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Abstract: This study applies artificial neural network (ANN) to achieve more
accurate parameter estimations in calculating job-priority-data of jobs and the
same is applied in a proposed dispatching rule-based greedy heuristic algorithm
(DR-GHA) for efficiently scheduling a burn-in oven (BO) problem. The
integration of ANN and DR-GHA is called as a hybrid neural network (HNN)
algorithm. Accordingly, this study proposed eight variants of HNN algorithms
by proposing eight variants of DR-GHA for scheduling a BO. The series of
computational analyses (empirical and statistical) indicated that each of the
variants of proposed HNN is significantly enhancing the performance of the
respective proposed variants of DR-GHA for scheduling a BO. That is, more
accurate parameter estimations in calculating job-priority-data for DR-GHA via
back-propagation ANN leads to high-quality schedules w.r.t. total weighted
tardiness. Further, proposed HNN variant: HNN-ODD is outperforming
relatively with other HNN variants and provides very near optimal/estimated
solution.
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1 Introduction

Scheduling of a batch processing machine (BPM) or batch processor (BP) problem has
been continuously addressed by many researchers due to its complexity in terms of
problem parameters and their attributes (Table 1). The BPM is a processor which
processes simultaneously more than one job as a batch. The basic principle in batch
processing is that the jobs in each batch will be processed with common starting and
ending times. The main reasons for concentrating on the scheduling of BPMs are due to
the very high processing time requirement of batch operation when we compare with
other processes and batching decision may affect the performance of the entire
manufacturing/service industry (Table 2).

Table 1 BPM problem parameters and their attributes in scheduling of BPM
BPM problem parameters Attribute
Number of BPM Single BPM

Multiple and homogeneous type BPM
Multiple and heterogeneous type BPM

Capacity restriction of BPM Bounded
Un-bounded
Family of jobs Single family of jobs
Multiple and compatible job-families
Multiple and in-compatible job-families
Size of the jobs Identical job size

Dimension/volume of the
jobs

Splitting of jobs between the
batches
Batch processing time

Set-up time

Scheduling objective

Number of scheduling
objectives

Date availability

Scheduling problem nature

Non-identical job size
Identical job dimension/volume
Non-identical job dimension/volume
Allowed
Not allowed
Dependent on the jobs in the batch
Independent of the jobs in the batch
Included in the processing time
Not-included in the processing time
Completion time-based
Due-date based
Cost-based
Single
Multiple
Deterministic and known
Stochastic
Fuzzy
Static

Dynamic considering only future arrival of jobs

Dynamic considering future arrival of jobs and real-time events
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Table 2
reference

Scheduling of BPM in various industry (in alphabetical order) with a sample latest

Batch operations/processor

Industry

Sample latest reference(s)

Furnace for bending phase

Hardening of synthetic parts
using oven

Furnaces used to heat the
aluminium Ingots

Hardening and soaking/
heat-treatment furnace

Batch distillation process
Dyeing machine

Environmental stress screening
(ESS) chambers

Thermal chamber
Cutting machine

Dry Kiln

Annealing Kiln

Tissue processors
Washer — washing of reusable

medical devices

IP machine used in watch and
clock industry

Multi-head hole-punching
machine
Heat-treatment furnace (HTF)

Bake-out/box-oven

Pottery Kiln

Diffusion furnace/machine
E-beam writer

Etching tank

Baking machine in wafer probe

Pallet in assembly stage

Automotive safety glass
manufacturing facility

Aircraft industry
Aluminium manufacturing

Automobile gear
manufacturing

Chemical industry
Clothing industry

Electronics manufacturing
industry

Electronics manufacturing
industry

Furniture manufacturing

Furniture manufacturing
industry

Glass container industry

Hospital histopathology
laboratory

Hospital sterilisation services
Ion plating (IP) industry
Iron and steel industry
Metalworking industry

Multi-layer-ceramic
capacitor

Pottery manufacturing

Semiconductor
manufacturing

Semiconductor
manufacturing

Semiconductor
manufacturing

Semiconductor
manufacturing

Semiconductor
manufacturing

Mora et al. (2020)
Van der Zee et al. (2001)
Jia et al. (2016)

Ravindra and Mathirajan
(2014)

Tang and Yan (2009)
Zhang et al. (2017)

Damodaran, et al. (2009) and
Alipour et al. (2020)

Damodaran and Wiechman
(2015)

Ogun and Alabas-Uslu
(2018)
Yaghubian et al. (2001)

Fachini et al. (2017)
Leeftink et al. (2018)

Ozturk et al. (2010)
Chan et al. (2007)
Oulamara (2007)

Dupont and Dhaenens-Flipo
(2002)

Koh et al. (2004)

Jia et al. (2020)
Rani and Mathirajan (2020)

Hung (1998)
Sung and Kim (2002)
Huang and Lin (1998)

Cheng et al. (1996)
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Table 2 Scheduling of BPM in various industry (in alphabetical order) with a sample latest
reference (continued)

Batch operations/processor Industry Sample latest reference(s)
Burn-in oven Semiconductor Lietal. (2019)
manufacturing
Cleaning multiple subtracts of  Sensor manufacturing facility =~ Rojas-Santiago et al. (2017)
sensors/bath and Maya et al. (2014)
Hole punching Sheet metal industry Boudhar (2003)
Carousel Shoe manufacturing factory Fanti et al. (1996)
Heat treatment furnace (HTF) Steel casting industry Mathirajan and Sivakumar
(2006b)
Soaking bit furnace Steel Ingot production Lietal. (2011)
HTF Steel manufacturing Zheng and Li (2009)
Annealing furnace Steel production Ozturk (2020)
Aging test operation Thin film transistor liquid Chung et al. (2009)
crystal displays (TFT-LCD)
manufacturing
Tyre curing/mould Tyre manufacturing Bellanger and Oulamara
(2009)
Sterilisation machine Professional waste disposal Tsai and Chou (2016)
services

This study particularly addresses the scheduling of the burn-in process, that is scheduling
of burn-in oven (BO) (a BPM), of the final testing stage of the back-end manufacturing
operation of semiconductor manufacturing (SM). The purpose of the burn-in process is to
bring out latent defects due to infant mortality of chips. To achieve this, the chips of each
lot (job) are loaded on specific burn-in boards and exposed to a high temperature and
voltages for a long period. Chips are stressed electrically and thermally, that is, they are
placed in an oven at temperatures up to 150°C and voltage, which may be as high as 1.5
times the normal operating voltage, which are then applied, at high temperature for a
period of time which may be as short as a few hours or as long as 48 hours.

The analysis of the literature indicated that dispatching rule-based greedy heuristic
algorithm (DR-GHA) provides efficient solution as quick as possible in scheduling (Sarin
et al., 2011). Furthermore, it is observed that, DR-GHA is widely used in industries such
as SM industry (Varadarajan and Sarin, 2006; Hildebrandt et al., 2010; Chen and Wang,
2012). The reasons for its utilisation are mostly based on the fact that DR-GHAs perform
efficiently in a wide range of environments and particularly these algorithms are
relatively easy to understand, easy to implement, require only minimal computational
time and can cope with dynamic changes (Nguyen et al., 2013).

