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Abstract: In this research, we proposed a new enhanced estimator of 
population mean of primary variable utilising the acquaintance on the known 
median of the main variable. We perused the features of the distribution of the 
proposed estimator till the approximation of order one. The articulated 
estimator is collated with the estimators in competition of the population mean, 
and the prerequisites of the suggested estimator to be more efficient over 
competing are derived. These conditions are put to the proof using the 
numerical example. The efficiencies are compared in terms of the mean 
squared errors. 
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1 Introduction 

The utilisation of auxiliary information enhances the estimation of any parameter and so 
is for the population mean Y . One of the significant drawbacks of the auxiliary 
information (X) is that it increases the survey cost. Therefore, we think of the elevated 
estimation of the survey without raising the survey cost. One of the beautiful uses of the 
alternative of the auxiliary information is the use of the known population median (M) of 
the primary variable (Y) which can be found with no increasing survey cost. The median 
do not require each population unit to be enquired; instead, it is obtained from the 
information at various intervals. Some examples of enhanced estimation of Y , utilising 
known M of Y have been given by Subramani (2016). Subramani (2016) has shown 
improvement over competing ratio and regression type estimators, which utilise X with 
increasing survey cost. 

Many authors have made use of known Xfor elevated estimation of the Y . Gupta and 
Shabbir (2008) suggested an estimator having improvement over other estimators under a 
simple random sampling scheme while Koyuncu and Kadilar (2009) also proposed some 
efficient estimators of Y . Al-Omari et al. (2009) proposed some novel ratio type 
estimators under simple and ranked set sampling schemes. Shabbir and Gupta (2011) and 
Singh and Solanki (2012) suggested elevated estimators under different sampling 
schemes using quantitative and qualitative information on X. Subramani (2013) and 
Yadav and Kadilar (2013a, 2013b) suggested some generalised estimators of Y . 
Subramani and Kumarapandiyan (2012, 2013) proposed some estimators using known 
parameters of the auxiliary variable. Yadav and Mishra (2015) and Yadav et al. (2016) 
suggested improved estimators simple and under predictive approach. Many more 
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authors, like Abid et al. (2016), Gupta and Yadav (2017, 2018), Subramani and Ajith 
(2017), Srija and Subramani (2018), Yadav et al. (2018), Yadav et al. (2019) and Yadav 
and Zaman (2020) utilised known X as its various parameters and suggested the efficient 
estimators. One of the drawbacks of the ratio, regression estimators is that both use 
known X for elevated estimation of the population parameters but this information is 
gathered on augmented survey cost.  

Thus, we search for the estimators that make use of the known parameters of Y which 
are obtained without augmenting survey cost. Population median is one of those 
parameters, which do not require information on every unit of the population, but it is 
calculated if the information is obtained in terms of the intervals. Various authors used 
the known Mand suggested the more efficient estimators of Y  without augmenting the 
survey cost. Subramani (2016) introduced the concept of using known population median 
for enhanced estimation of Y . Later various authors including Yadav et al. (2017), 
Yadav and Pandey (2017) and Yadav et al. (2020) utilised M and proposed the elevated 
estimators of Y .  

In this research, adapting Nangsue (2009) estimator and applying the Subramani 
(2016) scheme to it, we suggest a new generalised ratio type estimator of Y  utilising 
known M. The estimator suggested by Subramani (2016) is a special case of the 
suggested estimator. We also study the sampling properties of the suggested estimator till 
the approximation of order one. Further, it is compared both theoretically and empirically 
with different estimators of Y  in competition. The rest article is presented as follows; 
Section 2 provides the review of estimators of the Y . Section 3 is about the proposed 
estimator of Y  using M. Section 4 derived the properties of suggested estimator and 
compared its efficiency with other competitive estimators of Y . Section 5 presents a 
numerical study to verify the theoretical conditions of the efficiencies of suggested 
estimator over the mentioned competing estimators. Section 6 describes the results of this 
investigation. At last, Section 7 shows the conclusion of the study with future directions. 

