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Abstract: Based on the automotive development strategies towards electrification

and autonomous driving, the need of enhancements regarding state estimations,

extended diagnosis as well as redundant architectures are evident. Accurate,

robust and cost-efficient load torque estimation methods can bring significant

benefits in this respect. Thus, this work presents a Kalman filter based load

torque estimation method for electric axle drives by mean of virtual sensing. The

elastically mounted electric rear axle drive of a Renault Twizy 80 was installed at

a powertrain test rig. Using the measurement results, the parameters of a multi-

body system (MBS) model were adjusted, in order to obtain a reference model

for method validation. Subsequently, the basic functioning of the proposed load

torque estimation method was shown by several test manoeuvres based on the

measurement-adjusted reference model. The investigations revealed favourable

results even in the case of reasonable effective torque dynamics (up to 3 Hz) and

realistic sensor noise.
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1 Introduction

The observation of the changes within the fleets of renowned vehicle manufacturers reveal

that the number of electric vehicles – especially battery electric vehicles (BEVs) – increased

steadily in recent time, see for instance Gavric (2020). Here, in particular BEVs with electric

drives on the front axle (i.e., electric front axle drive, EFAD) and / or on the rear axle

(i.e., electric rear axle drive, ERAD) – are frequently deployed, cf. Hauptmann (2018)

and Doerr et al. (2018). A few examples of such production vehicles with electric axle

drives are: Tesla Model 3/S/X/Y, BMW iX3, VW ID.3/ID.4, Audi e-tron, Mercedes-Benz
EQA/EQC and in the microcar segment the Renault Twizy. Additionally to this development

strategy towards electrification, autonomous driving and advanced driver assistance systems

(ADAS) also play an increasingly important role in the field of automotive engineering. Both

trends highlight the need of enhancements within the following topics regarding electrified

powertrains:

• state estimations for control applications

• diagnosis and fault detection as well as

• redundant architecture for fail-operational systems.

Accurate, robust and cost-efficient estimation methods for the load torque at the drive shafts

can bring significant benefits in this respect. This should be discussed in detail below.

First, for vehicle dynamics control systems – such as electronic stability control (ESC)

–, tyre–road friction (TRF) estimators are of crucial importance, see Reif (2011). Here, the

wheel torques represent an essential input quantity for these TRF estimators. In general,

the wheel torques can be approximately calculated via the motor torque, associated gear

ratios and drivetrain efficiency factors. But a sophisticated load torque determination and

subsequently a more precise wheel torque calculation would entail a clear potential for

improvement, cf. Lex (2015).

Furthermore, a comparison of the motor torque and the load torque of an electric axle

drive would facilitate an enhanced drivetrain diagnosis. By evaluating the differences of

these two torque signals, losses within the drivetrain (e.g., gear meshing losses) can be

observed and even mechanical faults (e.g., grinding parts or intrusion of oil into motor’s

air gap) can be detected. It is obvious that this would provide a valuable insight into the

operating state.

On the other hand, safety-critical applications, for example in the field of autonomous

driving, require a sufficiently independent redundancy in order to provide a fail-operational

behaviour, see Schnellbach et al. (2016). Although the motor torque of an electric axle drive

can be estimated on the basis of the measured phase current, another independent torque

calculation principle would be beneficial for an increased redundancy level.

This work presents a novel model-based load torque estimation technique using Kalman

filtering. The underlying basic principle uses the fact that vehicle drivetrain components,

such as transfer cases or electric axle drives, are usually mounted to the structure (e.g.,

chassis, subframe, etc.) via flexible elastomer mounts (or also called rubber bushings), see

for example Lennström (2015). Based on a torque transfer during operation, a specific

drivetrain component thus twists in relation to the structure. This relative twist motion is

influenced by the transferred torque, the inertia of the component as also the positions,

stiffness and damping characteristics of the elastomer mounts. Hence, it is evident that

the transferred torque can be observed on basis of measured drivetrain component twist
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motions. Even in the case of mass-produced vehicles, these twist motions can be easily

measured through the application of standard automotive angle sensors, well-known from

throttle, pedal or steering wheel angular position sensors.

It should be emphasised that the whole motion of an elastically mounted drivetrain

component can be determined by only one angle sensor for the component’s rotation axis,

which is commonly referred to as torque roll axis (TRA), see for instance Courteille et al.

(2005). In the proposed method, a Kalman filter combines these available measurements

and the a priori knowledge of the system – defined by an appropriate filter model – for an

optimal estimation of the load torque. In more detail, the filter model consists of a simple

single-degree-of-freedom (SDOF) torsional oscillator, as representation of the inertia of the

drivetrain component, in conjunction with a torsional spring–damper for a lumped modelling

of all contributing elastomer mounts. This approach of using easily available measurements

in combination with numerical models of the system in order to estimate another quantity

indirectly is often referred to as ‘virtual sensing’, see Prokhorov (2005), Forrier (2018) and

Risaliti et al. (2019).

In general, a survey of literature reveal that torque estimators using Kalman filters and

observers are widely used in both, automotive and also industrial applications. In Forrier

et al. (2017), a broadband virtual torque sensor was developed for a generic mechatronic

powertrain. For this purpose, augmented non-linear Kalman filters based on electrical and

mechanical models were applied. The stator current phasor of the induction motor, the

rotor angle and rotational velocities or accelerations at motor as also load side depict the

necessary measurement signals. In Schaper et al. (2009), a mechanical dual mass flywheel

(DMF) model was deployed for an observer-based torque estimation at low engine speeds.

For this method, the angular velocities at both DMF sides as also the displacement angle of

the DMF were used as measurements. In Kiencke (1999), a Kalman filter for the estimation

of the combustion torque of reciprocating engines was presented. In this approach, only

sensor signals commonly available in engine management systems – such as engine speed

and top dead centre (TDC) information – were used. In Khiar et al. (2005), a similar

principle was deployed for an observer-based estimation of the instantaneous torque of

internal combustion engines (ICEs). Moreover, the works (Chauvin et al., 2004; Helm et al.,

2012; Jakubek and Fleck, 2009) should be mentioned, where the inner torque of ICEs at

engine test rigs was estimated via Kalman filtering techniques. In contrast to these torque

estimations, the basic principle of the method proposed in this work is substantially different.

Since it is based on the elastic mounting of drive units and the corresponding motion with

respect to the structure. Therefore, the proposed load torque estimation method features

a significant degree of novelty and hence promising application potentials in the field of

modern electrified automotive powertrains.

