtained feasible solution with TWT. For each of the 640 problem 
instances the estimated optimal solution (TWT) is computed using the: 

a 16 TWT values available (obtained from each of the 16 proposed approaches) for 
each of the 640 problem instances 

b procedure discussed in Rardin and Uzsoy (2001). 



   

 

   

   
 

   

   

 

   

    A machine learning algorithm for scheduling a burn-in oven problem 43    
 

    
 
 

   

   
 

   

   

 

   

       
 

Table 9 (a) Performance of the proposed approaches w.r.t. estimated optimal solution and  
N = 25 
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Table 9 (b) Performance of the proposed approaches w.r.t. estimated optimal solution and  
N = 50 
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Table 9 (c) Performance of the proposed approaches w.r.t. estimated optimal solution and  
N = 75 
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Table 9 (d) Performance of the proposed approaches w.r.t. estimated optimal solution and  
N = 100 
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Table 10 Ranking matrix – 640 large scale instances 
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Now for each of the proposed 16 approaches, considering the  

1 feasible TWT scores 

2 estimated optimal TWT score obtained for each of the 640 problem instances, the 
RPD scores are obtained using equation (2). 

Using the computed RPD scores of each of the proposed 16 approaches, the ARPD score 
on TWT is computed using equation (3) over ten problem instances as per the problem 
configuration defined in Table 6. Proposed approach wise and for each value of N (that is 
N = 25, N = 50, N = 75, and N =100) the computed ARPD scores is presented in  
Tables 9(a) to 9(d). Furthermore, the proposed approach wise the ARPD scores over 640 
instances, representing irrespective of the problem configurations, are computed and 
represented in Figure 4. 

Figure 4 Performance of the proposed approaches based on ARPD score over 640 large instances 
(see online version for colours) 

 

From Tables 9(a) to 9(d) and Figure 4, it is observed that each of the HNN variants is 
performing efficiently than the respective DR-GHA. This clearly shows, similar to the 
small-scale instances, the power of back-propagation ANN for achieving more accurate 
parameter estimations in calculating the job-priority-data for each of jobs and in turn 
providing efficient scheduling of BO using HNN. Further, from Tables 9(a) to 9(d), it is 
observed that when the problem size increases the HNN variant: ANN-ODD is 
outperforming. This is even true from Figure 4. In addition, from the results, as a  
second-best choice, one can choose the HNN variant: ANN-FDD. Furthermore, for 
triangulating the findings observed from the ARPD analysis presented in Figure 4, the 
performance measure: IRANK is used. To compute IRANK, first, a [16  16] ranking 
matrix is developed and presented in Table 10 in connection with 640 problem instances. 
Using the ranking matrix (Table 10) related to 640 instances, the IRANK is computed 
using equation (4) and the same is presented in Figure 5. From Figure 5, the proposed 
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HNN variant: ANN-ODD is outperforming and followed with ANN-FDD. This 
observation endorses with the findings observed from the ARPD analysis presented in 
Tables 9(a) to 9(d) and Figure 4. The better performing approaches identified based on 
the empirical analyses considering 160 small scale instances (in comparison with optimal 
solution) and 640 problem instances (in comparison with estimated optimal solution) are 
further verified by conducting statistical analysis and the same is discussed in the next 
section. 

Figure 5 Performance of the proposed approaches, on large instances, based on IRANK 
performance measure (see online version for colours) 

 

5.4.2 Statistical analyses on the performance of the proposed 16 approaches 

To understand statistically the performance of the proposed 16 approaches this study 
conducts statistical analyses: descriptive statistics and Kruskal-Wallis test  
(a non-parametric test), considering 160 small scale instances and 640 large scale 
instances, as follows: 

5.4.2.1 Statistical analyses considering 160 small scale instances 

For each of the 16 proposed approaches the 160 TWT values obtained (considering 160 
small scale instances) are used to compute the descriptive statistics: mean, median, 
standard deviation and 95% confidence interval. The computed descriptive scores are 
presented in Table 11 to statistically analyse the performance of the proposed approaches. 
It is observed from Table 11 that: 

a each of the eight variants of the proposed HNN is performing better than each of its 
DR-GHA which is not integrated with ANN 

b within the proposed eight variants of HNN, the variant HNN: ANN-ODD is 
outperforming in comparison with the other variants. 
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Table 11 Descriptive statistics of proposed variants-small scale problem instances 

