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Abstract: The goal of this research is to improve access to services for patients 
in need of augmentative and alternative communication (AAC). The specific 
aim of this paper is to develop a decision-making model that evaluates an 
exhaustive list of AAC devices and recommends the best alternative(s) for the 
patient. The model maximises a best-fit function that considers the patient’s 
disability profile and the capabilities of each device. Currently, there are 
multiple private and government companies that offer a large variety of devices 
targeting patients in need of AAC. However, the decision-making process of 
what device to try on the patient is largely based on the health professional’s 
experience and familiarity with specific companies. The proposed  
decision-model has the capability of improving patient experience of care by 
reducing the assessment time required to find the best device. 
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1 Introduction 

The World Health Organisation (WHO) estimates that more than one billion people are in 
need of at least one type of assistive technology (AT); however, only one in ten people 
have access to AT services (WHO, 2016a). Individuals requiring AT often need to attend 
multiple appointments at different locations and with different health professionals to 
obtain a complete assessment of their condition (Sajan-Varguse et al., 2019). The 
availability of AT services can vary greatly by geographic region and access is limited for 
patients living outside urban areas in the USA (Upasani et al., 2019). In addition, multiple 
appointments are needed to find the device that best matches the individual’s disability 
profile. AT selection is difficult because it requires the patient to test equipment from a 
large number of options, often placing a lot of stress on the patient. 

As a global commitment to improve access to AT, WHO established the Global 
Cooperation on Assistive Technology (GATE), which specifies a list of 50 AT devices 
carefully selected based on population needs and potential impact (WHO, 2016b). A 
significant portion of this list is dedicated to devices that help individuals with acquired 
or degenerative communication disorders. Augmentative and alternative communications 
(AAC) are AT devices used to support individuals with complex communication needs. 
There is a wide range of congenital and acquired health conditions that require the use of 
AAC. These conditions include but are not limited to autism, cerebral palsy, dual sensory 
impairments, genetic syndromes, intellectual disability, multiple disabilities, hearing 
impairment, disease, stroke, and head injury (ASLH, 2016). The process of selecting and 
fitting an AAC device proves to be particularly challenging when patients have decreased 
memory, distractibility, and lack of insight. To improve access to AT, the GATE 
initiative hopes to develop innovative models of service provision that would enable 
individuals to access AT for all their functional needs from a single healthcare 
infrastructure. 

Models that seek to improve the service provision in healthcare applications are 
common (Walker et al., 2015; Pérez et al., 2017; Reese et al., 2017; Pérez and Dzubay, 
2021; Jiang and Yuan, 2020). However, no existing research have considered the use of 
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optimisation techniques to find the best AAC device fit for patients suffering from 
conditions associated with neurological disorders. This research builds on existing 
research exploring the application of the International Classification of Functioning, 
Disability and Health (ICF) model in AT selection (Steel et al., 2011). A couple of 
surveys of AT models and instruments have suggested the need for evidence-based tools 
for the selection of AT devices that increase patient satisfaction and device usability 
(Bernd et al., 2009; Friederich et al., 2010). The noticeable gap in the literature between 
theories and practice suggests the need for better decision-making methods for AT 
selection. 

The goal of this research is to improve the access to services for patients in need of 
AAC. The research objective is to develop a decision-making model that can help in 
recommending the best group of AAC devices to consider for a patient. The research 
methodology applies the complete ICF framework in a decision-making model that 
considers the patient’s disability profile and the capabilities of AAC devices. The model 
is designed for use by the various practitioners involved in AAC selection. As stated 
earlier, a large pool of devices is offered from multiple companies, however, the 
decision-making process of what device or devices to consider is largely based on the 
health practitioner’s experience. The proposed model and algorithm try to minimise 
patient discomfort by recommending a limited list of devices that are likely to provide the 
best fit based on the patient’s disability profile. A short list of devices will reduce patient 
assessment time which at the end minimises patient discomfort. 

The rest of the paper is organised as follows. Section 2 presents a literature review. 
Section 3 presents the research methodology. The application and experimental designs 
are discussed in Section 4. The computational results are presented in Section 5.  
Section 6 ends the paper with concluding remarks and directions for future research. 

2 Literature review 

Prior to this study, the research focusing on the AAC-patient matching problem has been 
very limited. To the best of our knowledge, the work presented in this paper is the first 
attempt to develop a practical decision-making model for AAC selection that uses the 
complete structure of the ICF and the power of its interaction between components. 
Several authors have examined the application of the ICF model in the selection of AT 
devices and have proposed conceptual models to guide practitioners (Arthanat and 
Lenker, 2008; Fuhrer et al., 2003; Jutai et al., 2005; Scherer et al., 2007). However, the 
resulting models and instruments have incorporated only some of the ICF components 
and most of the proposed models rely on the practitioner’s interpretation to make 
decisions. For example, Arthanat and Lenker (2008) consider only five of the ICF 
components for AT selection, and Scherer et al. (2007) incorporated only environmental 
and personal factors from the ICF. 

In terms of decision-making models, no other research has considered application of 
mathematical models to solve the AAC-patient matching problem. Therefore, the focus of 
this literature review is on problems that are similar to the AAC-patient matching 
problem. The problem list includes the surgeon-patient matching problem (Jiang and 
Yuan, 2020; Abdelghany and Eltawil, 2017), the patient-organ donation matching 
problem (Su and Zenios, 2005), the suppliers-organisations matching problem (Bafrooei 
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et al., 2014; Hatefi and Razmi, 2013), and the product-storage location matching 
problem (Hale et al., 2015; Karam et al., 2016). 

The surgeon-patient matching problem seeks to select the right surgeon for a patient 
and arrange an appropriate surgery for the surgeon. Abdelghany and Eltawil (2017) 
consider linking approaches for healthcare systems planning and discusses advantages 
and disadvantages of different simulation methods. Yang et al. (2019) introduced the 
two-sided matching theory into the problem of setting appointments between experts and 
patients and applied a balanced matching model considering the fairness of both types of 
agents. Jiang and Yuan (2020) presents a new approach to obtain the surgeon-patient 
matching scheme with the pairwise comparison information while still maintaining the 
original preference information. Like the AAC-patient matching problem, in the  
surgeon-patient matching problem the patient status is considered at the time of making 
decisions. However, in the surgeon-patient donation matching problem the decisions (i.e., 
matching) are mostly based on the preferences of the doctor and the patient (e.g., time 
and date of surgery) and solution methods do not require a multidimensional fit between 
the agents. 

Given the enduring scarcity of donated organs for transplantation, several allocation 
models and data mining techniques have been developed to identify patterns that are 
critical to assign an organ to a patient (Wang et al., 2019; Karami et al., 2019; Gentry  
et al., 2020). For instance, Su and Zenios (2005) present a kidney allocation framework 
that captures the imbalance between patient choice and social welfare. The authors 
present a model in which candidates form different queues based on the type of kidney 
needed by the patient. The problem is solved using a subjective partition policy by 
dividing the organ supply among the different queues to maximise social welfare. The 
patient-organ donation matching problem is challenging because the demand is hefty, and 
the supply is limited due to the scarcity of organs. In contrast, in the AAC-patient 
matching problem, the demand is limited, (i.e., a single patient) and the supply (i.e., 
availability of AAC devices) is high. 

The suppliers-organisations matching problem and the product-storage location 
matching problem feature a supply and demand relationship similar to the AAC-patient 
matching problem. In the suppliers-organisations matching problem a list of suppliers is 
evaluated, based on performance, with the goal of finding the best match for a list of 
projects. For instance, Cao and Wang (2007) formulated a combinatorial two-stage 
optimisation model to help clients find the best vendor match for outsourced projects. 
Similarly, Ebrahim et al. (2009) formulated a multi-objective mixed integer program (IP) 
to find the match between multiple projects and suppliers. The problem of assigning  
stock-keeping units (SKU) to storage locations is similar to the suppliers-organisations 
matching problem (Tompkins et al., 2010). In the product-storage location matching 
problem, a list of SKUs is evaluated, based on demand, with the goal of finding the best 
storage location. In addition, the problem considers multiple products and multiple 
storage locations. For instance, Pang and Chan (2017) developed an algorithm for 
product-storage location matching problem that minimises the manual labour in the 
warehouse operations. In general, models addressing the suppliers-organisations 
matching problem and product-storage location matching problem consider the matching 
of many entities in the supply with many entities in the demand. In contrast, in the  
AAC-patient matching problem, the demand is limited to a single entity (i.e., a single 
patient). 
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Table 1 Comparison of similar problems and applications 

Attributes 
Surgeon-
patient 

matching 

Patient-organ 
donation 
matching 

Suppliers-organisations 
and product-storage 

matching 

AAC-patient 
matching (this 

research) 
Multidimensional 
comparison of 
supply and demand 

   X 

Multiple suppliers X  X X 
Multiple demand X X X  
Single supply  X   
Single demand    X 

The models and applications discussed in this literature review do not meet the needs of 
the AAC selection problem as described in Table 1. This study presents a  
decision-making model that can help in recommending the best group of devices to 
consider for a patient based on a disability profile. The decision-making model allows for 
the selection of a device or devices while considering practical constraints associated 
with the problem. Specifically, the model considers patients suffering from conditions 
associated with neurological disorders and build their profiles using the ICF framework 
(WHO, 2014). The key challenge is to decide which device or devices to consider based 
on patient limitations (i.e., number of devices that can be fitted on the patient, to make a 
final decision, before the patient gets tired). The model developed in this study can help 
decision-makers address multiple key issues simultaneously while recommending the 
best group of devices to satisfy the patient needs. 

3 Methodology 

The decision-making model proposed here takes the form of an IP, constructed to work in 
conjunction with the ICF framework (WHO, 2014) that is designed to capture individual 
disability progression. The AAC-patient matching problem considers a patient with a 
specific disability profile and a group of AAC devices that could address one or more 
areas of the patient disability profile. It is assumed that the number of devices available is 
significant. For instance, the Texas Technology Access Program has about 100 AAC 
devices listed on their website (TTA-Program, 2019). The goal of the decision-making 
model is to provide a systematic method to find the best match between the patient and 
the list of AAC devices available. 

In this study, two set of parameters are required to build and solve the  
decision-making model. The first set of parameters defines the patient disability profile. 
The patient disability profile is defined according to the eleven assessments of the ICF 
framework listed in Table 2. A score is assigned to each assessment based on the patient 
ability of meeting the expected thresholds. The second set of parameters defines the 
assessment information for each AAC device considered as an option for the patient. 
Each device is also evaluated according to how well they meet the eleven assessments of 
the ICF framework listed in Table 2. 
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Table 2 ICF framework assessments with descriptions 

Assessments Description 
Sensory and 
motor status 

The sensory and motor status assessment includes vision test, sensation status 
and the integrated sensory system ability. Vision test mainly focuses on the 
ability of the patient to see the symbols or orthography on the AAC device. 
Sensation assessments include light touch and pressure test, proprioception 
test, temperature test and pain test. The integrated sensory assessment tests the 
patient’s ability to regulate and ready the body for communication. 

Hearing 
screening 

A pure-tone test is the most common hearing screening. It is an assessment to 
see how well the patient hears different sounds. Failing a hearing screening 
does not mean that the patient has a hearing loss. If the patient fails, he/she 
requires a complete hearing test by an audiologist to determine the degree of 
hearing loss. 

Speech-sound Speech-sound assessment of a patient can help in the identification of factors 
that contribute to the speech-sound disorder and description of the 
characteristics and severity of the disorder. The severity of the patient case is 
often defined along a continuum from mild to profound. 

Spoken 
language 

Standardised language screening is used to identify the broad characteristics of 
language functioning. A literacy assessment is included in the comprehensive 
assessment for language disorders because of the well-established connection 
between spoken and written language. 

Written 
language 

Assessments of reading and writing skills must be linguistically appropriate, 
culturally relevant and functional. Screening can result in the determination of 
premorbid and current literacy level of the patient with complex 
communication needs. 

Social 
communication 

Social communication screening includes the use of competency-based tools 
such as interviews and observations and self-report questionnaires. The 
assessment helps to identify underlying strengths and weaknesses in 
communication and communication-related areas and limitations in activity 
and participation, including functional communication and interpersonal 
interactions 

Cognitive 
communication 

Cognitive-communication deficits result from underlying cognitive or thinking 
difficulties in attention, memory, organisation, reasoning, executive functions, 
self-regulation, or decreased information processing. Cognitive communication 
screening helps in identifying cognitive and communication demands of 
relevant real‐world contexts. 

Symbol 
assessment 

Symbol assessment process involves the screening of patients in the 
identification and recognition of the type of symbols, symbol size, field size 
and organisation of display. 

Feature 
matching 

Feature matching is a collaborative process which involves using  
criterion-based assessment strategies to gather relevant information about a 
client’s communication and sensorimotor abilities. Feature matching allows 
identification of the most appropriate applications available in the AAC 
devices. 

Identification of 
contextual 
facilitators and 
barriers 

Facilitator screening identifies the ability and willingness of the patient to use 
AAC systems, family support and the patient’s motivation to communicate. 
The barriers during the assessments include cognitive deficits, visual and motor 
impairments, lack of acceptance of disability and/or AAC use, limitations of 
AAC system, seating and positioning limitations across environments. 

Case history Medical status and history, education, occupation, and cultural and linguistic 
backgrounds are considered a part of the patient’s case history. Prognosis and 
the potential for disease progression are also deliberated in determining the 
best-suited device for the patient. 
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The ICF framework is a qualitative assessment. In this study, the qualitative results are 
transformed into quantitative amounts by discretising them using a deterministic selection 
score. An evaluation score set E = {1, 2, 3, 4} is defined, where 1 = ‘poor’,  
2 = ‘fair’, 3 = ‘average’, and 4 = ‘good’. For the device data, the scores are used to 
characterise the competency of available devices to meet each component of the ICF 
framework. Each device i ∈ I is evaluated using a set of relevant assessments j ∈ J from 
the ICF framework. The patient scores for each ICF assessment j ∈ J are denoted by sj ∈ 
E. The device evaluation scores for each device i and each ICF assessment j is denoted by 
dij ∈ E. The device evaluation score represents the minimum level of usability of the 
device for the specific assessment. For example, d11 = 2 states that the score for device 1 
on assessment 1 is ‘fair’. Therefore, the device will be a good fit for a patient only if the 
patient scores 2 ‘fair’, 3 ‘average’, or 4 ‘good’ in this assessment. If the patient scores a 1 
‘poor’ in the assessment, then device 1 will not meet the patient needs for this portion of 
the assessment. 

3.1 Decision-making model for the AAC-patient matching problem 

The decision-making model takes the form of an IP. This IP is the first decision-making 
model developed to solve the AAC-patient matching problem. The model represents the 
first attempt to integrate the ICF framework as part of a formal decision process. This is 
the novelty of the model that differentiates it from other health-related allocation models 
in literature. The model has two binary decision variables. Decision variable yij 
determines whether device i satisfies patient assessment j. Decision variable xi determines 
whether device i is selected as a good fit for the patient. The objective function 
maximises a best-fit function that considers the patient’s disability profile and the ability 
of each device to meet the patient’s needs. The best-fit function equals the sum of number 
of evaluations satisfied by each device (yij) multiplied by a weight (wj) parameter that 
denotes the importance of each evaluation for a specific patient. The output of the model 
provides a group of devices that are selected as the most suitable for the patient’s 
disability profile. 

Table 3 lists the sets, parameters, and decision variables used to formulate the model. 
The model constraints are defined in equations (1) to (7). Equation (2) checks that the 
patient assessment score for assessment j(sj) is greater than or equal to device i score (dij). 
Equation (3) verifies if device i meets the minimum number of ICF assessments that must 
be passed for the device to be considered suitable for the patient. Equation (4) limits the 
number of devices to be selected to no more than n. Equation (5) is a selection constraint. 
Finally, equations (6) and (7) limit the decision variables to binary values. The IP model 
is solved using IMB CPLEX (Lima, 2010). 

max j ij
i I j J

z w y
∈ ∈

=  (1) 

Subject to: 

0, ,j ij ij ijs y d y i I j J− ≥ ∀ ∈ ∀ ∈  (2) 

1 ,
| | ij ij J

y x i I
J∈

≥ ∀ ∈ β  (3) 
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,ii I
x n

∈
≤  (4) 

0, ,ij iy x i I j J− ≤ ∀ ∈ ∀ ∈  (5) 

{0, 1},ix i I∈ ∀ ∈  (6) 

{0, 1}, ,ijy i I j J∈ ∀ ∈ ∀ ∈  (7) 

Table 3 IP model sets, parameters, and variables 

Sets 
I Set of AAC devices, indexed i ∈ I 
J Set of ICF assessments, indexed j ∈ J 
E Set of evaluation scores for each ICF, E = {1, 2, 3, 4}. 

Parameters 
dij Device i evaluation score for ICF assessment j, dij ⊂ E. 
sj Patient evaluation scores for ICF assessment j, Sj ⊂ E. 
β A percentage that is used to establish the minimum total number of ICF assessments that 

the device must pass to be considered appropriate for the patient. 
n Number of AAC devices to be recommended by the decision maker. 
wj Weight used to denote the importance of assessment j. High wj′s identifies patient priorities 

in terms of their disabilities as measured by the ICF assessments. 
Decision variables 

xi A binary variable that determines the devices selected for the patient. xi = 1, if device i is 
recommended for the patient and 0 otherwise. 

yij A binary variable that determines if device i satisfies patient assessment j. yij = 1, if device i 
passes assessment j and 0 otherwise. 

The following lemma establishes that for a given set of devices, say I, the group of n 
devices with the maximum best-fit function Cmax is found by sequencing the devices in I 
in non-increasing order of the ratio (( ) / ).i ij j jj

g d w s=  Therefore, the proposed 

problem is solvable in polynomial time. 

Lemma 1. Let I be the set of devices available ordered so that: 

1 2 3 +1... ... ,n n kg g g g g g≥ ≥ ≥ ≥ ≥ ≥ ≥  

And k be the number of devices in I, then the best-fit function max 1

n
ii

C g
=

=  is optimal. 

Proof. Let I′ be as set I  but with the devices in positions n and n + 1 exchanged. 
The best-fit function Cmax for I is: 

max 1 2 3+ + +...+ .nC g g g g=  

The best-fit function maxC′  for I′ is: 
max 1 2 3 +1+ + +...+ .nC g g g g′ =  

It is supposed, by contradiction, that max max ,C C ′<  then: 
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+1n ng g<  

which cannot be true given 

+1.n ng g≥  

It must be concluded that max max .C C ′≥  
Q.E.D. 

3.2 Augmentative and alternative communication selection (AACS) algorithm 

A heuristic algorithm is developed to solve the IP model presented in Section 3.1. The 
heuristic algorithm uses Lemma 1 to solve the problem to optimality. The additional 
benefit of the AACS algorithm is that it provides a way for healthcare professionals to 
use the methodology without investing in a commercial optimisation solver. The 
algorithm was coded using PHP (hypertext pre-processor) language and the database is 
managed using MySQL. The software tool phpMyAdmin was used to administer the 
algorithm over the Web. 

The algorithm applies some of the parameters defined for the optimisation model and 
listed in Table 3. New parameters are also required for the algorithm and are defined as 
follows. Parameter k defines the total number of assessments and parameter ‘counter’ 
keeps track of the number of assessments satisfied by device j. Parameter m defines the 
total number of devices and gi is the patient-device fit score. Let V be a set that includes 
the devices i designated as good-fit for the patient and let H be a set that is used to 
include the patient-device fit score for devices in V. In addition, ← is used to denote 
assignment. Figure 1 present the pseudocode for the AACS algorithm. 

Figure 1 Pseudocode for AACS 
AACS algorithm 

1 𝑉 ← ∅ , 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 0,  
2 for 𝑖 = 1 to 𝑚 do 

3  for 𝑗 = 1 to 𝑘 do 

4   if 𝑑𝑖𝑗𝑠𝑗 ≤ 1 

5    𝑐𝑜𝑢𝑛𝑡𝑒𝑟++ 

6   if 𝑐𝑜𝑢𝑛𝑡𝑒𝑟|𝐽 | ≥  𝛽 

7    𝑖 ∪ 𝑉 

8    break 

9 while 𝑉 ≠ ∅  do  

10  𝑔𝑖 = 𝑑𝑖𝑗 𝑤𝑗𝑠𝑗𝑗  

11  𝑔𝑖 ∪ 𝐻 

12 sort 𝑔𝑖 in 𝐻 in non-increasing order  

13 select 𝑛 devices with the higher 𝑔𝑖  scores in 𝐻 
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Line 1 initialises the parameters. Lines 2 to 5 determine, for each device i, the number of 
assessments j that meets patient profile sj. In line 5, parameter ‘counter’ is increased by 
one if device i covers the patient needs for assessment j as defined by profile sj. Line 6 
checks if device j meets β. If device j meets β, a patient-device fit score is computed in 
lines 9 to 11. Line 12 sorts all scores in H in non-decreasing order and line 13 selects the 
n devices with the higher score in H. 

4 Application and experimental design 

In this section, an experimental study is designed to study the AAC-patient matching 
problem and the performance of the methods discussed in Sections 3.1 and 3.2. 
Specifically, this section defines the input parameters values to be considered in the 
experiments. A general factorial design was selected to conduct a total of 81 runs without 
replications. The experiments consider four input factors with three levels. The output 
response is the ‘patient-device fit score’ for each device recommended for the patient. 
The four input factors include ‘patient condition’, ‘number of devices available’, 
‘assessment weight distribution’ and ‘minimum level of assessment satisfaction’. 
Table 4 Experimental factors and corresponding levels 

Factors 
Level 

Low (L) Medium (M) High (H) 
Patient condition Minor Moderate Severe 
Number of devices available 20 50 100 
Assessment weight distribution Equally weighted Highly weighted 

on needs 
Randomly 
weighted 

Minimum level of assessment 
satisfaction 

70% 80% 90% 

Table 4 lists the input factor and corresponding levels. The input factor ‘patient 
condition’ considers patients with three different disability profiles (i.e., minor, moderate, 
and severe). The disability profile is determined using the ICF framework scores. The 
attainable disability scores span from 1 to 4, ranging from the lowest to the highest 
possible score as discussed in Section 3. A patient with a severe disability profile 
typically scores between 1 and 2 for most assessments. A patient with a moderate level 
disability often scores between 1 and 3 and a patient with a minor level disability 
typically scores between 1 and 4. Disability profiles were defined in consultation with 
experts in the field of communication disorders with the goal of representing the majority 
of cases observed in practice. The ‘number of devices available’ considers the number of 
devices available to evaluate the patient. The number of devices available varies 
depending on the professional in charge of conducting the assessments. Some practices 
have access to more devices than others. For example, the Texas Technology Access 
Program has 52 devices available to loan to patients requiring AAC (TTA-Program, 
2019) and the Augmentative Communication Consultants group has 85 devices available 
(AC-Consultants, 2019). The three levels considered for the factor ‘number of devices 
available’ are 20 devices, 50 devices and 100 devices. 
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The ‘assessment weight distribution’ factor is used to prioritise assessments according 
to the patient disability profile. There are three experimental levels for the ‘assessment 
weight distribution’ factor. The low (L) level distributes the weights equally among the 
assessments. The medium (M) level focuses on patient needs and assigns an 80% of the 
weight to three of the eleven assessments and 20% of the weight to the rest of them. 
Finally, the high (H) level assigns weights to assessments randomly which represents a 
patient disability profile that is unique. 

The factor ‘minimum level of assessment satisfaction’ is a ratio used to establish the 
minimum number of patient assessments, from the ICF framework, that each device must 
satisfy to be considered a good fit for the patient. The following ratios were selected for 
levels low (L), medium (M), and high (H) respectively: 70%, 80% and 90%. For 
example, for the eleven assessments in Table 1, a 70% ‘minimum level of assessment 
satisfaction’ indicates that eight out of the eleven ICF framework assessments must be 
satisfied for the device to be considered a good fit for the patient. 

5 Computational results 

The goal of the computational study is to analyse the performance of the IP  
decision-making model and associated solution algorithm, (i.e., AACS algorithm) in 
solving the AAC-patient matching problem. The computational study results provide 
insights about the effects of the experimental factors on the output response  
‘patient-device fit score’. 

The computational study considers multiple patient disability profiles as defined in 
Section 4. For which the maximum number of AAC devices to be recommended equals 
five (i.e., n = 5). Tables 5, 6 and 7 show the results for the general factorial design 
described in Table 4. The computational results are separated by the experimental factor 
‘number of devices available’. Table 5 lists the results for 100 devices [i.e., high (H)]. 
Table 6 shows the results for 50 devices [i.e., medium (M)] and Table 7 shows the results 
for the third group where the experimental factor ‘number of devices available’ is at level 
low (L) or 20 devices. Figure 2 summarises the results in a single plot. 

Figure 2 Device-patient fit scores by factor ‘number of devices’ (see online version for colours) 
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The level for each experimental factor is listed in the second, third, and fourth columns of 
Tables 4–6. For instance, the combination ‘HML’ indicates the following: ‘patient 
condition’ (H), ‘assessment weight distribution’ (M), and ‘minimum level of assessment 
satisfaction’ (L). The fifth and sixth columns list the devices selected by the optimisation 
model and the AACS algorithm respectively. Finally, the seventh column indicates the 
‘patient-device fit score’ for n = 5, which is the experimental response. As stated earlier, 
the AACS algorithm solves the IP decision model to optimality. Therefore, only one 
column is used to display the optimal values for the ‘patient-device fit score’. 
Table 5 Computational results for factor ‘number of devices available’ fixed at level high (H) 

# Patient 
condition 

Assessment 
weight 

distribution 

Minimum level 
of assessment 
satisfaction 

Optimisation 
model solution 

AACS algorithm 
solution 

Patient-
device 

fit score 
1 L H L 72, 75, 88, 91, 92 6, 10, 31, 33, 40 5.00 
2 L H M 48, 75, 88, 91, 92 6, 10, 31, 33, 40 5.00 
3 L H H 31, 33, 40, 72, 75 6, 10, 31, 33, 40 5.00 
4 L M L 48, 50, 72, 75, 88 6, 10, 31, 33, 40 5.00 
5 L M M 6, 50, 88, 91, 92 6, 10, 31, 33, 40 5.00 
6 L M H 50, 75, 88, 91, 92 6, 10, 31, 33, 40 5.00 
7 L L L 72, 75, 88, 91, 92 6, 10, 31, 33, 40 5.00 
8 L L M 10, 75, 88, 91, 92 6, 10, 31, 33, 40 5.00 
9 L L H 31, 33, 40, 42, 72 6, 10, 31, 33, 40 5.00 
10 M H L 33, 48, 53,75, 77 33, 48, 77, 18, 52 4.85 
11 M H M 33, 48, 52, 53, 87 33, 48, 77, 18, 52 4.85 
12 M H H 33, 48, 52, 53, 77 33, 48, 77, 18, 52 4.85 
13 M M L 18, 33, 48, 50, 75 33, 48, 18, 50, 75 4.88 
14 M M M 18, 33, 48, 50, 75 33, 48, 18, 50, 75 4.88 
15 M M H 18, 33, 48, 50, 75 33, 48, 18, 50, 75 4.88 
16 M L L 33, 48, 75, 76, 92 33, 48, 18, 50, 52 4.77 
17 M L M 33, 48, 52, 53, 92 33, 48, 18, 50, 52 4.77 
18 M L H 18, 33, 48, 87, 92 33, 48, 18, 50, 52 4.77 
19 H H L 33, 48, 51, 75, 87 33, 48, 87, 51, 49 4.63 
20 H H M 33, 48, 51, 75, 87 33, 48, 87, 51, 49 4.63 
21 H H H 33, 48, 51, 87 33, 48, 87, 51 3.75 
22 H M L 33, 48, 73, 74, 87 33, 48, 87, 49, 73 4.76 
23 H M M 33, 48, 49, 75, 87 33, 48, 87, 49, 73 4.76 
24 H M H 33, 48, 49, 75, 87 33, 48, 87, 49, 73 4.76 
25 H L L 33, 48, 73, 87, 89 33, 48, 87, 28, 29 4.56 
26 H L M 28, 29, 33, 48, 87 33, 48, 87, 28, 29 4.56 
27 H L H 33, 48, 87 33, 48, 87 2.85 