For a detailed examination of the possible field of application of the proposed load

torque estimation method, the basic powertrain topologies for electrified vehicles should be

analysed in more detail, see Figure 1 (cf. Hofmann (2014)).

The left hand side of Figure 1 visualises the concepts which are out of scope of

the proposed load torque estimation method, namely: wheel hub and close-to-wheel

drives. These two concepts show great potentials regarding efficiency and installation

space, but suffers from drawbacks relating to an increased unsprung mass as also to an

additional technical effort, see Tschoeke et al. (2019), Kasper and Schünemann (2012) and

Wallentowitz and Freialdenhoven (2011).
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Figure 1 Basic powertrain topologies for electrified vehicles, cf. Hofmann (2014) (see online

version for colours)
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The right hand side of Figure 1 shows the so-called central motor concepts, on which the

proposed load torque estimation method can be applied. It can be seen that the possible

field of application is not limited to electric axle drives (both axially parallel and coaxial

design), but can also be applied to twin-coaxial drives. Furthermore, the load torques to

be determined by the proposed estimation method are depict. Here, the load torques are

composed of the left and right hand side parts acting on the corresponding side shafts.

A survey of the current market of mass-produced BEVs reveal the dominant role

of central motor concepts and here especially electric axle drives, see also Eghtessad

et al. (2015). This can be highlighted by well-documented development examples of car

manufacturers (Doerr et al., 2020; Siebenpfeiffer, 2015) and by automotive suppliers Höfer

et al. (2020), Mühlberg et al. (2017), Smetana et al. (2013) and Domian et al. (2013).

Especially in Lieske et al. (2020) the importance of the elastic mounting of electric drive

units was emphasised. Therefore, it can be concluded that the field of application of the

proposed load torque estimation method covers a great amount of electrified powertrains

within BEVs and also axle-split hybrid electric vehicles (HEVs).

In Kalcher et al. (2022), the novel model-based load torque estimation method using

Kalman filtering was extensively presented. There, it was focused on the modelling of the

elastomer mounts and especially the implications of the non-linear effect of static hysteresis.

As the method verification there was limited to a numerical validation with aid of multi-body

system (MBS) simulations, the work at hand goes one step further and provides a hybrid

experimental–numerical validation procedure, cf. Zeller (2018). Here, a sophisticated MBS

simulation model is adjusted on basis of real-world powertrain test rig measurements of the

ERAD of a Renault Twizy 80.

This paper is structured as follows. Section 2 introduces the load torque estimation

principle, namely, the filter model as also the associated Kalman filter framework.

Section 3 deals with the measurement configuration used. Here, the test rig set-up with

the associated sensors are presented. Moreover, a so-called test plan is introduced on

basis of a list of test manoeuvres to be carried out. In Section 4, the measurement

outputs are described. Particularly, the simulation–measurement adjustment process and

the corresponding parameter identification for the MBS simulation model are depicted.
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Section 5 presents the method validation on basis of the measurement-adjusted MBS

simulation model. Here, several load torque estimations are comprehensively evaluated.

Additionally, the proposed load torque estimation method is analysed using influence

analyses. Finally, the paper concludes with a summary and a short outlook on future

improvements.

2 Load torque estimation

Usually, the electric axle drive of a BEV is mounted elastically to the chassis (or subframe)

via rubber sleeve bushings, see Roth et al. (2019). Here, various configurations are used,

cf. Schwartz (2014):

• three point mounting layout

• four point mounting layout

• three point pendulum concept with roll restrictor.

These basic configurations are visualised in Figure 2 using the example of an ERAD. As

the names imply, the three and four point mounting layouts consist of three and four rubber

sleeve bushings, respectively. Where the design with four bushings is the more expensive

solution but has the advantage of lower mount forces. In contrast to these two layouts, the

three point pendulum concept deploys two mounts, which are approximately positioned at

the TRA and an additional roll restrictor. The main purposes of the two mounts are to carry

the weight of the electric axle drive and also to restrict vertical, lateral and longitudinal

travels. On the other hand, the roll restrictor mainly controls the movements due to load

torques. This task separation allows a good tuning of characteristics but – in comparison to

the other two layouts – the design freedom is more restricted.

Figure 2 Basic mounting configurations of electric axle drives (see online version for colours)
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Since the Renault Twizy – which is under consideration here – has a three point mounting

layout, the following derivations in this section refer to this configuration. The proposed

Kalman filter based load torque estimation method can be easily transferred to any other

elastic mounting concept. With this in mind, the Kalman filter model can be derived.
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2.1 Filter model

For the elastically mounted – and otherwise unconstrained – Twizy ERAD with mass m
and inertia tensor I , an acting time-dependent load torque vector Tl (t) along the drive shaft

axis entails almost solely a twist about the uniquely determinable TRA, see left hand side

of Figure 3. Here, the rubber bushings in the points Bi (i = 1, . . . , 3) are depicted with

help of the elastomer mount forces Fi and the corresponding position vectors ri. Whereby

the position vectors are with respect to A, which is an arbitrary defined point on the TRA.

Consequently, as Kalman filter model, a simple SDOF torsional oscillator is used, see right

hand side of Figure 3. Here, a rigid body with a mass moment of inertia I is connected to

a fixed environment via a revolute joint about the TRA. Furthermore, the TRA-projected

restoring torque of the elastomer mount forces Te (x (t)) is generally represented by a

torsional bushing. The TRA is depicted with the unit direction vector eTRA. It can be clearly

seen that the TRA in the right hand side of Figure 3 is in projected display and thus the

unit direction vector eTRA truncates to a point in A. The twist angle φ (t) about the TRA

exhibits the only degree of freedom (DOF) of the model. Thus, the twist angle and its time

derivative, the twist angle velocity φ̇ (t), yield the state variables of the filter model:

x (t) =

[
φ (t)

φ̇ (t)

]
. (1)

Thus, the equation of motion for the Kalman filter model reads:

φ̈ (t) =
1

I
·
(
Tl (t) + Te (x (t))

)
, (2)

where φ̈ (t) stands for the twist angle acceleration, Te (x (t)) denotes the TRA-projected

torque of the elastomer mount forces

Te (x (t)) = eTRA ·
(

3∑
i=1

ri × Fi (x (t))

)
, (3)

and

Tl (t) = eTRA · Tl (t) , (4)

designates the TRA-projected part of the load torque vector. Due to the unique conversion

in equation (4), in the following only the scalar-valued time history Tl (t) needs to be

determined with aid of the proposed load torque estimation method. Furthermore, it should

be mentioned here that the filter model derivation is carried out in static equilibrium state

and hence no weight forces have to be considered.