By and large all the DR-GHAs consider job-priority-index, computed based on
dispatching rule and the job-priority-data, as a criterion to construct a batch for
scheduling in BO (Lee et al., 1992; Mathirajan et al., 2010; Li et al., 2019). The quality of
the DR-GHA for scheduling a BPM is expected to vary when the job-priority-data is
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changed. Thus, this study proposes an application of a back-propagation artificial neural
network (ANN), which is an extension of Parsa et al. (2019), to achieve more accurate
parameter estimations in calculating the job-priority-data for the jobs and to enhance the
performance of the DR-GHA for scheduling a BPM.

The overall arrangement of the paper is as follows. Problem description with
assumptions is discussed in Section 2. In Section 3, the closely related literature on
scheduling of BO with due-date based scheduling objectives is presented. The proposed
multiple variants of

a DR-GHA

b  machine learning (ML) approach, implemented based on back-propagation neural
network, are discussed in Section 4.

Results of the computational experiments to evaluate the performance of the multiple
variants of ML approach are discussed in Section 5. Finally, the conclusion of the study
along with the implications, limitations and the directions for future research is presented
in Section 6.

2 Problem description and assumptions

IC chips (called as product) arrive at the burn-in area in lots. Each lot consists of several
IC chips of the same product type. Each lot or product is referred to as a job. In the
burn-in operation, IC chips of each job are loaded onto boards (often product-specific).
As each job has different lot sizes, the number of boards required to place the entire lot
(job) is different. The boards are then placed into a BO. Typically, an oven’s capacity is
measured in terms of number of boards placed in an oven. Each IC chips of a lot has a
pre-specified minimum burn-in time, depending on its type and/or the customer’s
requirements. With these basic briefs on burn-in operation, in this study, there are ‘N’
jobs (lots) that need to be scheduled in a BO. Accordingly, each of the jobs has different
job size of S; (that is, number of boards required for each job), processing requirement of
P;, due-date of D;, weight (job-priority-data) of W}, and non-zero release time of R; (at
which it becomes available for processing, and consider all future arrival of jobs until the
decision making time epoch for scheduling a batch to capture the dynamic nature of
scheduling), and the release time(s) and due-date(s) are non-agreeable [that is,
job-processing need not necessarily follow the first-in-first-out, based on the release time
(that is, if R; < R; not-implied D; < D;)]. The release time of a batch for scheduling is
given by the longest ready time of all jobs in the batch. As IC chips may stay in the BO
for a period longer than their minimum required burn-in time, the processing time of each
batch equals the longest minimum exposure time among all the products (jobs) in the
batch.
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In the competitive global environment, customers’ voices have forced production
managers to consider on-time delivery as an important management performance. So, for
the research problem characteristics defined here, the scheduling objective is to minimise
total weighted tardiness (TWT). TWT is defined as the sum of product of size and

N
tardiness of job ‘j’ (that is, TWT = ZS ' #T;, where T; and S; are tardiness and size of
Jj=1
job ¢, respectively). And 7; is defined as how much late the job °j’ is completed as
compared to the due-date (that is, 7; = max (0, C; — D), where C; and D; are completion
time and due-date of job j’, respectively). The reason for considering the scheduling
objective of minimising TWT is that it is a measure that incurs a penalty for each job that
finishes processing after its committed due-date. As this penalty increases with the
magnitude of the tardiness, schedules that minimise the weighted sum of the penalties
provide good on-time delivery performance (Perez et al., 2005).

The research problem described here can be concisely represented using the
three-field notation of Graham et al. (1979) as “l/p-batch, dynamic job-arrivals,
non-identical job sizes, non-identical processing time, due-dates, release time,
non-agreeable release time(s) and due-date(s)/TWT” and we make the following
assumptions:

e Data required for dynamic scheduling of a BO problem defined in this study are
assumed to be deterministic and known a priori. This assumption is a valid one as in
practice, particularly in SM, estimates of the required parameters’ values for this
problem can be obtained from the existing shop-floor computerised information
system.

e Each job requires one operation, and all jobs are independent.

e The BO has a capacity ‘B’, measured in terms of number of boards it can hold. The
number of boards required for any job (that is S;) must be less than or equal to ‘B’.
That is, splitting of lot for processing is not permitted.

e Once processing of a batch is initiated, it cannot be interrupted, and other jobs cannot
be introduced into the BO until processing of the batch is complete.

3 A closely related literature review

Scheduling of BPM was very first time studied by Ikura and Gimple (1986). Though
there are many studies addressing on scheduling BPM across various industries (Table 2),
most of the studies are related to SM and particularly related to scheduling of:

a  diffusion furnace
b  BO only (Mathirajan and Sivakumar, 2006a; Monch et al., 2011).

Since, this study is pertaining to scheduling of BO problem; the existing studies on
scheduling of BO are reviewed and classified based on the type of BPM problem
parameter considered. Accordingly, all the existing studies on scheduling of BO
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problems can be grouped into completion time-based scheduling objective and due-date
based scheduling objective. As this study is concentrating on due-date based scheduling
objective, all the existing studies considering due-date based scheduling objective are
reviewed and discussed in this section. However, for the existing studies considering
completion time-based scheduling objective, we refer to Parsa et al. (2016), Jia et al.
(2017), Beldar and Costa (2018), Chung and Sun (2018) and Alizadeh and Kashan
(2019). Furthermore, all the existing studies are grouped into single objective and
multi-objectives. As this study is related to single due-date based scheduling objective, all
the existing studies considering single due-date based scheduling objective which are
reviewed and discussed in this section. Whereas the existing studies considering multi
objectives we refer to Tsai and Chou (2016), Zhang et al. (2017), Feng et al. (2020) and
Jia et al. (2020).

The problem of scheduling burn-in operation in SM was first introduced by Lee et al.
(1992) in which jobs are of the same size, same processing time and different arrival
time. The batches were constrained by the number of jobs that could be included, as the
jobs are assumed to have the same size. Number of problems considering single and
parallel BO(s) were studied with single and multi-objectives such as minimising
maximum tardiness, number of tardy jobs, maximum lateness, and makespan. They
proposed dynamic programming (DP)-based algorithms. Based on the computational
analyses, they showed that some of the problems studied may be solved in polynomial
time, but others are NP-hard.

Dynamic scheduling of a BO problem with jobs having identical job sizes,
non-identical processing time and agreeable release time(s) and due date(s)to minimise
number of tardy jobs is addressed by Hochbaum and Landy (1994). Due to computational
intractability in solving large size problems they proposed simple greedy heuristic
algorithms (GHAs).

Wang and Uzsoy (2002) extend the problem configuration considered in Hochbaum
and Landy (1994) by including non-agreeable release time(s) and due date(s) to minimise
maximum lateness (Lmax). They combine a DP-based algorithm, with a random key
encoding scheme to develop a genetic algorithm (GA) for the problem configuration
considered in their study. Ventura and Kim (2000, 2003) extend the problem
configuration considered in Wang and Uzsoy (2002) by introducing parallel identical BPs
and non-identical job-size with the scheduling objective of minimising the
earliness-tardiness for the static and dynamic situation along with additional constraint on
number of boards required to fill the lot (job). Further, Ventura and Kim (2003) assumed
that all job processing times are same.

Monch et al. (2006) consider the scheduling of the single BO with jobs having an
unrestrictive late common due-date using a combination of dominance properties and a
GA with the objective of minimising the earliness-tardiness of the jobs. They also include
a constraint on the maximum allowable tardiness. Subsequently, Monch and Unbehaun
(2007) extend this research by considering the case of parallel identical BOs and
proposed DP.

Raghavan and Venkataramana (2006) considered a static version of scheduling of
multiple and identical BOs problem with jobs having identical job sizes, non-identical
processing time and agreeable release time(s) and due-date(s) to minimise TWT. They
proposed mixed integer linear programming (MILP) model. Due to computational
intractability of the proposed MILP model, they proposed ant colony algorithm (ACO)
for efficiently addressing large sized real-life static scheduling problems.



28 M. Mathirajan et al.

Li and Chen (2014), Cabo et al. (2015), Li et al. (2015) and Parsa et al. (2017a,
2017b) considered the same job characteristics of the problem studied by Raghavan and
Venkataramana (2006) for a single BO problem to minimise number of tardy jobs,
minimise the maximum lateness, minimise earliness and tardiness, and minimise the total
tardiness, respectively and proposed GHA, and GA respectively. Moreover, Li and Chen
(2014) considered non-agreeable release time(s) and due date(s) as additional constraint
and Li et al. (2015), and Parsa et al. (2017a, 2017b) considered non-identical job size.

Chou and Wang (2012) and Xu and Bean (2016) considered dynamic scheduling of
multiple and non-identical BOs with non-identical job size, non-identical processing
time, and non-agreeable release time(s) and due-date(s) to minimise TWT. Both the
studies proposed MILP model. Due to computational difficulty in getting optimal
solution they proposed simulated annealing (SA) and GA respectively. Hulett et al.
(2017) considered the problem studied by Chou and Wang (2012) with static situation
and agreeable release time(s) and due date(s). This study also proposed MILP model.
Due to computational difficulty in getting optimal solution they proposed particle swarm
optimisation (PSO).

Dynamic scheduling of a BO problem with jobs having non-identical job sizes,
non-identical processing time and non-agreeable release time(s) and due date(s) to
minimise TWT is addressed by Chou and Wang (2008), Mathirajan et al. (2010) and
Wang (2011). They proposed MILP model and demonstrated its computational
intractability in solving real-life sized problem on scheduling a BO. First two studies
proposed meta heuristics: GA, SA respectively and other two studies proposed GHA, for
efficiently addressing large sized real-life problems on scheduling a BO.

Condotta et al. (2010) and Zhou et al. (2018) studied the same problem addressed in
Chou and Wang (2008) with scheduling objective of Lmax and proposed simple GHA
and meta heuristic: PSO, respectively. However, Condotta et al. (2010) assumed an
identical job size, identical processing time.

Li et al. (2019) considered static scheduling of single BO with non-identical job size,
multiple job-families and non-identical processing time to minimise the maximum
lateness. They proposed MILP model and due to its computational difficulty in getting
optimal solution for large sized problem they proposed simple GHA. Very recently
Keshavarz (2021) developed a lower bound method, based on column generation
approach, for a static scheduling of single BO with non-identical processing time and
non-identical job-size to minimise the total earliness and tardiness. Further, this
researcher empirically proved that the proposed lower bound method could enhance the
lower bound around 41% in average comparing with the best known lower bounding
method in the literature.

A summary on the review of closely related existing studies on scheduling of BO
with due-date based objective, discussed in this section, is presented in Table 3. From
Table 3, one can observe that a scant treatment has been given in the literature on
scheduling of a BO with non-agreeability of release time(s) and due-date(s), non-identical
job-sizes, and non-identical processing times to minimise the customer-based scheduling
objective of TWT.
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A summary on closely related scheduling of BO with due-date based single

scheduling objective

Table 3
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Though, the analysis of the literature indicated that the application of ML approach for
scheduling is not a new to the scheduling (Aytug et al., 1994; Priore et al., 2014), ML,
and neural networks are not developed enough to solve the scheduling problem (Melnik
and Nasonov, 2019) in general. Particularly there is a very scant treatment has been given
towards ML approaches for scheduling BPM. Furthermore, though there are two studies
proposed ML approaches for scheduling a BO with completion time-based scheduling
objective (Shao et al., 2008; Parsa et al., 2019), there has been no research for scheduling
a BO with the problem configuration, close to the reality, defined in this study that has
proposed a ML approach. Furthermore, it is observed from the literature that ML
approaches can be used to capture complex processing environments in a way such that
scheduling policies, in particular dispatching rules, can be derived (Benda et al., 2019).
Thus, this study proposes a ML approach, particularly a back-propagation ANN to
achieve more accurate parameter estimations in calculating the job-priority-data of the
jobs and integrated the same with a few proposed dispatching rules based GHA for
scheduling a BO problem defined in this study.

4 Proposed approaches

The research problem, on scheduling a BO, defined in this study is empirically shown to
be NP hard by Mathirajan et al. (2010). Due to the computational intractability in getting
optimal solution for real-life large sized instances, a hybrid neural network (HNN)
algorithm is proposed in this study to find an efficient solution. The proposed HNN is an
integration of the ANN approach and a simple DR-GHA. So, before presenting the
proposed HNN algorithm, we first give a quick review of different dispatching rules
considered for:

a developing GHA,

b applying a back-propagation ANN to achieve more accurate parameter estimations in
calculating the job-priority-data of the jobs and in turn for scheduling the research
problem considered in the study.

Dispatching rules considered for scheduling a BO: the analysis of the literature indicated
that simple GHA, based on dispatching rules, are developed to obtain efficient solution as
quick as possible in scheduling (Sarin et al., 2011). It is also noticed that dispatching
rules are widely used in manufacturing industry, especially industry like SM (Hildebrandt
et al., 2010). The reasons for the popularity could be due to fact that they perform
reasonably well in a wide range of environments, relatively easy to understand and need
only minimal computational time. In addition to that, they are easy to implement and can
cope with dynamic changes (Nguyen et al., 2013). Accordingly, keeping the importance
of various job characteristics associated with burn-in operations as well as the better
performing dispatching rules as claimed in the literature, the following dispatching rules
are used for developing multiple variants of greedy algorithms:

e Highest job size (HJS): it is a function of the job characteristic ‘size (S;)” of a job. As
per HIS rule jobs available in-front of BO will be sorted, at the decision-making time
epoch, based on size of the job (highest to lowest), and based on that the job-index is
developed and assigned as follows:
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Job-Index(j) = S;

Longest processing time (LPT): it is a function of the job-characteristic ‘processing
time (P))’ of a job. Based on LPT rule jobs available in-front of BO will be sorted, at
the decision-making time epoch, based on processing-time of the job (longest to
least), and based on that the Job-Index is developed and assigned as follows:

Job-Index(j) = P,

Earliest release time (ERT): it is a function of the job-characteristic ‘release time
(R)), at which job becomes available for processing’. According ERT rule, jobs
available in-front of BO will be sorted, at the decision-making time epoch, based on
release-time of the job (earliest to late), and based on that the Job-Index is developed
and assigned as follows:

Job-Index(j) = R;

Earliest due-date (EDD): it is a function of the job characteristic ‘due-date (D;)’. As
per EDD rule, jobs available in-front of BO will be sorted, at the decision-making
time epoch, based on due-date of the job (earliest to late), and based on that the
job-index is developed and assigned as follows:

Job-Index () = D,

Flow due-date (FDD): FDD is proposed by Jayamohan and Rajendran (2000).
According to FDD rule jobs available in-front of BO will be sorted, at the
decision-making time epoch, based on FDD of the job (least to longest), and based
on that the job-index is developed and assigned as follows:

Job-Index(j) = R; + ZP,-q

q=1
where

P;; process time required for job ‘j” for the operation ‘q’
m  current operation.

Note: It is to be noted that this study concerns about only one operation: burn-in
operation, the total processing time of job ‘j’ till the operation ‘m’ (here m = 1) is
equal to the processing time of job ‘j” (P;) for burn-in operation. Accordingly, this
study modified the job-index of job ‘j” using FDD is as follows.

Job-Index(j) =R, + P;

Operational due-date (ODD): Rose (2003) probably is the first one applied ODD as
dispatching rule in scheduling SM problem. Based on ODD rule jobs available
in-front of BO will be sorted, at the decision-making time epoch, based on ODD of
the job (least to longest), and based on that the Job-Index is developed and assigned
as follows:
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Job-Index(j)=R; +c* sz‘J

g=1
where
¢ Due-date allowance factor (and it is assumed to be equal to 3).

Note: anote given for FDD is applicable to ODD also. So, the job-index becomes as
follows.

Job-Index(j)=R; +c*P;

o Latest start time (LST): this rule is adopted from Mathirajan et al. (2010). LST is
defined as the difference between the due-date of the job and the processing time of
the job. This is fundamentally the latest time at which the job has to be started to
process so that it can be finished before its due-date. Accordingly, the job-index is
developed and assigned as follows:

Job-Index(j) = D; — P,

o Composite index (CI): this rule is adopted from Mathirajan et al. (2010). We
introduce a CI that attempts to obtain the jobs that have early latest start time, a short
processing time and a large job size first. With this, the job-index is developed and
assigned as follows:

Job-Index(j) =[(D; —P;)xP; |/ S;

The first four dispatching rules (HJS, LPT, ERT, and EDD) considered in this study are
simple (as we considered a single criterion to sort the available jobs) and static in nature
(as they are not dependent on time). The dispatching rules: FDD, ODD, LST and CI are
composite (as we considered multiple characteristics of a job as criterion to sort the
available jobs) and static in nature.

4.1 Proposed DR-GHA

A simple DR-GHA is developed by following five steps to schedule a batch for
processing in BO. In the first step, by applying dispatching rule, every job is assigned an
index, called as job-index. In the second step, if there is a job-priority-data for each job is
given then job-index is computed appropriately using both dispatching rule and the
job-priority-data and is called as job-priority-index. If job-priority-data is not given, then
both job-index and job-priority-index are one and the same (or it is assumed that the
job-priority-data for each job is given as same and constant). In the third step, the jobs are
sequenced or sorted based on the computed job-priority-index. In the fourth step, a set of
jobs are selected, to form batches parallel, from the top of the sorted-listed-jobs until the
batch capacity constraint is satisfied. Finally, the constructed batches are scheduled in the
BO. This five-step process is repeated until all the jobs are scheduled for the given
planning period. The working mechanism of this simple DR-GHA is given in Figure 1.
Considering each of the 8 different dispatching rules defined in this section we have
coded these eight variants of DR-GHA in Python for scheduling a single BO problem
defined in this study.
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Figure 1 Working mechanism of the proposed DR-GHA
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4.2  Proposed HNN algorithm

By and large, the quality of the dispatching rule based scheduling algorithm is expected
to vary when the job-priority-data (nothing but a weight for penalising tardiness) is
changed (Park et al., 2000). Due to that, this study integrates an application of ANN to
enhance the performance of DR-GHA for scheduling a BO by learning and generating
efficient job-priority-data. This integrated approach is called as HNN algorithm (Parsa
etal., 2019).

That is, in the HNN, we applied a back-propagation ANN to achieve more accurate
parameter estimations in calculating the job-priority-data for scheduling a BO by utilising
the proposed DR-GHA. To get the benefit of HNN for scheduling a BO problem defined
in this study, the ANN is integrated with the proposed DR-GHA, like the HNN proposed
in Parsa et al. (2019). So, the proposed HNN is an extension to the existing HNN for
scheduling a BO problem with six main differences (please refer to Table 4) between
Parsa et al. (2019) approach and that of ours in this paper. However, all the important
parameters of HNN: maximum number of epochs, learning rate, initial weights, and
reinforcement factor are assumed to have the same values set in Parsa et al. (2019), as
this study is also related to scheduling a BO. With these additional features on the
existing HNN, the working mechanism of the HNN is as follows:
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Difference between the proposed HNN and the existing HNN

No.

Current study

Study by Parsa et al. (2019)

1

Introduced additional job-characteristics (close to
real-life) such as different release time, different
due-date, and non-agreeable release time(s) and
due-date(s) requirement to describe the research
problem on scheduling BO.

Considered dynamic scheduling (that is, in this
study jobs are having different release time and
considering all the future arrivals of jobs until the
decision-making epoch of the scheduling of BO)

Considered customer perspective objective, that
is minimisation of TWT.

Applied a back-propagation ANN on each of the
variants of GHAs (proposed for scheduling the
research problem considered in this study) to
achieve more accurate parameter estimations in
calculating the job priority-data. With this there
are eight variants of HNN developed for
scheduling a BO. Furthermore, the performance
evaluation of each of the proposed eight variants
of:

a DR-GHA
b HNN is carried out in comparison with

1  optimal solution (on 160 small
instances)

2 estimated optimal solution (on 640 large
scale instances) obtained using the
procedure given in Rardin and Uzsoy
(2001).

Number of epochs and minimum TWT (= Zero),
as there is a possibility of getting TWT as zero,
are given as stopping conditions of the ANN.

Job characteristics: processing time
and non-identical job-sizes are only
considered for scheduling BO.

Considered static scheduling (that is,
jobs are having release time equal to
Zero or constant)

Considered organisation perspective
objective, that is minimisation of
total completion time.

Applied a back-propagation ANN on
only one GHAs FFLPT (first-fit
longest processing time) to achieve
more accurate parameter estimations
in calculating the job priority-data.
And developed HNN algorithm for
scheduling a BO. Furthermore, the
performance evaluation of the
proposed HNN algorithm is carried
out in comparison with a set of
existing GHAs and random
algorithm, in comparison with the
lower bound obtained using the
procedure given in Uzsoy (1994).

Number of epochs and minimum
total completion time (= lower bound
obtained, using the procedure in
Uzsoy (1994)) are given as stopping
conditions of the ANN.