Table 5 shows that when the ‘patient condition’ factor is set at level low (L) (i.e., patient 
disability is classified as minor) the decision-making model is able to recommend five 
devices that perfectly meet the patient’s needs (i.e., ‘patient-device fit score’ = 5). 
However, when the ‘patient condition’ factor is set at level medium (M) (i.e., patient 
disability is classified as moderate) the decision-making model is not able to recommend 
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five devices that perfectly meet the needs of the patient. When ‘patient condition’ factor 
is set at level medium (M), the ‘patient-device fit score’ response values range between 
4.77 and 4.88. The 4.77 scores are observed when the ‘assessment weight distribution’ is 
set to level low (L) (i.e., ICF components are equally weighted). This result shows that it 
is difficult to find a group of devices that meets patients’ needs when all assessments of 
the ICF framework are equally important. Finally, when the ‘patient condition’ factor is 
set at level high (H) (i.e., patient disability is classified as severe), the ‘patient-device fit 
score’ response values range between 2.85 and 4.76. The 2.85 score is observed when the 
‘assessment weight distribution’ is set to level low (L) (i.e., ICF components are equally 
weighted) and the ‘minimum level of assessment satisfaction’ is set to level high (H) (i.e., 
90%). This result shows that is not possible to find a group of five devices that meets the 
needs of the patient when all assessments of the ICF framework are equally important 
and the ‘minimum level of assessment satisfaction’ is very high. 
Table 6 Computational results for factor ‘number of devices available’ fixed at level medium 

(M) 

# Patient 
condition 

Assessment 
weight 

distribution 

Minimum level 
of assessment 
satisfaction 

Optimisation 
model solution 

AACS algorithm 
solution 

Patient-
device fit 

score 
1 L H L 33, 40, 42, 48, 50 6, 10, 31, 33, 40 5.00 
2 L H M 31, 40, 42, 48, 50 6, 10, 31, 33, 40 5.00 
3 L H H 6, 31, 42, 48, 50 6, 10, 31, 33, 40 5.00 
4 L M L 33, 40, 42, 48, 50 6, 10, 31, 33, 40 5.00 
5 L M M 31, 40, 42, 48, 50 6, 10, 31, 33, 40 5.00 
6 L M H 6, 33, 40, 48, 50 6, 10, 31, 33, 40 5.00 
7 L L L 33, 40, 42, 48, 50 6, 10, 31, 33, 40 5.00 
8 L L M 33, 40, 42, 48, 50 6, 10, 31, 33, 40 5.00 
9 L L H 6, 10, 31, 42, 48 6, 10, 31, 33, 40 5.00 
10 M H L 18, 33, 48, 49, 50 33, 48, 18, 50, 21 4.78 
11 M H M 18, 33, 48, 49, 50 33, 48, 18, 50, 21 4.78 
12 M H H 18, 33, 48, 49, 50 33, 48, 18, 50, 21 4.78 
13 M M L 18, 33, 48, 49, 50 33, 48, 18, 50, 4 4.78 
14 M M M 18, 33, 48, 49, 50 33, 48, 18, 50, 4 4.78 
15 M M H 18, 33, 48, 50 33, 48, 18, 50 3.92 
16 M L L 18, 33, 48, 49, 50 33, 48, 18, 50, 4 4.69 
17 M L M 18, 33, 48, 49, 50 33, 48, 18, 50, 4 4.69 
18 M L H 18, 33, 48, 50 33, 48, 18, 50 3.85 
19 H H L 29, 33, 48, 49, 50 33, 48, 49, 28, 29 4.45 
20 H H M 29, 33, 48, 49, 50 33, 48, 49, 28, 29 4.45 
21 H H H 33, 48 33, 48 1.93 
22 H M L 29, 33, 48, 49, 50 33, 48, 49, 28, 29 4.60 
23 H M M 29, 33, 48, 49, 50 33, 48, 49, 28, 29 4.60 
24 H M H 33, 48, 49 33, 48, 49 2.88 
25 H L L 29, 33, 48, 49, 50 33, 48, 28, 29, 49 4.46 
26 H L M 29, 33, 48, 49, 50 33, 48, 28, 29, 49 4.46 
27 H L H 33, 48 33, 48 1.92 
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Table 6 reports the performance of the decision-making model when the factor ‘number 
of devices available’ is fixed at level medium (M) (i.e., 50 devices). Table 6 shows that 
when the ‘patient condition’ factor is set at level low (L) (i.e., patient disability is 
classified as minor) the decision-making model is able to recommend five devices that 
perfectly meet the needs of the patient (i.e., ‘patient-device fit score’ = 5). However, 
when the ‘patient condition’ factor is set at level medium (M) (i.e., patient disability is 
classified as moderate) the decision-making model is not able to recommend five devices 
that perfectly meet the needs of the patient. When ‘patient condition’ factor is set at level 
medium (M), the ‘patient-device fit score’ response values range between 3.85 and 4.78. 
The 3.85 score is observed when the ‘assessment weight distribution’ is set to level low 
(L) (i.e., ICF components are equally weighted) and the ‘minimum level of assessment 
satisfaction’ is set to level high (i.e., 90%). This result shows that is not possible to find a 
group of five devices that meets the needs of the patient when all assessments of the ICF 
framework are equally important and the ‘minimum level of assessment satisfaction’ is 
very high. Finally, when the ‘patient condition’ factor is set at level high (H), (i.e., patient 
disability is classified as severe), the ‘patient-device fit score’ response values range 
between 1.92 and 4.60. The 1.92 score is observed when the ‘assessment weight 
distribution’ is set to level low (L), (i.e., ICF components are equally weighted) and the 
‘minimum level of assessment satisfaction’ is set to level high (H) (i.e., 90%). This result 
shows that the decision-making model is not able to recommend a group of five devices 
that meets the needs of the patient when all assessments of the ICF framework are 
equally important and the ‘minimum level of assessment satisfaction’ is very high. 