For the further derivation of the torsional bushing, the elastomer mounts of the Twizy

have to be examined in more detail. In all three mounting points, typical rubber sleeve

bushings are installed, which are basically constructed as shown in the left hand side of

Figure 4. An outer metal sleeve is coupled via rubber to an inner metal sleeve. Optional

pockets within the elastomer facilitate the adjustment of a desired non-linear stiffness

behaviour. A typical quasi-static force–displacement characteristic curve in radial direction

is visualised in the right hand side of Figure 4. In most cases, a clear linear domain around
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the origin can be identified, where the associated force law is described by a nearly constant

spring stiffness. Radial mount displacements exceeding this linear domain entail a noticeable

stiffening, which in turn results in a progressive force–displacement curve. The reasons for

this typical progression domain in radial direction are – at the beginning – the closing of

possibly existing pockets and further on, the blocking of the inner and outer metal sleeves to

each other. On the other hand, in axial direction the stiffness is approximately constant in a

wide range and a clear progression domain can only be implemented with help of additional

limit stops.

Figure 3 Elastically mounted Twizy ERAD with displayed TRA (left hand side) and associated

SDOF torsional oscillator filter model (right hand side) (see online version for colours)
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Figure 4 Typical rubber sleeve bushing and its quasi-static behaviour in radial direction (see online

version for colours)
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This behaviour described can be confirmed by real measurements of the Twizy elastomer

mounts. Figure 5 shows the rubber bushing test set-up as well as the measured quasi-

static characteristic curves of force F against rubber mount displacement s. In the upper

part of Figure 5, the measurement results of the axial direction of the rubber bushing in

B3 is visualised. Moreover, in the lower part of Figure 5, the measurement results of the

radial direction of the rubber bushing in B2 is displayed. The axial direction shows an

approximately linear relationship between force and displacement. Whereas for the radial

direction, the beginning of the progression based on the metal sleeve blocking become

apparent for a displacement over 2 mm. The evaluation of the rubber mount displacements

during a typical Twizy ERAD operation on the powertrain test rig revealed that even the

radial bushing displacements are limited to the linear domain.



Development and validation of a Kalman filter 49

Figure 5 Quasi-static measurements for two Twizy elastomer mounts: (a) measurement results of

the axial direction of the rubber bushing in B3 and (b) measurement results of the radial

direction of the rubber bushing in B2 (see online version for colours)
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Furthermore, from the example measurements of the Twizy elastomer mounts it can be

seen that the static hysteresis is negligibly small for both, the axial and the radial directions.

Hence, a sophisticated modelling of friction and amplitude dependence – as in Kalcher

et al. (2022) – is not necessary. Since the focus is also only on a load torque estimation

method for the low frequency domain, no special rheological models are required to depict

the dependence on the excitation frequency in more detail. Thus, it is sufficient to describe

the elastic mounting of the Twizy ERAD within the filter model through a torsional Kelvin–

Voigt element with constant parameters. Hence, the elastomer mount forces can be described

with the stiffness tensors Ki and damping tensors Di of all rubber bushings (assuming

sufficiently small angles which allow for a linearisation):

Fi (x (t)) = − (Ki · li) · φ (t)− (Di · li) · φ̇ (t) , (5)

where li = eTRA × ri designate the vectors for the calculation of the rubber bushing

kinematics. The bushing-dependent stiffness and damping tensors can be expressed by the

following diagonal matrices, see Park and Singh (2007):

Ki =

⎡
⎣ ki x 0 0

ki y 0
sym. ki z

⎤
⎦ , Di =

⎡
⎣ di x 0 0

di y 0
sym. di z

⎤
⎦ . (6)

This formulation takes the advantage that all three rubber sleeve bushings of the Twizy are

aligned normal to each other and hence all matrices can be expressed in the global coordinate

system K (see left hand side of Figure 3). Furthermore, only the translational compliances

are considered, because for standard automotive rubber bushings, the rotational stiffnesses

and dampings can be neglected, see for instance Jeong and Singh (2000) and Alkhatib

(2013).

Thus, the restoring torque from equation (3) can be rewritten in the following way:

Te (x (t)) = −eTRA ·
(

3∑
i=1

ri ×
(
(Ki · li) · φ (t) + (Di · li) · φ̇ (t)

))
. (7)
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Using equation (7), the torsional spring stiffness as well as the torsional damping factor can

be identified:

kφ = eTRA ·
(

3∑
i=1

ri × (Ki · li)
)
,

dφ = eTRA ·
(

3∑
i=1

ri × (Di · li)
)
.

(8)

Finally, the equation of motion for the Kalman filter model from equation (2) can be rewritten

in the following way:

φ̈ (t) =
1

I
·
(
Tl (t)− kφ · φ (t)− dφ · φ̇ (t)

)
, (9)

which facilitates a planar description of the generally three-dimensional ERAD movement.

Furthermore, it should be noted that equation (9) represents a fully linear model.

Therefore, the torque estimation can be performed with a simple Kalman filter and the

associated non-linear versions such as extended Kalman filter (EKF; see Simon (2006)) and

unscented Kalman filter (UKF; cf. Julier et al. (1995) and Julier and Uhlmann (2004)) do

not have to be applied. For detailed information regarding the consideration of non-linear

effects (e.g., progression and static hysteresis) and hence the application of an UKF as a

non-linear torque estimator, please refer to Kalcher et al. (2022).

2.2 Kalman filter framework

In this section, the Kalman filter framework for the proposed model-based load torque

estimation method is presented, cf. Kalcher et al. (2022). Here, the so-called virtual torque

sensor principle is used in order to estimate the load torque of the Twizy ERAD at the

powertrain test rig on basis of easily available measurements, such as the twist motions

about the TRA. In Figure 6, the principle of the virtual torque sensor is visualised in flow

chart form. The Twizy ERAD at the powertrain test rig depicts the observed system. The

accelerator pedal value of the electric motor αp and the rotational speeds of both dynos

(i.e.: left hand side: nl (t); right hand side: nr (t)) define the load torque to be estimated.

Moreover, the output of the system is described by the state variables of the filter model,

that is to say, the twist angle about the TRA and its time derivative. If the time derivative

of the twist angle is not available by measurements, it can always recursively be calculated

based on the twist angle via numerical differentiation. As in real measurements, sensor

noise is always present, it also has to be considered for the input of the virtual sensor. The

virtual sensor is represented by a Kalman filter, which in turn comprises of two stages. First,

the prediction is done with help of the filter model and, second, the estimator performs a

correction on basis of the current measurements. After that, the Kalman filter outputs the

estimated load torque for the corresponding time step.
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Figure 6 Kalman filter framework for the proposed model-based load torque estimation method

(see online version for colours)
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For the application of the virtual sensor principle, first, the ERAD at the powertrain test rig

was formulated as so-called augmented state-space system. Here, not only the original states

of the filter model have to be considered within the column matrix of the state variables,

but also the unknown input, that is to say, the load torque, cf. Lourens et al. (2012), Naets

et al. (2014) and Ray (1997):

x̄ (t) =

⎡
⎣φ (t)

φ̇ (t)
Tl (t)

⎤
⎦ . (10)

For the corresponding state equation of the load torque, a zeroth-order random walk model

is applied, see Naets et al. (2015a) and Cumbo et al. (2019), but other models are also

conceivable, cf. Ray (1995):

Ṫl (t) = wT (t) , (11)

where wT (t) designates the load torque process noise. Thus, the state equations of the

augmented system yield:

⎡
⎣ φ̇ (t)

φ̈ (t)

Ṫl (t)

⎤
⎦

︸ ︷︷ ︸
=: ˙̄x(t)

=

⎡
⎣ 0 1 0

−kφ

I −dφ

I 1
0 0 0

⎤
⎦

︸ ︷︷ ︸
=:Ā

·
⎡
⎣φ (t)

φ̇ (t)
Tl (t)

⎤
⎦

︸ ︷︷ ︸
=x̄(t)

+

⎡
⎣ 0

0
wT (t)

⎤
⎦

︸ ︷︷ ︸
=:w(t)

, (12a)

˙̄x (t) = Ā · x̄ (t) +w (t) , (12b)
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where ˙̄x (t) is the column matrix with the time derivatives of the states of the augmented

system and w (t) denotes the column matrix of the process noise. Moreover, the associated

output equations read:

[
φ (t)

φ̇ (t)

]
︸ ︷︷ ︸
=y(t)

=

[
1 0 0
0 1 0

]
︸ ︷︷ ︸

=:C̄

·
⎡
⎣φ (t)

φ̇ (t)
Tl (t)

⎤
⎦

︸ ︷︷ ︸
=x̄(t)

+

[
vφ (t)
vφ̇ (t)

]
︸ ︷︷ ︸
=v(t)

, (13a)

y (t) = C̄ · x̄ (t) + v (t) , (13b)

where v (t) designates the column matrix for the sensor noise, which consists of the

measurement noise for the twist angle vφ (t) and the twist angle velocity vφ̇ (t), respectively.

Furthermore, the state matrix and the output matrix of the augmented system are designated

by Ā and C̄, respectively.

Using standard discretisation schemes (see for instance Maes et al. (2019), Risaliti

et al. (2016), Bachinger et al. (2014)), the discrete-time state-space representation of the

augmented system can be formulated as follows:

x̄k = Φ · x̄k−1 +wk−1, (14a)

yk−1 = C̄ · x̄k−1 + vk−1, (14b)

whereΦ is the state transition matrix, that is to say, the time-discretised representation of

the continuous-time state matrix Ā of the augmented system from equation (12). The indices

k and k − 1 stand for time instants, which are described by multiples of the discretisation

time Td: i.e., k · Td and (k − 1) · Td, respectively.

For the discrete-time state-space model of equation (14), the two stages (i.e., prediction
and correction) of the Kalman filter can be performed, see for example Kalman (1960);

Grewal and Andrews (2001); Simon (2006). Thus, the Kalman filter estimates the augmented

state column matrix

ˆ̄xk =

⎡
⎢⎣ φ̂k

ˆ̇
φk

T̂lk

⎤
⎥⎦ (15)

at every instant of time k, where the estimated state variables consist of the twist angle φ̂k,

the twist angle velocity
ˆ̇
φk and also the required load torque T̂lk.

The above described Kalman filter based load torque estimation method using the SDOF

filter model from Section 2.1 was implemented in Matlab (The MathWorks, Inc. (2021)).

3 Test rig set-up

The basic functioning of the proposed load torque estimation method is verified on basis of

powertrain test rig measurements of the ERAD of a Renault Twizy 80. The Renault Twizy

80 is a rear-wheel drive (RWD) BEV of the microcar segment with a top speed of 80 km
h .
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Its propulsion is accomplished by an elastically mounted ERAD, consisting of a 13 kW
and 57 Nm asynchronous electric motor, a reduction gear, a differential and drive shafts,

cf. Renault Twizy Technical Data (Renault Group, (2021)). Additionally, in Appendix A,

the torque–speed characteristic curve of the asynchronous electric motor is visualised. As

described above, the elastic mounting between the ERAD and the chassis is provided by

rubber sleeve bushings in a three point mounting concept, see left hand side of Figure 7.

For this work, the Twizy ERAD was installed on a powertrain test rig. Here, the dynos

on the wheel-side ends of both drive shafts enabled the adjustment of the load torque as

also the rotational speeds of the drive shafts. In contrast to standard powertrain test rig

measurements, the ERAD housing was elastically mounted to the test rig environment via

the corresponding rubber sleeve bushings, see right hand side of Figure 7. In Kang and Gu

(2020), a similar test rig set-up was used to assess the noise vibration harshness (NVH)

properties of an electric axle drive.

Figure 7 Basic principle of the elastically mounted Twizy ERAD within the vehicle (left hand

side) and the conversion to an elastically mounted ERAD at the powertrain test rig (right

hand side) (see online version for colours)
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Due to this elastic mounting at the powertrain test rig, there is a relative movement of the

ERAD housing with respect to the test rig environment when a torque is transmitted from

the electric motor to the dynos. The task of the test rig measurements described below was

to determine this six DOF motion with aid of six linear motion position sensors of type

Variohm PZ12A (Variohm Eurosensor Ltd (2021)). Furthermore, the load torque was also

measured with help of two torque transducers of type HBM T12 (Hottinger Brüel & Kjaer

GmbH (2021)). As additional influencing variables, the rotational speeds of both drive

shafts were measured. The sensor signals were acquired using the data acquisition system

DEWE-800 (DEWETRON GmbH (2021)) providing signal synchronisation and suitable

anti-aliasing filters. All sensor signals were outputted with a rate of 20 kHz. More detailed

information about the sensors used, can be found in Appendix B.

Figure 8 shows the set-up of the powertrain test rig with installed Twizy ERAD. The

inverter within the power electronics converts the direct current from the battery (not

visualised) to a three-phase alternating current, which is used for the operation of the

asynchronous electric motor. The two dynos on the wheel-side ends of the drive shafts

enable a feedback control of the corresponding rotational speeds. Furthermore, the different

sensors (i.e., position, torque and rotational speed) as also the rubber sleeve bushings are

shown.
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Figure 8 Set-up of the powertrain test rig with installed Twizy ERAD (see online version

for colours)
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In Figure 9, the installation locations of the six positions sensors are visualised with help

of a computer-aided design (CAD) model of the Twizy ERAD. In order to obtain a high

signal-to-noise ratio, the positions sensors were installed at three different positions, at

which various directions were measured:

• Position 1: y and z directions.

• Position 2: z direction.

• Position 3: x, y and z directions.

Figure 9 Position sensor locations at the Twizy ERAD (see online version for colours)
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Based on the described test rig set-up, several types of measurements for different aims were

performed. Table 1 shows the corresponding test plan, i.e., a list of test manoeuvres to be

carried out. First, the accelerator pedal step measurements were used for the determination

of the load torque dynamics of the Twizy ERAD. This facilitates the definition of a

bandwidth requirement for the proposed load torque estimation method. On the other hand,

the accelerator pedal ramp measurements were used for the parameter identification within

the simulation–measurement adjustment process. The corresponding verification of the

simulation–measurement adjustment was carried out with aid of the Worldwide harmonized
Light vehicles Test Procedure (WLTP, Class 1) manoeuvre. Finally, the validation of the

proposed load torque estimation method was performed with the accelerator pedal sine

measurements as also the WLTP measurements.
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Table 1 Test plan for the powertrain test rig measurements

Type No. Description Aims

Step 1 Several accelerator pedal steps • Determination of the
at dyno rotational speeds of 280min−1 load torque dynamics

2 Several accelerator pedal steps

at dyno rotational speeds of 560min−1

Ramp 3 Accelerator pedal ramp from 0% to 100% • Parameter identification
in 60 s at dyno rotational speeds of 280min−1 (sim.–meas. adjustment)

4 Accelerator pedal ramp from 0 % to 100 %

in 60 s at dyno rotational speeds of 560min−1

5 Accelerator pedal ramp from 0 % to 100 %

in 20 s at dyno rotational speeds of 280min−1

6 Accelerator pedal ramp from 0 % to 100 %

in 20 s at dyno rotational speeds of 560min−1

Sine 7 Accelerator pedal sine from 5% to 25% with • Validation of the load
0.1Hz at dyno rotational speeds of 280min−1 torque estimation method

8 Accelerator pedal sine from 5% to 25% with

0.1Hz at dyno rotational speeds of 560min−1

WLTP 9 Worldwide harmonized light vehicle • Verification of the
test procedure (WLTP, Class 1) sim.–meas. adjustment

• Validation of the load
torque estimation method

Figure 10 shows the input signals (i.e. accelerator pedal value αp and dyno rotational speed

nd). Here, no rotational speed differences between the left and right dyno were applied,

thus it holds: nl = nd and nr = nd.

Figure 10 Excerpt of test input signals: (a) accelerator pedal step; (b) accelerator pedal ramp;

(c) accelerator pedal sine and (d) WLTP (see online version for colours)
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4 Measurement output

In this section some decisive measurement results and their processing are presented.

First, in Section 4.1, the results of the accelerator pedal step measurements were used

for the determination of the load torque dynamics of the Twizy ERAD. Furthermore,

the simulation–measurement adjustment was performed, see Section 4.2. The outcome of

this was a measurement-adjusted simulation model, which subsequently was used for the

validation of the proposed load torque estimation method.

4.1 Determination of the load torque dynamics

The determination of the load torque dynamics of the Twizy ERAD was carried out by

evaluating the accelerator pedal step measurements. Here, the measured load torques of

tip-in and tip-out tests were modelled with a PT1 element. In addition to the PT1 element,

a constant time delay of 35 ms was used in order to model the lag between a accelerator

pedal step and the begin of the corresponding load torque response. The parameters of the

PT1 element (i.e., gain K and time constant τ ) were found using a Matlab optimisation

routine. Figure 11 shows the results for tip-in and tip-out tests at different rotational speeds.

It can be seen that the measured load torque can be well represented by the PT1 element

with appropriate parameters.

Figure 11 Determination of the load torque dynamics with help of accelerator pedal step

measurements: (a) tip-in at low rotational speed (nd = 280 min−1); (b) tip-in at high
rotational speed (nd = 560 min−1); (c) tip-out at low rotational speed

(nd = 280 min−1) and (d) tip-out at high rotational speed (nd = 560 min−1)

(see online version for colours)
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The identified parameters were confirmed through reproductive measurements, see Table 2.

There, maximum load torque dynamics for tip-in and tip-out tests can be found via the

evaluation of the corresponding cut-off frequencies:

• Tip-in: τ InMin = 195 ms
rad ⇒ f In

Max = 1
2·π·τ In

Min

≈ 0.8 Hz.

• Tip-out: τOut
Min = 53 ms

rad ⇒ fOut
Max = 1

2·π·τOut
Min

≈ 3.0 Hz.
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Thus, it can be seen that the effective load torque dynamics is limited in any case to ca. 3 Hz,

which can be used as approximate bandwidth limit for the proposed load torque estimation

method. This order of magnitude can be justified since passenger cars typically limit the

effective torque dynamics to such low-frequency ranges in order to avoid unwanted load

alternating vibrations, cf. Zeller (2018); Koch et al. (2020).

Table 2 Identified PT1 parameters of the modelled load torque dynamics with respect to

accelerator pedal steps

Manoeuvre No. K (Nm) τ
(

ms
rad

)

Tip-in at low rotational speed (nd = 280 min−1) 1 244.4 274
2 244.5 271
3 242.7 266

Mean 243.9 270

Tip-in at high rotational speed (nd = 560 min−1) 1 191.7 197
2 190.7 195
3 191.4 194

Mean 191.3 195

Tip-out at low rotational speed (nd = 280 min−1) 1 229.1 52
2 229.8 51
3 231.4 55

Mean 230.1 53

Tip-out at high rotational speed (nd = 560 min−1) 1 206.0 73
2 202.3 76
3 203.9 76

Mean 204.1 75

4.2 Simulation–measurement adjustment

In order to obtain more flexibility, a hybrid experimental–numerical approach was used for

the validation of the load torque estimation method. Here, the basic idea is to develop a MBS

simulation model which behaves approximately the same like the measured Twizy ERAD

at the powertrain test rig. Then the benefits of simulation, such as fast parameter variation or

simple configuration changes can be applied. In this section, the simulation–measurement

adjustment process is described, which results in a measurement-adjusted MBS simulation

model with fitted parameters.

Figure 12 shows the structure of the MBS model used, which was developed with the

commercial, general purpose MBS software Simpack (Dassault Systèmes Simulia Corp.,

2021); Rulka (1990) and Kortüm et al. (1996)). The three rubber sleeve bushings are

modelled via Kelvin–Voigt elements. The torque transfer from the asynchronous electric

motor via the reduction gear and the differential to the drive shafts are represented through

appropriate gear modelling elements of the Simpack library. The – not visualised – dynos

enable the right rotational speeds of both drive shafts with aid of proportional–integral (PI)

controllers.
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Figure 12 MBS simulation model of the Twizy ERAD at the powertrain test rig (see online version

for colours)
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In Figure 13, the principle of the simulation–measurement adjustment is shown. The base

MBS model with its initial parameterisation is formulated in state-space representation,

which enables a fast simulation within Matlab/Simulink. Using the same inputs for

simulation and measurement, an objective function is defined based on the differences of

simulated and measured outputs of the six position sensors in a least squares sense. This

objective function is minimised iteratively with help of a Matlab optimisation algorithm,

where the translational stiffnesses of all three rubber sleeve bushings are used as the nine

decision variables. The optimisation routine uses the accelerator pedal ramp measurements

yielding a set of fitted bushing stiffnesses. With this, the MBS model is parametrised

resulting in a measurement-adjusted MBS model, which exhibits nearly the same movement

like the real Twizy ERAD.

Figure 13 Principle of the simulation–measurement adjustment process (see online version

for colours)
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In Figure 14, the objective function contributions (i.e., the six position sensor signals) are

shown for the final optimisation step. It can be clearly seen that the differences between

simulated and measured position sensor signals are only marginal, which proves the basic

functioning of the optimisation-based simulation–measurement adjustment process. The

numbers (i.e., 3, 4, 5 and 6) in Figure 14 refer to the test numbers in Table 1.

Figure 14 Objective function contributions for the final optimisation step (see online version

for colours)
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The results of the simulation–measurement adjustment process are listed in Table 3.

Table 3 Results of the simulation–measurement adjustment process

Bushing Stiffness symbol Value Unit

B1 k1 x 438 N
mm

k1 y 94 N
mm

k1 z 722 N
mm

B2 k2 x 1186 N
mm

k2 y 227 N
mm

k2 z 525 N
mm

B3 k3 x 1929 N
mm

k3 y 1273 N
mm

k3 z 293 N
mm

As it is good practice, the simulation–measurement adjustment was also verified with

another manoeuvre, namely, the WLTP test. Here, the mean simulation–measurement
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deviation per time step k was carried out for all six position sensor signals sj , with j =
{1 y, 1 z, 2 z, 3x, 3 y, 3 z}:

ēj =
1

N
·

N∑
k=1

∣∣sSimj k − sMeas
j k

∣∣ , (16)

where N denotes the number of time steps. As it can be seen in Figure 15, the mean

deviations are limited to an absolute value of 0.03 mm and a relative value of 2.2% with

respect to the total signal range. Due to these favourable results, the measurement-adjusted

MBS simulation model can be used for the method validation in the next section with good

conscience. A list of the main simulation parameters of the measurement-adjusted MBS

model can be found in Appendix C.

Figure 15 Verification of the simulation–measurement adjustment process with aid of the WLTP

test (see online version for colours)

5 Method validation

The Kalman filter based load torque estimation method presented in Section 2 was

verified with help of a hybrid experimental–numerical validation procedure. Hence, the

measurement-adjusted MBS simulation model from Section 4.2 was used as reference

model. This can be justified due to the proved similar six DOF movement of the reference

model and the real Twizy ERAD at the powertrain test rig. Furthermore, based on the

mismatch between sophisticated reference model and, on the other hand, simple SDOF

filter model, a robust method validation can be ensured. The simulated load torque of the

reference model is thus regarded as true value. Moreover, the ERAD twist motion of the

reference model was used as Kalman filter input. In detail, a zero-mean white Gaussian noise
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was added to the simulated twist angle about the TRA in order to ensure a realistic sensor

behaviour. The standard deviation of this measurement noise was set to σφ = 0.029 deg,

which represents approximately 3% of the total sensor measurement range. Based on

that, the twist angle velocity was calculated recursively via backward differentiation. This

emulates a possible measurement application in series production vehicles with only one

contactless angle sensor aligned with respect to the TRA. Here, standard automotive angle

sensors can be applied, which are well-known from measurement tasks for the angular

position determination of pedals or steering wheels.

For this, an angle sensor about the numerically calculated TRA was implemented within

the reference model (i.e., TRA-based angle sensor). Additionally, another angle sensor was

modelled on an arbitrary location on the ERAD housing for comparison purposes, see

Figure 16. As real contactless automotive angle sensors, both consist of two parts: One is

attached on the ERAD housing and the second is fixed at the test rig environment.

Figure 16 MBS models with numerically determined TRA and the two implemented angle sensors

(see online version for colours)
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Using these two angle sensors within the reference model, the determined TRA and the

corresponding ERAD motion can be verified. For this, all three Cardan angles of both

implemented angle sensors were evaluated. As it can be clearly seen in Figure 17, the

TRA-based angle sensor shows almost solely a signal for α, that is the twist about the

TRA. Whereas, the arbitrary placed angle sensor has non-trivial signals for all three Cardan

angles. Thus, the claim from the beginning of this paper holds: The six DOF movement

of the elastically mounted ERAD under torque load can be approximately reduced to a

twist motion about the TRA. Consequently, the proposed simple SDOF filter model from

Section 2.1 should be sufficient.

Furthermore, in Figure 18, the influences of stochastic road irregularities on the twist

angle signal were evaluated. For this purpose, the test rig-based points of application of the

three elastomer mounts were excited with aid of rheonomic constraints in the z directions.

The corresponding z motions were calculated in advance with help of a full vehicle MBS

model with 87DOFs. Here, the crossing of the following road classes with a vehicle velocity

of 40 km
h were simulated:

• ‘road a’: no road irregularities,

• ‘road b’: cement concrete and

• ‘road c’: macadam.

In Figure 18, the α Cardan angles of the TRA-based angle sensor were visualised, where

the deviations based on the stochastic road irregularities were limited to approximately
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0.03 deg. Since this is in the same order of magnitude as a realistic sensor noise, no

prohibitive impacts are to be expected based on stochastic road excitations. This is the same

conclusion as in Kalcher et al. (2022), where a more detailed analysis of the influences

of stochastic as also deterministic road excitations on the proposed load torque estimation

method can be found.

Figure 17 Cardan angle signals: (a) angle sensor with arbitrary location and (b) angle sensor with

TRA-based location (see online version for colours)
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Figure 18 Influence analysis for stochastic road excitations: (a) load torque time history and (b) α
Cardan angles for three road classes (see online version for colours)
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After the verification of the ERAD movement, the proposed Kalman filter based load

torque estimation method was validated. Here, the following load torque time histories are

analysed:
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• ‘True’: signal of the reference model.

• ‘KF’: estimation of the proposed Kalman filter based method.

• ‘Char. curve’: estimation of a simple characteristic curve approach.

Where the simple characteristic curve approach uses the torsional spring stiffness from

Section 2.1, to relate the measured noisy twist angle about the TRA to an associated load

torque estimation. Further on, the similarities as also the deviations of the true signal and the

two estimations are analysed. For this, it is necessary to define the load torque differences

as follows:

ΔTl k := Tl k − T̂l k, (17)

where Tl k and T̂l k are the true load torque and the estimated load torque at time instant k,

respectively. According to the specific evaluation, for the estimated load torque, the signal of

the proposed Kalman filter based method or the signal of the characteristic curve approach

was used. Furthermore, with the normalised mean square error (NMSE) another evaluation

variable is introduced, cf. Kalcher et al. (2022):

NMSE =
1

NΔt
·
(Δt)∑
k

(ΔTl k)
2

Tl Max − Tl Min
,

Tl Max := max
1≤k≤N

(Tl k) ,

Tl Min := min
1≤k≤N

(Tl k) ,

(18)

where NΔt is number of time steps within the moving mean period Δt. If not otherwise

stated, for the further evaluations, Δt is set to 3 s. Furthermore, by default, the Kalman

filter was run in Matlab with a discretisation time of Td = 10 ms.
First, the basic functioning of the proposed Kalman filter based load torque estimation

method is tested with a low-frequency (i.e. 0.1 Hz) harmonic torque signal. In Figure 19,

it can be seen that both estimation methods can follow the basic form of the true

signal. However, based on the underlying Kalman filter, the signal of the proposed load

torque estimation method has a significantly lower noise. This is also evident for the

NMSE time histories as well as the load torque differences. Additionally, the probability

density functions (PDFs) f (ΔTl) of the load torque differences are displayed. Again, the

considerably reduced noise for the proposed load torque estimation method is apparent.

This can also be seen in the associated standard deviations σ: with the values 2.6 Nm for the

proposed load torque estimation method and 6.6 Nm for the characteristic curve approach.

After evaluating the low-frequent basic functioning, the proposed load torque estimation

method is validated with a transient signal, namely the WLTP manoeuvre. Here, the same

statement holds: In general, both estimation methods can represent the basic true signal

form, but only the proposed load torque estimation method provides a suitable estimate

with only low noise, see Figure 20. For the WLTP manoeuvre, the standard deviations of

the torque differences yield 2.5Nm and 6.5 Nm for the proposed load torque estimation

method and the characteristic curve approach, respectively.
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Figure 19 Load torque estimations for a low-frequency (i.e., 0.1 Hz) sine signal: (a) load torque

time histories; (b) time histories of the NMSEs as well as (c) time histories and PDFs of

the load torque differences
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Figure 20 Load torque estimations for the WLTP manoeuvre: (a) load torque time histories; (b)

time histories of the NMSEs as well as (c) time histories and PDFs of the load torque

differences
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As further investigation, the asynchronous electric motor of the reference model was

operated with a swept-frequency sine torque signal with a constant amplitude of 10 Nm.

Due to the limited torque dynamics of the real asynchronous electric motor, this evaluation

could only be carried out owing to the experimental–numerical validation deployed. Here,

the relative kinematics of the TRA-based angle sensor is analysed. More precisely, the

coordinate differences of the two sensor parts to each other were evaluated. This is
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important, because real two-part angle sensors lose accuracy or fail completely, if the

translational differences between the two parts become too large. The sensor manufacturer

ASM, for instance, defines such functional limits for the translational differences, cf. (ASM

Automation Sensorik (2021)):

• Longitudinal direction: x ≤ 10.5 mm.

• Transverse direction: y ≤ 0.5 mm and z ≤ 0.5 mm.

Figure 21 shows that these limits are met over a wide frequency range. Even in the vicinity of

the first eigenmode peak at 20.4 Hz, these requirements are fulfilled. Whereby additionally,

all eigenmodes of the Twizy ERAD are over 20Hz (see Appendix D), which is significantly

above the determined load torque dynamics of the Twizy ERAD with approximately 3 Hz.

But this argument holds also in general, as typical ERADs have eigenmodes over 5Hz, cf.

Roth et al. (2019).

Figure 21 Relative kinematics of the TRA-based angle sensor with respect to a motor torque

sweep signal (see online version for colours)

Finally, some influence analyses for the load torque estimations are presented. Here, the

estimation results of several WLTP manoeuvres were evaluated with respect to the NMSE

over the total time span (i.e., NΔt = N ). Thus, the estimation quality can be characterised

by only one scalar value. At first, the standard discretisation time of 10 ms was varied

between 1ms and 1 s. In the left hand side of Figure 22, it can be seen that the following

plausible relationship holds for the proposed Kalman filter based load torque estimation

method: The smaller the discretisation time, the smaller the NMSE. Whereas the variation

of the discretisation time does not affect characteristic curve approach results. Moreover,

for practical discretisation times under 100ms, the proposed load torque estimation method

performs significantly better than the characteristic curve approach. On the other hand, the

influence of the measurement noise was evaluated. In the right hand side of Figure 22,

it can be seen that the Kalman filter handles the sensor noise considerably better than

the characteristic curve approach. Only with an unrealistically small measurement noise,

the results are comparable. Furthermore, the consequences of more general Kalman filter

versions were analysed. As the filter model considered is completely linear (cf. equation (9)),

the application of an EKF does not make sense because the model can not be further

linearised. However, since its completely different approach via unscented transformations,

it is worth to analyse the UKF torque estimation. In Figure 22, the results of an UKF

implementation were compared with the Kalman filter results. It can be seen that the NMSEs

are almost the same for both versions, but with a significantly lower computational load for

the simple Kalman filter.
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Figure 22 Load torque estimation influence analyses regarding the WLTP manoeuvre: (a) NMSE

vs. discretisation time Td and (b) NMSE vs. standard deviation of the angle sensor

noise σφ (see online version for colours)
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6 Conclusions

In this work, a Kalman filter based virtual sensing technique for the load torque estimation

of electric axle drives was developed and verified with help of a hybrid experimental–

numerical validation. For this, the ERAD of a Renault Twizy 80 was installed with its three

rubber sleeve bushings at a powertrain test rig. By performing several test manoeuvres

(e.g., accelerator pedal steps, WLTP, etc.), the load torque and the six DOF motion of

the ERAD housing as also additional influencing variables (i.e., drive shafts’ rotational

speeds) were measured by appropriate sensors. These test rig measurement results were

used in conjunction with a Simpack MBS simulation model within an optimisation-based

simulation–measurement adjustment process. This resulted in a measurement-adjusted

reference model, which was used for the validation of the proposed load torque estimation

method.

First, is was checked on basis of the reference model that the simple SDOF filter model

is sufficient to describe the movement of the ERAD housing adequately. Subsequently, the

basic functioning of the proposed load torque estimation method was proved by evaluating

test manoeuvres for quasi-static as also transient excitations. The investigations revealed

favourable results even in the case of reasonable effective torque dynamics (up to 3Hz) and

realistic sensor noise. Furthermore, influence analyses regarding the discretisation time of

the Kalman filter and the amount of sensor noise were performed. This consolidates the

method validation and also allows requirement definitions for a practical implementation.

In conclusion, the principle of the proposed load torque estimation method was proved on

basis of powertrain test rig measurements. Based on these, no prohibitive impacts arose. As

a next step, future works should focus on the application and the corresponding verification

of this method within electric vehicles.
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Appendix

A Electric motor torque–speed characteristics

In Figure A1, the torque–speed characteristic curve of the asynchronous electric motor of

the Renault Twizy 80 is shown. It was determined with aid of the manufacturer information

about the constant torque region and the maximum rotational speed.

Figure A1 Torque–speed characteristics of the asynchronous electric motor of the Renault Twizy

80 (see online version for colours)

�
�
������
���������
� �
�
������
��������
�
 


B Sensor data

B1 Linear motion position sensors

For the measurement of the Twizy ERAD motion, six miniature contacting potentiometers of

type Variohm PZ12A were used. This product delivers accurate signals with high dynamics

as well as low friction. To avoid supply errors, the ratio of signal to supply voltage was

evaluated. Due to a high tolerance of the nominal resistance, calibration was done manually

on a milling machine. The technical data of the linear motion position sensor type used are

listed in Table B1.

Table B1 Data of the linear motion position sensor Variohm PZ12A

Supply voltage 4.95 V
Nominal travel 25 mm
Linearity error ≤ 0.2 %offullscale
Nominal resistance 1 kΩ
Net weight 70 g
Ingress protection code 65
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B2 Torque transducers

The torques on both dynos were measured with help of two digital contactless torque

transducers of type HBM T12. Additionally to the torques, the transducers can also measure

the corresponding rotational speed. The technical data of the digital torque tranducer type

used are listed in Table B2.

Table B2 Data of the torque transducer HBM T12

Nominal torque 6 kNm
Output frequency 30–90 kHz
Nominal accuracy ±0.03 %offullscale
Linearity error for 0–1 kNm ±0.006 %offullscale

C Simulation parameters of the MBS reference model

Table C1 gives the main simulation parameters used for the measurement-adjusted MBS

reference model of the ERAD of the Renault Twizy 80. For the mass, centre of gravity and

inertia data, all bodies of the ERAD are considered, that is to say: housing, electric motor,

shafts, gears, bearings, crown wheel, differential cage, etc.

Table C1 Simulation parameters of the measurement-adjusted MBS reference model of the ERAD

of the Renault Twizy 80

Designation Symbol Value

Total mass m 48.5 kg
Centre of gravity (COG) a [x; y; z] [27.3;−194.6;−157.2] mm

Main diagonal inertia at COG b [Ixx; Iyy; Izz] [1.7977; 1.4454; 1.9592] kg ·m2

Off-diagonal inertia at COG c [Ixy; Ixz; Iyz] [0.2181; 0.0499;−0.0670] kg ·m2

TRA definition point A a [x; y; z] [123.8;−422.5;−255.4] mm

TRA orientation d [α;β; γ] [21.3; 6.4;−74.0] deg
Inertia about the TRA I 0.4146 kg ·m2

Reduction gear ratio i1 3.222

Differential gear ratio i2 2.212

Rubber bushing location B1
a [x; y; z] [0.0; 0.0; 0.0] mm

Rubber bushing location B2
a [x; y; z] [0.0;−300.0;−280.0] mm

Rubber bushing location B3
a [x; y; z] [217.9;−461.7;−256.8] mm

Rubber bushing stiffnesses B1

•x direction k1 x 438 N
mm

•y direction k1 y 94 N
mm

•z direction k1 z 722 N
mm

Rubber bushing stiffnesses B2

•x direction k2 x 1186 N
mm

•y direction k2 y 227 N
mm

•z direction k2 z 525 N
mm
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Table C1 Simulation parameters of the measurement-adjusted MBS reference model of the ERAD

of the Renault Twizy 80 (continued)

Designation Symbol Value

Rubber bushing stiffnesses B3

•x direction k3 x 1929 N
mm

•y direction k3 y 1273 N
mm

•z direction k3 z 293 N
mm

Maximum motor torque TmMax 57 Nm (to 2100 min−1)

Maximum motor rotational speed nmMax 5800 min−1

a Measured from bushing B1; b Main diagonal elements of the corresponding tensor; c Off-diagonal

elements of the corresponding tensor; d Cardan angles.

D Modes of the electric rear axle drive

The six modes of the elastically mounted Twizy ERAD were calculated numerically within

Simpack on basis of the measurement-adjusted MBS reference model from Section 4.2, see

Figure D1.

Figure D1 Modes of the elastically mounted Twizy ERAD
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