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Abstract: Chacha is a software-oriented stream cipher designed by Bernstein (2008). Chacha
is a Salsa variant that is eSTREAM project’s finalist candidate. Google added Chacha and a
message authentication code to their transport layer security (TLS) and datagram TLS (DTLS)
protocols in 2016. