Effective hybrid feature subset selection for multilevel datasets using decision tree classifiers Online publication date: Thu, 05-Jan-2023
by S. Dinakaran; P. Ranjit Jeba Thangaiah
International Journal of Advanced Intelligence Paradigms (IJAIP), Vol. 24, No. 1/2, 2023
Abstract: Feature selection is one of the most significant procedures in machine learning algorithms. It is particularly to improve the performance and prediction accuracy for complex data classification. This paper discusses a hybrid feature selection technique with the decision tree-based classification algorithm. The feature selected using information gain (IG) is combined with the features selected from ReliefF which generates the resultant feature subset. Then the resultant feature subset is in turn combined with a correlation-based feature selection (CFS) method to generate the aggregated feature subset. To perform classification accuracy on the aggregated feature subset, different decision trees-based classification algorithm such as C4.5, decision stumps, naive Bayes tree, and random forest with ten-fold cross-validation have been deployed. To check the prediction accuracy of the proposed work eight different multilevel University of California, Irvine (UCI) machine learning datasets have been used with minimum to maximum numbers of features. The main objective of the hybrid feature selection is to improve the classification accuracy, prediction and to reduce the execution time using standard datasets.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Advanced Intelligence Paradigms (IJAIP):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com