Proposed 
variants based on 

Descriptive statistics 

Mean Median Standard deviation 95% confidence interval 

HJS 894.80625 697 630.18886 (797.16, 992.45) 
LPT 949.0125 707.5 705.99577 (839.62, 1,058.41) 
ERT 416.225 280 419.8741 (351.17, 481.28) 
EDD 414.7125 247 478.93781 (340.5, 488.92) 
FDD 393.36875 269 378.00043 (334.8, 451.94) 
ODD 445.2125 352.5 363.28208 (388.92, 501.5) 
LST 437.9625 264.5 502.54655 (360.09, 515.83) 
CI 999.11875 945.5 675.60935 (894.43, 1,103.8) 
ANN-HJS 126.8 56 203.64795 (95.25, 158.35) 
ANN-LPT 137.61875 69.5 205.68725 (105.75, 169.49) 
ANN-ERT 119.83125 55 199.48731 (88.92, 150.74) 
ANN-EDD 122.35625 55.5 199.01772 (91.52, 153.19) 
ANN-FDD 118.8375 55.5 198.01448 (88.16, 149.52) 
ANN-ODD 120.36875 53.5 199.18597 (89.51, 151.23) 
ANN-LST 121.2875 54.5 200.6667 (90.19, 152.38) 
ANN-CI 122.55 55.5 198.44258 (91.8, 153.3) 

Table 12 Kruskal-Wallis test on deviation values w.r.t optimal solution – small scale instances 

Test statisticsa,b 

 Deviation 

Kruskal-Wallis H 1,417.005 
df 15 
Asymp. sig. 01.000 

Ranks 

 Variants of algorithm N Mean rank 

Deviation HJS 160 2,113.33 
LPT 160 2,127.93 
ERT 160 1,604.13 
EDD 160 1,494.72 
FDD 160 1,580.29 
ODD 160 1,716.67 
LST 160 1,558.68 
CI 160 2,160.94 

ANN-HJS 160 787.85 
ANN-LPT 160 862.71 
ANN-ERT 160 735.02 
ANN-EDD 160 755.93 
ANN-FDD 160 730.69 
ANN-ODD 160 740.74 
ANN-LST 160 750.57 
ANN-CI 160 767.80 

Total 2,560  

Notes: aKruskal Wallis test. bGrouping variable: variants of algorithm. 
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In addition to the descriptive statistical analysis on understanding the best performing 
proposed approach(s), this study is further checking that, whether the distribution of 
deviation/proximity score (that is, loss of optimality score) across the proposed 
approaches is same or not. To study this, Kruskal-Wallis (a non-parametric) test is 
conducted and the results are presented in Table 12. It is observed from Table 12 that: 

a there is a statistically significant difference in the distribution of deviation scores 
across the proposed approaches, as the P-Values is 0.000, which is less than 0.05, 
and 

b the HNN variants: ANN-ODD and ANN-FDD are relatively top variants among the 
proposed approaches in optimally scheduling the research problem defined in this 
study. 

5.4.2.2 Statistical analyses considering 640 large scale instances 

The statistical analyses carried out to understand the performance of the proposed 
approaches considering small scale instances is exactly conducted for the 640 large scale 
problem instances with a change in input to Kruskal-Wallis test. That is, in the case of 
large-scale problem instances, we studied whether the RPD score (that is, loss of 
optimality score) across the proposed approaches is same or not. Accordingly, the results 
obtained based on descriptive analysis and Kruskal-Wall test analyses are presented in 
Table 13 and Table 14, respectively. The inferences from these analyses exactly matched 
with the inferences obtained from the small-scale instances. 

Table 13 Descriptive statistics of proposed variants – large scale problem instances 

Proposed 
variants based on 

Descriptive statistics 

Mean Median Standard deviation 95% confidence interval 

HJS 62,849.89 47,328 56,440.97 (58,477.16, 67,222.62) 

LPT 65,642.52 48,122 59,584.46 (61,026.25, 70,258.79) 

ERT 58,993.8 41,927.5 55,562.8 (54,689.1, 63,298.49) 

EDD 56,601.45 41,182 52,129.12 (52,562.78, 60,640.12) 

FDD 50,794.72 36,857.5 47,438.48 (47,119.46, 54,469.99) 

ODD 41,438.7 30,163 38,354.73 (38,467.19, 44,410.21) 

LST 60,772.73 43,689 56,094.91 (56,426.81, 65,118.65) 