2 Review of competing estimators 

Let N be the population under consideration from which n samples are drawn using 
simple random sampling scheme resulting N

nC  all possible samples each of size n. Let Y 

be the primary variable and X be the auxiliary variable having high degree of correlation 
with Y. ( , )Y X  are the population means of Y and X respectively while M is the median 

of Y. Further, let ( , )y x  represents the sample means of Y and X respectively while m is 

the sample median of Y along with 
1

1
N

nC

iN
in

M m
C 

   as mean of all sample medians of Y. 

yx  and ym  represents the coefficients of correlations between Y&X and Y&Mwhereas 

byx and bym are coefficients of regressions of Y on X and Y on M respectively. 
Various unbiased and biased estimators along with their variances and MSEs till first 

degree approximation have been summarised in the following Table 1. 
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Table 1 Different estimators with their variances and MSEs 

S. No. Estimator with variance/MSE 

1. 

1

1 n

o i
i

t y y
n 

    

2 2 2
0

1 1
( ) y y

f f
V t S Y C

n n

 
   

2. 
1 ( )t y X x   : Watson (1937) 

2 2 2
1

1
( ) (1 )y yx

f
V t Y C

n


   

3. 
2

X
t y

x
 : Cochran (1940) 

2 2 2
2

1
( ) [ 2 ]y x yx

f
MSE t Y C C C

n


    

4. 

3 exp
X x

t y
X x

 
   

: Bahl and Tuteja (1991) 

2
2 2

3

1
( ) [ ]

4
x

y yx

f C
MSE t Y C C

n


    

5.  2

4

x
t y

X

   
 

: Kadilar and Cingi (2003) 

2 2 2
4

1
( ) [ 4 4 ]y x yx

f
MSE t Y C C C

n


    

6. 

5

x
t y

X


   
 

: Srivastava (1967) 

2 2 2
min 5

1
( ) (1 )y yx

f
MSE t Y C

n


   for 2
opt yx xC C    

7. 

6 ( )

X
t y

X x X
 

    
: Reddy (1974) 

2 2 2
min 6

1
( ) (1 )y yx

f
MSE t Y C

n


   for 2
opt yx xC C   

8. 
7 1 2 ( )

X
t y X x

x

  
 

         
: Gupta and Shabbir (2008) 

2
min 7 1( ) 1MSE t Y      
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Table 1 Different estimators with their variances and MSEs (continued) 

S. No. Estimator with variance/MSE 

9. 2

8 1 2 ( )
X X

t y X x
x x

    
   

    
            

: Singh and Solanki (2012) 

2
min 8 2( ) 1MSE t Y      

10. 

9

( )
2 exp

( )

x X x
t y

X X x

                 
: Solanki et al. (2012) 

2 2 2
min 9

1
( ) (1 )y yx

f
MSE t Y C

n


   for (2 ) 2      

11. 

10 1 2 ( )exp
X x

t y X x
X x

 
 

      
: Ekpenyong and Enang (2015) 

2
min 10( ) 1MSE t Y q     

12. 

11 exp
x X x

t y
X X x

           
: Kadilar (2016) 

2 2 2
min 11

1
( ) (1 )y yx

f
MSE t Y C

n


   for 
1

/
2opt yx y xC C    

 
 

13. 

12

b
X

t y
x

 
   

 
: Nangsue (2009) 

where yxb b  

2 2 2
min 12

1
( ) (1 )y yx

f
MSE t Y C

n


    

14.  
13

M
t y

m
 : Subramani (2016) 

2 2 2 2
13 13 13

1
( ) [ 2 ]y m ym

f
MSE t Y C R C R C

n


    

15. 

14

b

x

x

x C
t y

X C

 
    

 and 15

b
x

t y
X




 
   

: Soponviwatkul and Lawson (2017) 

where yxb b  

2 2 2
min 14 min 15

1
( ) ( ) (1 )y yx

f
MSE t MSE t Y C

n


    

Note: There is no benefit of using additional information on parameters of X as the 
MSEs of both the above estimators are equal to MSE of Nangsue (2009) 
estimator, which does not use known parameters of X. 

 

 



   

 

   

   
 

   

   

 

   

    Use of known population median of study variable 33    
 

    
 
 

   

   
 

   

   

 

   

       
 

Where,  

y
y

S
C

Y
 , 2 2 2

1 1

1 1
( ) ( )

1

N
nCN

y i iN
i in

S Y Y y Y
N C 

   
   , yx yx y xC C C , 

n
f

N
 ,  

x
x

S
C

X
 , 2 2 2

1 1

1 1
( ) ( )

1

N
nCN

x i iN
i in

S X X x X
N C 

   
   ,  

1

1
( , ) ( )( )

1

N

i i
i

Cov x y Y Y X X
N 

  
  , 

( , )
yx

x y

Cov x y

S S
  , 13

Y
R

M
 , m

m

S
C

M
 ,  

1

1
( )( )

N
nC

ym i iN
in

S y Y m M
C 

   , ym
ym

S
C

YM
 , 2 2

1

1
( )

N
nC

m iN
in

S m M
C 

  ,  

2 2
1 [1 { (3 4 )}]y xC C        , 2

2 xC  , 2
3 ( 2 )xC     , 2

4 [1 ( )]xC      , 

2
5 xC  , 2 2[1 { (3 4 )}]y xA C C       , 2

xB C , 2 (3 )xC C    , 

2[1 ( )]xD C     , 2
xE C , 

X

X


 




, * 2 4 3 5
1 2

1 2 3

( )

( )

   


  





,  

* 1 5 3 4
1 2

1 2 3

( )

( )

R    


  





, 
Y

R
X

 , *
1 2

( )

( )

BD CE

AB C
 




, *
2 2

( )

( )

AE CD

AB C
 




, 
1 f

n
 
 ,  

2 2
2 4 3 4 5 1 5

1 2
1 2 3

( 2 )

( )

      


  
 




, 
2 2

2 2

( 2 )

( )

BD CDE AE

AB C
  




, 
2

4 2 3 1 3
2

1 4 2

( 2 )

( )
q

    
  
 




,  

* 2
1 4 2 3 1 4 2( ) ( )         , * 2

2 2 1 3 1 4 2( ) ( )R         , 2
1 1 yC   ,  

2
2

1
( )

2xC    , 2
3 2 xC

  , 2
4 xC  . 

*
1 , *

2 , *
1  and *

2  are optimum values of 1 , 2 , 1  and 2  respectively.  ( 0  ), 

 ,   and   are constants or parameters of X.  

3 Proposed estimator 

Motivated by Nangsue (2009) and Subramani (2016), a general ratio estimator of Y  
utilising known M as, 

b

p

M
t y

m
   
 

 (1) 

where ymb b , defined by 
2

ym

m

s
b

s
 . 
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To study properties of tp, we use approximations, 0(1 )y Y e  , 1(1 )m M e  , 

2(1 )ym yms S e   and 2 2
3(1 )m ms S e   such that 0( ) 0E e  , 1

( )
( )

M M Bias m
E e

M M


  , 

2 3( ) ( ) 0E e E e   and 2 2
0

1
( ) y

f
E e C

n


 , 2 2

1

1
( ) m

f
E e C

n


 , 0 1

1
( ) ym

f
E e e C

n


 , 

21
1 2

1
( )

ym

f
E e e

n S M


  and 12

1 3 2

1
( )

m

f
E e e

n S M


 , where 

1

1
( ) ( )

N
r s

rs i i
i

m M y Y
N




   . 

Expressing tp in the form of 'ie s ( 0,1i  ), we get  

0
1

0 1

2
0 1 1

2
0 1 0 1 1

2
1

0 1 0 12 2 2 2

2 2
0 12

3

(1 )
(1 )

(1 )(1 )

( 1)
(1 ) 1

2

( 1)
1

2

1 1
2

(1 ) (1 )
1

(1 )

b

p

b

ym ym ym ym

m m m m

ym ym

m

M
t Y e

M e

Y e e

b b
Y e be e

b b
Y e be be e e

s s s s e
Y e e e e

s s s s

S e S e
Y e e

S e



 
    
  

      
       

  
       

   

 
   



2
2 2 1

0 12 2 2
3 3 3

1 1
0 1 2 3 0 1 2 32 2

2
1 11

2 3 2 32 2

0

(1 ) (1 )
1

2(1 ) (1 ) (1 )

1 (1 )(1 ) (1 )(1 )

(1 )(1 ) (1 )(1 ) 1
2

1

ym ym

m m m

ym ym

m m

ym ym

m m

S e S e e
e e

S e S e S e

S S
e e e e e e e e

S S
Y

S Se
e e e e

S S

e Be
Y

 

 

   
   

     
 
       

           
   

 


2 2
1 2 3 3 0 1 2 3 3

2
2 21

2 3 3 2 3 3

(1 )(1 ) (1 )(1 )

(1 )(1 )[ (1 )(1 ) 1]
2

e e e Be e e e e

e
B e e e B e e e

       
 
          

 

where 

2

2 2
21 1

0 1 1 3 1 4 0 1

2 2
21 1

0 1 1 3 1 4 0 1

1 ( )
2 2

( )
2 2

ym

m

p

S
B

S

e e
Y e B e e e e e Be e B B

e e
t Y Y e B e e e e e Be e B B



 
        

 
 

        
 

 (2) 
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Taking expectation both sides of (2) and applying values of different expectations, the 
bias of tp can be expressed, 

2
2 12 21

2

1 1
( ) ( ) ( )

2
m

p ym
ymm

Cf M M f
Bias t Y B B B B C

n M n S MS M

    
      

  
 (3) 

From equation (2), till first degree approximation, we have, 

0 1( )pt Y Y e Be    (4) 

Squaring on both sides of (4) and getting it’s expectation on, we get the MSE of tp as, 

2 2
0 1

2 2 2 2
0 1 0 1

( ) ( )

( 2 )

pMSE t Y E e Be

Y E e B e Be e

 

  
 

Applying different expectations values, we have, 

2 2 2 21
( ) [ 2 ]p y m ym

f
MSE t Y C B C BC

n


    (5) 

4 Efficiency comparison 

The efficiency conditions for tp over the estimators in competition are presented in  
Table 2.  

Table 2 Theoretical efficiency of tp over the competing estimators of Y  

S. No. Estimator tp performs better than competing one if  

1. 

1

1 n

o i
i

t y y
n 

    

Mean per unit estimator 

0 min( ) ( ) 0pV t MSE t  , or 

1[ ] 2r    

2. 
1 ( )t y X x     

Watson (1937) estimator 

1 min( ) ( ) 0pMSE t MSE t  , or 

2 2(1 ) 1y yxC r     

3. 
2

X
t y

x
   

Cochran (1940) estimator 

2 min( ) ( ) 0pMSE t MSE t  , or 

2 2[ 2 ] 1y x yxC C C r      

4. 

3 exp
X x

t y
X x

 
   

 

Bahl and Tuteja (1991) estimator 

3 min( ) ( ) 0pMSE t MSE t  , or 

2 2[ 4 4 ] 1y x yxC C C r      

5. 2

4

x
t y

X

   
 

 

Kadilar and Cingi (2003) estimator 

4 min( ) ( ) 0pMSE t MSE t  , or 

2 2[ 4 4 ] 1y x yxC C C r      
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Table 2 Theoretical efficiency of tp over the competing estimators of Y  (continued) 

S. No. Estimator tp performs better than competing one if  

6. 

5

x
t y

X


   
 

 

Srivastava (1967) estimator 

min 5 min( ) ( ) 0pMSE t MSE t  , or 

2 2(1 ) 1y yxC r     

7. 

6 ( )

X
t y

X x X
 

    
 

Reddy (1974) estimator  

min 6 min( ) ( ) 0pMSE t MSE t  , or 

2 2(1 ) 1y yxC r     

8. 

7 1 2( )
X

t y X x
x

  
 

         
  

Gupta and Shabbir (2008) estimator 

min 7 min( ) ( ) 0pMSE t MSE t  , or 

1 0r    

9. 2

8 1 2( )
X X

t y X x
x x

    
   
    

            
  

Singh and Solanki (2012) estimator  

min 8 min( ) ( ) 0pMSE t MSE t  , or 

2 0r    

10. 

9

( )
2 exp

( )

x X x
t y

X X x

                 
  

Solanki et al. (2012) estimator  

min 9 min( ) ( ) 0pMSE t MSE t  , or 

2 2(1 ) 1y yxC r      

11. 

10 1 2( )exp
X x

t y X x
X x

 
 

      
  

Ekpenyong and Enang (2015) estimator  

min 10 min( ) ( ) 0pMSE t MSE t  , or 

0r q    

12. 

11 exp
x X x

t y
X X x

           
 

Kadilar (2016) estimator  

min 11 min( ) ( ) 0pMSE t MSE t  , or 

2 2(1 ) 1y yxC r     

13. 

12

b
X

t y
x

 
   

 
 

Nangsue (2009) 

min 12 min( ) ( ) 0pMSE t MSE t  , or 

2 2(1 ) 1y yxC r     

14. 
13

M
t y

m
  

Subramani (2016) estimator  

13 min( ) ( ) 0pMSE t MSE t  , or 

2 2 2
13 1`3[ 2 ] 1y m ymC R C R C r      

15. 

14

b

x

x

x C
t y

X C

 
    

 and 15

b
x

t y
X




 
   

 

Soponviwatkul and Lawson (2017) 

min( ) ( ) 0i pMSE t MSE t  , 14,15i   or 

2 2(1 ) 1y yxC r     
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5 Empirical study  

We verify the theoretical conditions of the efficiencies of tp over the mentioned 
competing estimators of Y , and for this, we consider the population given by Subramani 
(2016). The parameters of the population are given in Table 3 and the MSEs and 
percentage relative efficiencies (PREs) of tp over the estimators in competition are shown 
in Table 4.  

Table 3 Population parameters 

Parameter Value 

N  20 

n  5 
N

nC  15504 

Y  41.5 

M  40.0552 

M  40.5 

X  441.95 

13R  1.0247 

2
yC  0.008338 

2
xC  0.007845 

2
mC  0.006606 

ymC  0.005394 

yxC  0.005275 

yx  0.6522 

ym  0.81543 

Table 4 MSE of various estimators and PRE with respect to proposed one 

Estimator MSE PRE of tp over 

t0 2.15 213.442 

t1 1.24 123.101 

t2 1.48 146.927 

t3 1.30 129.058 

t4 1.81 
179.688 

t5 1.24 123.101 

t6 1.24 123.101 

t7 1.24 123.101 

t8 1.47 145.935 
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Table 4 MSE of various estimators and PRE with respect to proposed one (continued) 

Estimator MSE PRE of tp over 

t9 1.24 123.101 

t10 1.23 122.109 

t11 1.24 123.101 

t12 1.24 123.101 

t13 1.09 108.210 

t14 1.24 123.101 

t15 1.24 123.101 

tp 1.0073 100.000 

Figure 1 represents the graphs of the MSE of tp and the competing estimators. The MSE 
proposed estimator has been shown in red colour. The PRE of tp over the existing 
estimators of Y  has been shown in Figure 2.  

Figure 1 MSEs of tp and competing estimators 

 

Figure 2 PREs of tp over competing estimators 
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6 Results and discussion 

From the results, it can be easily observed that the sampling variance of y  is 2.15 while 

rest of the estimators that utilised auxiliary information have their MSEs in the interval 
[1.09 1.81]. The MSE of the tp is 1.0073 which is least among the class of all presented 
estimators of Y . The PRE of tp over mentioned existing estimators including Subramani 
(2016) estimators ranges in the interval [108.210 213.442]. 

7 Conclusion  

In present investigation, we advocated a new enhanced general ratio estimator of Y  
utilising known M. The sampling features of the proposed estimator are analysed until 
order one approximation. The expressions for the bias and MSEs are derived. The 
suggested estimator was then compared with the mentioned fourteen estimators of Y  in 
competition that made use of auxiliary information, which was gathered on the 
augmented survey cost. The proposed estimator was also compared with the Subramani 
(2016) estimator, which was the source of motivation and made use of known M. The 
proposed estimator was compared theoretically as well as empirically with the above-
competing estimators, and it has been shown that tp has the least MSE among mentioned 
estimators. Thus, it is the most efficient estimator and hence advocated for elevated 
estimation of Y  without raising the survey cost. 
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