In our study, initially, the job-priority-data (that is weight /) for all job are constant and
equal to 1. Now, in the proposed HNN and at epoch = 1, the job-priority-index is
computed based on the dispatching-rule-criterion w.r.t. DR-GHA and the job-priority-
data. The computed job-priority-index is utilised in each of the iterations of the proposed
DR-GHA for scheduling a BO. During the next epoch of the HNN, the weight W, are
modified for all jobs based on ANN and recalculate all job-priority-index and re-apply
the same DR-GHA. The modified weights will generate new schedule in the next epoch.
If an improvement on TWT happens in an epoch, the ANN tends to reinforce the current
weights and stores the best TWT known at this point. If no improvement on the TWT, the
ANN continues without reinforcement.

Furthermore, if there is no improvement on TWT for a particular number of epochs
(=50), the ANN assumes that the last acceptance of the solution is not appropriate, so the
ANN backtrack to the last best set of values of job-priority-data of the jobs (that is
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weights). Subsequently a certain number of epochs are implemented; the best TWT is
stored, and reported. That is, in the proposed HNN we monitor improvement and
reinforce the values of the job-priority-data of the jobs (that is weights) that lead to
improvements and backtrack to the last set of best values of the job-priority-data of the
jobs if no improvement achieved for a predefined number of epochs. The idea of
reinforcement is a classical feature of neural network learning. By reinforcing the weights
of the previous epochs applying a reinforcement factor, the relative weights are
essentially retained for a few epochs and the probability of finding better weight
combinations will be increased in the new few epochs.

Figure 2 Working mechanism of the proposed HNN
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It is clear from the above brief on the proposed HNN, after a number of epochs, it is
expected that neural network learns a proper set of estimated values of the
job-priority-data of each job that would generate efficient solution in comparison with
applying only the DR-GHA without integrating it with the neural network. With these,
the working mechanism of the HNN, explained briefly here, is represented in Figure 2.
For more technical details on the working mechanism of the HNN the readers are
requested to refer the study by Parsa et al. (2019) as this study exactly followed the
technical aspects presented in that study. Furthermore, in the proposed HNN, we use
eight different DR-GHA for embedding into the neural network. And in this process, we
have eight different versions of HNN. Python is used to code all these eight variants of
HNN for dynamic scheduling of a BO.

5 Computational experiments

To understand the efficiency of the proposed 16 approaches: eight proposed variants of
DR-GHA and eight proposed variants of HNN, for dynamic scheduling of a BO, a series
of computational experiments is carried out. To perform appropriate computational
experiments, we need to have experimental design, benchmark solution (BS) procedure,
and performance measure(s). The required details of these are presented in this section.

5.1 Experimental design

The aim of the experimental design is to generate the required suitable data for the
problem defined under study. Accordingly, the two experimental designs presented in
Mathirajan et al. (2010) are used for generating suitable data, as the problem
configuration defined in the current study is exactly matching with the problem
configuration defined in Mathirajan et al. (2010). Accordingly, the summary on the
experimental designs considered in this study are given in Table 5 and Table 6.

Table 5 A summary of experimental design for generating small scale problem instances
No. Parameters Levels Number of levels
1 Number of jobs (N) 10, 12 2
2 Release time of jobs Uniform distributions [1, 20], [1, 30] 2

(R)
3 Processing time of Uniform distributions [1, 10], [1, 15] 2
jobs (P))
4 Due-date of jobs (D;)  R; + P; + uniform distributions [1, 30], 2
[1,45]

5 Size of jobs (S)) Uniform distributions [4, 10], [4, 14] 2

Number of problem configurations 2x2x2x%x2x%x2=32
Problem instances per configuration 5

Total problem instances 160

Source: Mathirajan et al. (2010)



A machine learning algorithm for scheduling a burn-in oven problem 37

The experimental design summary given in Table 5 is used particularly for generating
small scale problem instances, which are possible to solve and obtain optimal solution
using exact approach in a reasonable computational time. Particularly, the experimental
design summary given in Table 5 is used for two cases. In the first case, it is used to
understand the closeness of the solution of each of the proposed 16 approaches: eight
variants of DR-GHA and eight variants of HNN in comparison to optimal solution
(obtained from the MILP model proposed in Mathirajan et al., 2010). In the second case,
the quality of the estimated optimal solution (which could be used as BS for large sized
real-life problem of burn-in operation and can be obtained for each of the problem
instances using the procedure given in Rardin and Uzsoy, 2001) will be analysed in
comparison to the optimal solution obtained on small scale instances. The experimental
design summary given in Table 6 is used for generating large scale problem instances,
which are possible to solve by each of the proposed 16 approaches within a reasonable
computational time. These large sale instances are used to understand the performances
of each of the proposed 16 approaches in comparison to estimated optimal solution.

Table 6 A summary of experimental design for generating large scale problem instances
No. Parameters Levels Number of Levels
Number of jobs (N) 25,50, 75,100 4

2 Release time of jobs Uniform distributions [1, 20], [1, 30] 2

&)
3 Processing time of Uniform distributions [1, 10], [1, 15] 2
jobs (P))
4 Due-date of jobs (Dj)  R;+ P; + uniform distributions [1, 30], 2
[1, 45]

5 Size of jobs () Uniform distributions [4, 10], [4, 14] 2

Number of problem configurations 4x2x2x%x2x2=064
Problem instances per configuration 10

Total problem instances 640

Source: Mathirajan et al. (2010)

5.2 BS procedure

For small-scale problem, optimal solution obtained from the MILP model proposed in
Mathirajan et al. (2010) is considered as a BS for performance evaluation of the proposed
16 approaches: eight variants of DR-GHA and eight variants of HNN. Whereas for
large-scale problem, estimated optimal value is considered as BS.

5.3 Performance measures

Since the efficiency of each of the proposed approaches may vary over a range of
problem instances, the efficiency is analysed both empirically and statistically. For
empirical analysis, the performance measures: deviation/proximity, average relative
percentage deviation (ARPD), and IRANK are used. For statistical analysis, this study
conducts descriptive statistics and Kruskal-Wallis test. The details of these measures are
given below.
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e Deviation/proximity: for each problem instance and for each variant of DR-GHA and
for each variant of HNN, we compute the ‘deviation’ as per equation (1).

Dy =(FS; - BS;) O]

where

i Problem instances and i € [1, 160] for small scale instances and i €
[1, 640] for large scale instances.

j Proposed eight variants of DR-GHA and eight variants of HNN and j
[1, 16].

FS; Feasible solution obtained for i problem instance using j* proposed
approach.

BS; Equal to optimal value of ‘i’ problem instance, for small-scale problem.

BS; Equal to estimated optimal value of ‘> problem instance, for large-scale
problem.

D; Deviation (or proximity) between the solution obtained from ;" variant of
the proposed algorithm and the optimal (benchmark) solution for the it
instance.

e ARPD: for each problem instance and for each variant of DR-GHA and for each
variant of HNN, we first compute the relative percentage deviation as per
equation (2):

RPD!*]‘ = (Dif /BS,)*IOO (2)

where
RPDj; relative percentage deviation of ‘j” variant of the proposed algorithm
for ‘ih” problem instance

After computing RPD score, next we compute the average of RPD (ARPD) score for
each of the proposed 16 approaches: eight variants of DR-GHA and eight variants of
HNN over the number of problem instances planned in each problem configurations
as well as the total number of problem instances in the experimental design as per the
equation (3).