Table 7 reports the performance of the decision-making model when the factor 
‘number of devices available’ is fixed at level low (L) (i.e., 20 devices). Table 7 shows 
that when the ‘patient condition’ factor is set at level low (L) (i.e., patient disability is 
classified as minor) the decision-making model is no longer able to recommend five 
devices that perfectly meet the needs of the patient. When ‘patient condition’ factor is set 
at level low (L), the ‘patient-device fit score’ response values range between 4.77 and 
4.85. The 4.77 scores are observed when the ‘assessment weight distribution’ factor is set 
to level low (L) (i.e., ICF components are equally weighted). This finding shows that is 
more difficult to find a group of devices that meets patients’ needs when all assessments 
of the ICF framework are equally important. When ‘patient condition’ factor is set at 
level medium (M), the ‘patient-device fit score’ response values range between 0.92 and 
4.28. The 0.92 score is observed when the ‘assessment weight distribution’ is set to level 
low (L), (i.e., ICF components are equally weighted) and the ‘minimum level of 
assessment satisfaction’ is set to level high (i.e., 90%). This result shows that is not 
possible to find a group of five devices that meets patients’ needs when all assessments of 
the ICF framework are equally important and the ‘minimum level of assessment 
satisfaction’ is very high. Finally, when the ‘patient condition’ factor is set at level high 
(H), (i.e., patient disability is classified as severe), the ‘patient-device fit score’ response 
values range between 0.00 and 1.58. One of the 0.00 scores is observed when the 
‘assessment weight distribution’ is set to level low (L), (i.e., ICF components are equally 
weighted) and the ‘minimum level of assessment satisfaction’ is set to level high (H) (i.e., 
90%). This result shows that the decision-making model cannot recommend a group of 
devices that meets patients’ needs when all assessments of the ICF framework are equally 
important and the ‘minimum level of assessment satisfaction’ is very high. 
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Table 7 Computational results for factor ‘number of devices available’ fixed at level low (L) 

# Patient 
condition 

Assessment 
weight 

distribution 

Minimum level 
of assessment 
satisfaction 

Optimisation 
model solution 

AACS algorithm 
solution 

Patient-
device 

fit score 
1 L H L 6, 10, 11, 12, 13 6, 10, 9, 11, 12 4.85 
2 L H M 6, 10, 11, 12, 13 6, 10, 9, 11, 12 4.85 
3 L H H 6, 10, 11, 12, 13 6, 10, 9, 11, 12 4.85 
4 L M L 5, 6, 10, 17, 18 6, 10, 5, 8, 9 4.78 
5 L M M 5, 6, 10, 17, 18 6, 10, 5, 8, 9 4.78 
6 L M H 5, 6, 8, 10, 11 6, 10, 5, 8, 9 4.78 
7 L L L 6, 8, 10, 11,12 6, 10, 5, 8, 9 4.77 
8 L L M 5, 6, 8, 9, 10 6, 10, 5, 8, 9 4.77 
9 L L H 5, 6, 10, 17, 18 6, 10, 5, 8, 9 4.77 
10 M H L 9, 11, 13, 17, 18 18, 9, 13, 17, 4 4.25 
11 M H M 9, 11, 13, 17, 18 18, 9, 13, 17, 4 4.25 
12 M H H 18 18 0.95 
13 M M L 4, 10, 13, 17, 18 18, 4, 10, 13, 17 4.28 
14 M M M 4, 10, 13, 17, 18 18, 4, 10, 13, 17 4.28 
15 M M H 18 18 0.96 
16 M L L 4, 9, 12, 13, 18 18, 4, 9, 10, 11 4.15 
17 M L M 4, 9, 18 18, 4, 9 2.62 
18 M L H 18 18 0.92 
19 H H L 9, 12 9, 12 1.55 
20 H H M 0 0 0.00 
21 H H H 0 0 0.00 
22 H M L 9, 12 12, 9 1.58 
23 H M M 12 12 0.82 
24 H M H 0 0 0.00 
25 H L L 9, 12 9, 12 1.54 
26 H L M 0 0 0.00 
27 H L H 0 0 0.00 

The results show that multiple optimal solutions exist for many of the experiments. This 
is expected when multiple combinations of devices provide the same ‘patient-device fit 
score’. To illustrate this behaviour, Table 8 compares the devices selected for experiment 
five in Table 7. In this experiment, two out of the five devices selected by the IP 
decision-model are different from those selected by the AACS algorithm. The  
‘patient-device fit score’, per device and solution method, is depicted in Table 8. It is 
observed that the AACS algorithm selected devices 8 and 9 instead of devices 17 and 18 
because they have the same ‘patient-device fit score’, (i.e., 0.9) and at the end the optimal 
solution resulted in the same aggregated ‘patient-device fit score’. 
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Table 8 Device selection comparison for experiment 5 in Table 7 

Optimisation model 
Devices selected 5 6 10 17 18 Total score 
Patient-device fit score 0.96 1 1 0.9 0.9 4.76 

AACS algorithm 
Devices selected 6 10 5 8 9 Total score 
Patient-device fit score 1 1 0.96 0.9 0.9 4.76 

5.1 Discussion 

The factorial analysis of variance conducted compares means across each of the factors to 
determine which effects (i.e., factors) and interactions are significant. Figure 3 depicts the 
analysis of variance performed for the general factorial experiment shown in Table 4. A 
significance level of 0.05 is adopted to assess the experimental results. 