CI 58,324.8 42,279.5 54,311.22 (54,117.07, 62,532.53) 

ANN-HJS 50,478.29 35,544 48,817.55 (46,696.18, 54,260.4) 

ANN-LPT 57,781.32 38,287.5 56,887.12 (53,374.03, 62,188.62) 

ANN-ERT 50,916.82 33,945.5 50,358.85 (47,015.3, 54,818.34) 

ANN-EDD 48,686.15 33,524.5 47,667.82 (44,993.12, 52,379.19) 

ANN-FDD 43,964.13 30,162.5 42,974.44 (40,634.71, 47,293.54) 

ANN-ODD 36,630.08 26,021.5 35,466.71 (33,882.32, 39,377.84) 

ANN-LST 51,953.95 36,222.5 49,790.06 (48,096.5, 55,811.41) 

ANN-CI 52,046.45 36,682.5 49,712.03 (48,195.04, 55,897.86) 
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Table 14 Kruskal-Wallis test on RPD values of proposed variants – large scale instances 

Test statisticsa,b 

 RPD 

Kruskal-Wallis H 5,307.226 

df 15 

Asymp. sig. 0.000 

Ranks 

 Variants of algorithm N Mean rank 

RPD HJS 640 8,051.78 

LPT 640 8,425.83 

ERT 640 6,962.64 

EDD 640 6,659.83 

FDD 640 5,160.02 

ODD 640 3,041.75 

LST 640 7,458.11 

CI 640 6,944.60 

ANN-HJS 640 4,318.35 

ANN-LPT 640 5,652.18 

ANN-ERT 640 3,590.46 

ANN-EDD 640 3,166.66 

ANN-FDD 640 2,051.19 

ANN-ODD 640 963.68 

ANN-LST 640 4,739.77 

ANN-CI 640 4,741.16 

Total 10,240  

Notes: aKruskal Wallis test. 
bGrouping variable: variants of algorithm. 

Overall, the inferences obtained from the statistical analyses on the performances of the 
proposed approaches, considering both cases of small-scale instances and large-scale 
instances, exactly endorses the observations obtained from the empirical analyses on the 
performance of the proposed approaches. 

6 Conclusions 

We have considered a new dynamic scheduling of BP problem with jobs characteristics: 
different release time, different due-dates, different processing time, non-agreeable 
release time(s) and due-date(s) with the scheduling objective of minimising TWT. We 
proposed: 
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a eight variants of DR-GHA 

b eight variants of HNN algorithms, applying an ANN for dynamic scheduling of a BO 
problem defined in this study. 

The main purpose of integrating ANN with DR-GHA is to: 

a obtain accurate parameter estimation for the job-priority-data of each of the jobs by 
applying an iterative learning strategy 

b utilising the estimated value of the job-priority-data of each of the jobs with  
DR-GHA for providing near optimal/estimated optimal schedule for burn-in 
operation. 

From the series of computational analyses, it is observed that: 

a the performance of each of the proposed eight variants of the HNN algorithms is far 
better than each of respective DR-GHA, which are not integrated with ANN, in 
comparison with both optimal solution (on small scale instances) and estimated 
optimal solution (on large scale instances) 

b each of the proposed eight variants of HNN algorithms could find the optimal or near 
optimal solution for small size problem instances 

c when the problem size increases, the proposed HNN variant: HNN-ODD is 
outperforming relatively with other HNN variants. 

In addition, the HNN variant: HNN-FDD is consistently performing well as a second 
choice, out of the eight variants of HNN proposed in this study. 

Both empirically and statistically, with the series of computational analyses, this 
study proved that more accurate parameter estimation of the job-priority-data of each of 
the jobs through a back-propagation ANN and utilising it in any DR-GHA leads to  
high-quality schedules with respect to TWT. 

Only selected dispatching rules are considered, in this study, for proposing DR-GHA 
and to integrate with ANN for scheduling a BO problem defined in this study. However, 
there are many dispatching rules in literature and in practice. So, one could consider all 
the possible dispatching rules, widely used in SM, or extensively claimed as good 
dispatching rules in the literature, for the scheduling objective of TWT and develop a 
series of computational experiments to arrive at a set of best performing HNN variants 
for scheduling: 

a single BO 

b multiple and non-identical BO(s) could be very important immediate future research 
topics. 

Another important future work could be to develop an efficient lower bound procedure, 
as the estimated optimal solution has its own demerits, for developing a BS for 
performance evaluation. 
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