ARPD; =>"" RPD; /N 3)

where
ARPD; average relative percentage deviation of ‘j” proposed variant.

N =5 when ARPD is computed problem configuration wise for small scale

problems.

N =10 when ARPD is computed problem configuration wise for large scale
problems.

N =640 when ARPD is computed considering entire large scale problem

instances.
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e JRANK: for each of the proposed approaches, this study computes IRANK for
triangulating the performance analyses using performance measures: deviation (for
the small-scale instances) and ARPD (for large scale instances), as per the
equation (4).

IRANK, =3 ta(r, ) / > e ) )

where
r rank and r € [1, 16]
j proposed approachj € [1, 16]
a(r,j) number of times the j” proposed approach in rank ‘r’

Maxrank Maximum rank possible (Maxrank = 16 = number of proposed
approaches).

IRANK; integrated rank of ‘j proposed approach.

For statistical analysis, this study first computes descriptive statistics (mean, median,
standard deviation and 95% confidence interval), for each of the proposed 16 approaches;
eight variants of DR-GHA and eight variants of HNN. As the normality test is failed over
the obtained RPD scores, Kruskal-Wallis tests (a non-parametric test) on the medians are
conducted to compare the proposed approaches (Beldar and Costa, 2018).

5.4 Experimental results and analysis

For evaluating the performance of the proposed 16 approaches: eight variants of
DR-GHA and eight variants of HNN for scheduling a BO problem, defined in this study,
the following empirical and statistical performance analyses are carried out:

5.4.1 Empirical performance analyses

In the empirical performance analyses, the proposed 16 approaches are evaluated in
comparison with:

a  optimal solution on 160 small scale instances

b  estimated optimal solution on 640 large sale problem instances. The details of these
empirical analyses are as follows:

Performance analysis in comparison with optimal solution on small scale instances: the
160 small scale problem instances generated and used by Mathirajan et al. (2010),
including the optimal solution obtained, are used in this study for performance analysis of
the proposed 16 approaches in comparison with optimal solution. Accordingly, each of
the 160 problem instances are applied on each of the proposed 16 approaches and
obtained feasible solution with TWT. Some of the small-scale instances, out of 160
instances, when applied with the MILP model proposed in Mathirajan et al. (2010)
resulted the optimal solution as zero (that is zero TWT). Due to this, finding RPD scores
on TWT in comparison with the optimal solution becomes ‘infinite’. To avoid this, for
understating the performance of the proposed 16 approaches w.r.t. optimal solution, we
used the performance measures ‘deviation/proximity’, and IRANK. Accordingly, using
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equation (1) the ‘deviation/proximity’ score is obtained, for each of the proposed
approaches and for each of the 160 problem instances, considering bench-mark solution
as an optimal solution. Considering this score, we computed and presented (Table 7) for
each of the proposed approaches:

1 number of times the optimal solution yielded

2 minimum, mean, maximum, and variance on the deviation score w.r.t. optimal
solution over the 160 small scale instances.

Table 7, clearly indicates that each of the HNN variants are performing efficiently in
comparison with its respective DR-GHA, which is not integrated with ANN. From this,
particularly based on small scale problem instances, we infer that the back-propagation
ANN is providing more accurate parameter estimations in calculating the
job-priority-data for the jobs and in turn used in DR-GHA for obtaining efficient solution.

Table 7 Performance of the proposed 16 approaches based on ‘deviation/proximity’ w.r.t.
optimal solution

No. of times Deviation from optimal solution over 160
Proposed Variants yielded optimal instances
approaches !
solution Minimum  Mean  Maximum Variance
1 GHA HJS 0 8 883.53 2,493 1,983.81
2 LPT 0 30 887.73 2,808 2,521.37
3 ERT 7 0 349.95 1,776 743.98
4 EDD 18 0 353.44 2,105 1,034.17
5 FDD 8 0 332.09 1,730 592.33
6 ODD 5 0 383.1 1,509 530.72
7 LST 16 0 376.68 2,456 1,109.56
8 CI 2 0 937.84 3,087 2,324.7
9 HNN ANN-HJS 114 0 65.52 883 77.46
10 ANN-LPT 73 0 76.34 883 82.82
11 ANN-ERT 133 0 58.55 888 76.72
12 ANN-EDD 132 0 61.08 875 74.02
13 ANN-FDD 134 0 57.56 875 74.58
14 ANN-ODD 122 0 59.1 875 75.04
15 ANN-LST 120 0 60.01 875 77.56
16 ANN-CI 113 0 61.275 875 76.17

In addition, Table 7 clearly indicates, by and large, the proposed HNN variants:
ANN-FDD and ANN-ODD are outperforming. The rule ODD seeks to minimise the
deviation of completion times of a job from its operation due-date, and hence good
performance for this rule is observed. Basically, the rule FDD defines a milestone for
every operation of a job, and hence attempts to ensure the timely completion of
operations. Further it is important to note that when the allowance factor, (i.e., c) is equal
to 1, both FDD and ODD are same.
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Ranking matrix — 160 small scale instances

Variant of HNN based on the integration of

ANN-HJS ANN-LPT ANN-ERT ANN-EDD ANN-FDD ANN-ODD ANN-LST ANN-CI

Variant of DR-GHA based on the dispatching criterion

HIJS

Rank

CI

LPT ERT EDD FDD ODD LST
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—
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11.41
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To triangulate the inferences obtained based on the performance measure:
Deviation/Proximity, we consider the performance measure: IRANK. To obtain IRANK
for each of the proposed 16 approaches, first we computed ranking matrix considering the
TWT scores obtained for each of the 160 instances using each of the proposed 16
approaches. The computed ranking matrix (16 approaches x 16 ranks) considering the
160 small scale instances is presented in Table 8. The value a; in the ranking matrix
(Table 8) represents number of times the i proposed approach resulted j ranking
solution out of j = 1, 2,...16 approaches. Using the ranking matrix, the IRANK score for
each of the proposed 16 approaches is computed using the equation (4) and the same is
given in Figure 3. Table 8 and Figure 3 clearly endorse the same inferences obtained
based on the performance measure: deviation/proximity.