Figure 3 ANOVA analysis 

 

The p-values shown in the analysis of variance exhibits the strength of evidence for the 
significance of factors. The factors ‘patient condition’, ‘number of devices available’, and 
‘minimum level of assessment satisfaction’ display a p-value less than 0.05 which 
indicates strong evidence of significance on the output model. A p-value of 0.849 
exhibited by the factor ‘assessment weight distribution’ denotes a very low significance 
on the overall device satisfaction. This is also validated by the low F-value of 0.15 for the 
same factor which demonstrate that the variability in ‘assessment weight distribution’ 
factor does not have a high impact on the output response. The high F-values shown by 
the rest of the experimental factors confirm their significant effect on the output response 
‘patient-device fit score’. 

Figure 4 shows main-effects-plot which shows the impact of each experimental factor 
on the mean of the output response. The main effect of each experimental factor is 
independent of all other factors and therefore disregards any possible interactions 
between the factors. The results show that the mean aggregated ‘patient-device fit score’ 
increases when the experimental factor ‘number of devices available’ is high (H). 
Therefore, the chances of meeting the patient’s evaluation needs are greater as the 
number of device options increases. This fact is also evident in Figure 2 where, for all 
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experimental combinations, the best result is obtained when the ‘number of devices 
available’ factor is at a high level (H). 

Figure 4 Main effects plot (see online version for colours) 

 

Figure 4 also shows that the mean aggregated ‘patient-device fit score’ decreases as the 
‘patient condition’ factor spans from minor to severe. This indicates that the prospect of 
finding devices that satisfy the needs of a patient with a severe disability profile is lower 
when compared to a patient with moderate or minor disability profile. The results show 
that the aggregated ‘patient-device fit score’ response decreases as the level for the 
‘assessment satisfaction’ factor increases. As the threshold level increases for the device 
to be considered a good fit, the pool of devices that satisfy the imposed constraints 
reduces and hence the aggregated ‘patient-device fit score’ response decreases. The 
highest variation in the mean of the aggregated ‘patient-device fit score’ response occurs 
for the independent factors ‘patient condition’ and ‘number of devices available’. 

Figure 5 analyses possible 2-way-interactions. Figure 5 confirms that the ‘patient 
condition’ and ‘number of devices available’ factors have the major impact on the 
aggregated ‘patient-device fit score’ response. In the ‘patient condition’ versus ‘number 
of devices available’ plot, the worst overall performance is observed when the ‘patient 
condition’ is severe (i.e., low scores for most assessments) and the ‘number of devices 
available’ is low (i.e., 20 devices). The overall performance of the aggregated  
‘patient-device fit score’ response gradually improves as the ‘patient condition’ improves 
and the ‘number of devices available’ increases. 
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Figure 5 Two-way interaction plot (see online version for colours) 

 

In the ‘patient condition’ versus ‘assessment satisfaction’ plot, the worst overall 
performance is observed when the ‘patient condition’ is severe, (i.e., low scores for most 
assessments) and the ‘assessment satisfaction’ is high (i.e., 90%). The overall 
performance of the aggregated ‘patient-device fit score’ response gradually improves as 
the ‘assessment satisfaction’ decreases and the ‘patient condition’ improves. Finally, in 
the ‘number of devices available’ versus ‘assessment satisfaction’ plot, the worst overall 
performance is observed when the ‘assessment satisfaction’ is high (i.e., 90%) and the 
‘number of devices available’ is low (i.e., 20 devices). The overall performance of the 
aggregated ‘patient-device fit score’ response gradually improves as the ‘assessment 
satisfaction’ decreases and the ‘number of devices available’ factor increases. 

6 Conclusions 

The AAC-patient matching problem is complex and involves many professionals to 
effectively serve patients with different disability profiles. In this paper, a  
decision-making model was developed to recommend the best group of devices to 
consider based on the patient’s disability profile. In the AAC-patient matching problem, 
there are often a large number of devices available from various companies; however, the 
decision-making process of which device or devices to consider for a patient is largely 
based on the experience of the healthcare professional in charge of the case. The 
proposed decision-making model and solution algorithm attempt to minimise patient 
discomfort by recommending a limited list of devices that are likely to provide the best fit 
based on the patient’s disability profile. A short list of devices can reduce the patient 
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assessment time which at the end minimises patient discomfort. Selecting an 
inappropriate AAC device can lead to treatment abandonment, reducing the likelihood of 
patients seeking follow-up care. Therefore, it is crucial to match the competencies of the 
AAC user with a suitable communication device. 

The decision-making model and solution algorithm presented in this document 
improve the mapping of the conformance attributes of the patient’s diagnostic profile to 
the attributes of the AAC devices. The computational study shows that several 
experimental factors contribute more than others to the aggregated ‘patient-device fit 
score’. The factors with the highest influence on the aggregated ‘patient-device fit score’ 
are ‘number of devices’ and ‘patient condition’. The results show that the probability of 
finding a fitting device for a patient with a severe disability profile is low when compared 
to a patient with a moderate or minor disability profile. This is especially true when few 
devices are available as options. 

This research aims to bridge the substantial gap between the need for and the 
provision of AT assessment available around the world. The model and solution 
algorithm presented in this paper minimises patient discomfort and reduce device 
assessment time by recommending a limited list of devices that are likely to provide the 
best fit based on the patient’s disability profile. As future research, the authors would like 
to test the models with real data. In addition, the authors would like to introduce the 
uncertainty related to the health professional’s expertise and experience into the  
decision-making process. 
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