Figure 3 Performance of the proposed approaches, on small instances, based on IRANK
performance measure (see online version for colours)
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Proposed Approach

In general, the findings obtained considering small-scale instances, on the performances
of the proposed approaches, cannot be extrapolated for large scale instances for any
conclusion and generalisation. So, this study carried out the performance analyses of the
proposed approaches considering 640 large scale instances and the details of the same is
discussed as follows:

Performance analysis in comparison with estimated optimal solution: writing a
Python code and using the experiential design given in Table 6, 640 problem instances
are generated. For each of the 640 problem instances, each of the proposed approaches
are applied and obtained feasible solution with TWT. For each of the 640 problem
instances the estimated optimal solution (TWT) is computed using the:

a 16 TWT values available (obtained from each of the 16 proposed approaches) for
each of the 640 problem instances

b  procedure discussed in Rardin and Uzsoy (2001).
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(b) Performance of the proposed approaches w.r.t. estimated optimal solution and

N=50

Table 9
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(c) Performance of the proposed approaches w

N=175

Table 9
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(d) Performance of the proposed approaches w.r.t. estimated optimal solution and

N

Table 9

=100
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Ranking matrix — 640 large scale instances
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8 L 1 (4 v 01 S 9 [AEE 6 I € 91 I syues
(A 9L 91 ¥8T 9 8L°6 ss's 69 881l TEL vy TEL PELL €0TL 91'ST SEvl  paresdow]
0 0 0 0 0 0 0 0 8T 65 0 I €1 ST 0se €Ll 91
0 0 0 0 0 Lg 0 0 8¢ 90l ¥ € Lz 6y 891 80T st
1 1 0 0 0 8 0 0 €8 81 L 11 1L 96 85 00l I
4 v 0 0 0 L 0 1 LT €l 11 81 0l 901 1T €9 €1
9 S 0 0 1 95 € L 11 16 Tl LT STl 00l 0 6 4l
T Il 0 0 1 LL 1 8 601 1L ST ss o€l 1€l 9 8T 1
s Is 0 0 v 8L L1 1€ ¢ ST € S8 69 €L L €l 0T
atl At 0 0 Ll 0s Is 59 ve L W 18 60 9T 0 4 6
6€1 8¢l € 1 €€ 8T 99 1L Ic v vt 89 €1 Sl 0 € 8
ST1 6C1 01 v 6 61 S8 01 8 T L1 8 0T 8 0 0 L
$6 16 €1 6 £9 L1 001 STl 9 0 €€ L9 8l L 0 I 9
6 6 L1 1z szl 1€ L1l SII L I 8¢ 89 0l € 0 0 S
Lz 43 9C ss 6l 9z 28 18 1 0 0 ¥8 6 0 0 0 v
9 01 LE LvE 08 1z 142 81 z T 1L ¥ 4 I 0 0 €
9 I €€ 191 £ € 9¢ 01 0 I ¥ 0 0 0 0 0 4
4 1 108 w 0€ 1z or 9 0 0 0 0 (4 0 0 0 1
ID"NNV ISTNNV ddONNV QdANNV dJANNV I¥A-NNV IdTNNV SCHNNV 1D UST 4dO add ddd Iyd IdT  SCH yuny

Jo uonyp.a3apur ayy uo pasvq NNH J0 1unLin g

U0LIILLD SulydIndsip ay) uo pasvq YHO-Y(J J0 LD 4




48 M. Mathirajan et al.

Now for each of the proposed 16 approaches, considering the

1 feasible TWT scores

2 estimated optimal TWT score obtained for each of the 640 problem instances, the
RPD scores are obtained using equation (2).

Using the computed RPD scores of each of the proposed 16 approaches, the ARPD score
on TWT is computed using equation (3) over ten problem instances as per the problem
configuration defined in Table 6. Proposed approach wise and for each value of N (that is
N =25 N=50, N=175, and N =100) the computed ARPD scores is presented in
Tables 9(a) to 9(d). Furthermore, the proposed approach wise the ARPD scores over 640
instances, representing irrespective of the problem configurations, are computed and
represented in Figure 4.

Figure 4 Performance of the proposed approaches based on ARPD score over 640 large instances
(see online version for colours)
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Proposed Approach

From Tables 9(a) to 9(d) and Figure 4, it is observed that each of the HNN variants is
performing efficiently than the respective DR-GHA. This clearly shows, similar to the
small-scale instances, the power of back-propagation ANN for achieving more accurate
parameter estimations in calculating the job-priority-data for each of jobs and in turn
providing efficient scheduling of BO using HNN. Further, from Tables 9(a) to 9(d), it is
observed that when the problem size increases the HNN variant: ANN-ODD is
outperforming. This is even true from Figure 4. In addition, from the results, as a
second-best choice, one can choose the HNN variant: ANN-FDD. Furthermore, for
triangulating the findings observed from the ARPD analysis presented in Figure 4, the
performance measure: IRANK is used. To compute IRANK, first, a [16 x 16] ranking
matrix is developed and presented in Table 10 in connection with 640 problem instances.
Using the ranking matrix (Table 10) related to 640 instances, the IRANK is computed
using equation (4) and the same is presented in Figure 5. From Figure 5, the proposed
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HNN variant: ANN-ODD is outperforming and followed with ANN-FDD. This
observation endorses with the findings observed from the ARPD analysis presented in
Tables 9(a) to 9(d) and Figure 4. The better performing approaches identified based on
the empirical analyses considering 160 small scale instances (in comparison with optimal
solution) and 640 problem instances (in comparison with estimated optimal solution) are

further verified by conducting statistical analysis and the same is discussed in the next
section.

Figure 5 Performance of the proposed approaches, on large instances, based on IRANK
performance measure (see online version for colours)
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Proposed Approach

5.4.2 Statistical analyses on the performance of the proposed 16 approaches

To understand statistically the performance of the proposed 16 approaches this study
conducts statistical analyses: descriptive statistics and Kruskal-Wallis test

(a non-parametric test), considering 160 small scale instances and 640 large scale
instances, as follows:

5.4.2.1 Statistical analyses considering 160 small scale instances

For each of the 16 proposed approaches the 160 TWT values obtained (considering 160
small scale instances) are used to compute the descriptive statistics: mean, median,
standard deviation and 95% confidence interval. The computed descriptive scores are

presented in Table 11 to statistically analyse the performance of the proposed approaches.
It is observed from Table 11 that:

a  each of the eight variants of the proposed HNN is performing better than each of its
DR-GHA which is not integrated with ANN

b  within the proposed eight variants of HNN, the variant HNN: ANN-ODD is
outperforming in comparison with the other variants.
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Table 11  Descriptive statistics of proposed variants-small scale problem instances

Proposed Descriptive statistics

variants based on Mean Median  Standard deviation 95% confidence interval
HJS 894.80625 697 630.18886 (797.16, 992.45)
LPT 949.0125 707.5 705.99577 (839.62, 1,058.41)
ERT 416.225 280 419.8741 (351.17, 481.28)
EDD 414.7125 247 478.93781 (340.5, 488.92)
FDD 393.36875 269 378.00043 (334.8,451.94)
ODD 445.2125 352.5 363.28208 (388.92,501.5)
LST 437.9625 264.5 502.54655 (360.09, 515.83)
CI 999.11875  945.5 675.60935 (894.43, 1,103.8)
ANN-HJS 126.8 56 203.64795 (95.25, 158.35)
ANN-LPT 137.61875 69.5 205.68725 (105.75, 169.49)
ANN-ERT 119.83125 55 199.48731 (88.92, 150.74)
ANN-EDD 122.35625 55.5 199.01772 (91.52, 153.19)
ANN-FDD 118.8375 55.5 198.01448 (88.16, 149.52)
ANN-ODD 120.36875 53.5 199.18597 (89.51, 151.23)
ANN-LST 121.2875 54.5 200.6667 (90.19, 152.38)
ANN-CI 122.55 55.5 198.44258 (91.8, 153.3)

Table 12 Kruskal-Wallis test on deviation values w.r.t optimal solution — small scale instances

Test statistics®b

Deviation
Kruskal-Wallis H 1,417.005
df 15
Asymp. sig. 01.000
Ranks
Variants of algorithm N Mean rank
Deviation HJS 160 2,113.33
LPT 160 2,127.93
ERT 160 1,604.13
EDD 160 1,494.72
FDD 160 1,580.29
ODD 160 1,716.67
LST 160 1,558.68
CI 160 2,160.94
ANN-HIJS 160 787.85
ANN-LPT 160 862.71
ANN-ERT 160 735.02
ANN-EDD 160 755.93
ANN-FDD 160 730.69
ANN-ODD 160 740.74
ANN-LST 160 750.57
ANN-CI 160 767.80
Total 2,560

Notes: *Kruskal Wallis test. °Grouping variable: variants of algorithm.
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In addition to the descriptive statistical analysis on understanding the best performing
proposed approach(s), this study is further checking that, whether the distribution of
deviation/proximity score (that is, loss of optimality score) across the proposed
approaches is same or not. To study this, Kruskal-Wallis (a non-parametric) test is
conducted and the results are presented in Table 12. It is observed from Table 12 that:

a there is a statistically significant difference in the distribution of deviation scores
across the proposed approaches, as the P-Values is 0.000, which is less than 0.05,
and

b the HNN variants: ANN-ODD and ANN-FDD are relatively top variants among the
proposed approaches in optimally scheduling the research problem defined in this
study.

5.4.2.2 Statistical analyses considering 640 large scale instances

The statistical analyses carried out to understand the performance of the proposed
approaches considering small scale instances is exactly conducted for the 640 large scale
problem instances with a change in input to Kruskal-Wallis test. That is, in the case of
large-scale problem instances, we studied whether the RPD score (that is, loss of
optimality score) across the proposed approaches is same or not. Accordingly, the results
obtained based on descriptive analysis and Kruskal-Wall test analyses are presented in
Table 13 and Table 14, respectively. The inferences from these analyses exactly matched
with the inferences obtained from the small-scale instances.

Table 13  Descriptive statistics of proposed variants — large scale problem instances

Proposed Descriptive statistics

variants based on Mean Median Standard deviation ~ 95% confidence interval
HIJS 62,849.89 47,328 56,440.97 (58,477.16, 67,222.62)
LPT 65,642.52 48,122 59,584.46 (61,026.25, 70,258.79)
ERT 58,993.8 41,927.5 55,562.8 (54,689.1, 63,298.49)
EDD 56,601.45 41,182 52,129.12 (52,562.78, 60,640.12)
FDD 50,794.72  36,857.5 47,438.48 (47,119.46, 54,469.99)
ODD 41,438.7 30,163 38,354.73 (38,467.19, 44,410.21)
LST 60,772.73 43,689 56,094.91 (56,426.81, 65,118.65)
CI 58,324.8 42,279.5 54,311.22 (54,117.07, 62,532.53)
ANN-HJS 50,478.29 35,544 48,817.55 (46,696.18, 54,260.4)
ANN-LPT 57,781.32  38,287.5 56,887.12 (53,374.03, 62,188.62)
ANN-ERT 50,916.82  33,945.5 50,358.85 (47,015.3, 54,818.34)
ANN-EDD 48,686.15  33,524.5 47,667.82 (44,993.12, 52,379.19)
ANN-FDD 43,964.13  30,162.5 42,974.44 (40,634.71, 47,293.54)
ANN-ODD 36,630.08  26,021.5 35,466.71 (33,882.32, 39,377.84)
ANN-LST 51,953.95 36,2225 49,790.06 (48,096.5, 55,811.41)

ANN-CI 52,046.45  36,682.5 49,712.03 (48,195.04, 55,897.86)
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Table 14  Kruskal-Wallis test on RPD values of proposed variants — large scale instances

Test statistics®b

RPD
Kruskal-Wallis H 5,307.226
df 15
Asymp. sig. 0.000
Ranks
Variants of algorithm N Mean rank
RPD HIS 640 8,051.78
LPT 640 8,425.83
ERT 640 6,962.64
EDD 640 6,659.83
FDD 640 5,160.02
ODD 640 3,041.75
LST 640 7,458.11
CI 640 6,944.60
ANN-HIJS 640 4,318.35
ANN-LPT 640 5,652.18
ANN-ERT 640 3,590.46
ANN-EDD 640 3,166.66
ANN-FDD 640 2,051.19
ANN-ODD 640 963.68
ANN-LST 640 4,739.77
ANN-CI 640 4,741.16
Total 10,240

Notes: @Kruskal Wallis test.
bGrouping variable: variants of algorithm.

Overall, the inferences obtained from the statistical analyses on the performances of the
proposed approaches, considering both cases of small-scale instances and large-scale
instances, exactly endorses the observations obtained from the empirical analyses on the
performance of the proposed approaches.

6 Conclusions

We have considered a new dynamic scheduling of BP problem with jobs characteristics:
different release time, different due-dates, different processing time, non-agreeable
release time(s) and due-date(s) with the scheduling objective of minimising TWT. We
proposed:
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a  eight variants of DR-GHA

b  eight variants of HNN algorithms, applying an ANN for dynamic scheduling of a BO
problem defined in this study.

The main purpose of integrating ANN with DR-GHA is to:

a  obtain accurate parameter estimation for the job-priority-data of each of the jobs by
applying an iterative learning strategy

b utilising the estimated value of the job-priority-data of each of the jobs with
DR-GHA for providing near optimal/estimated optimal schedule for burn-in
operation.

From the series of computational analyses, it is observed that:

a  the performance of each of the proposed eight variants of the HNN algorithms is far
better than each of respective DR-GHA, which are not integrated with ANN, in
comparison with both optimal solution (on small scale instances) and estimated
optimal solution (on large scale instances)

b  each of the proposed eight variants of HNN algorithms could find the optimal or near
optimal solution for small size problem instances

¢ when the problem size increases, the proposed HNN variant: HNN-ODD is
outperforming relatively with other HNN variants.

In addition, the HNN variant: HNN-FDD is consistently performing well as a second
choice, out of the eight variants of HNN proposed in this study.

Both empirically and statistically, with the series of computational analyses, this
study proved that more accurate parameter estimation of the job-priority-data of each of
the jobs through a back-propagation ANN and utilising it in any DR-GHA leads to
high-quality schedules with respect to TWT.

Only selected dispatching rules are considered, in this study, for proposing DR-GHA
and to integrate with ANN for scheduling a BO problem defined in this study. However,
there are many dispatching rules in literature and in practice. So, one could consider all
the possible dispatching rules, widely used in SM, or extensively claimed as good
dispatching rules in the literature, for the scheduling objective of TWT and develop a
series of computational experiments to arrive at a set of best performing HNN variants
for scheduling:

a single BO

b  multiple and non-identical BO(s) could be very important immediate future research
topics.

Another important future work could be to develop an efficient lower bound procedure,
as the estimated optimal solution has its own demerits, for developing a BS for
performance evaluation.
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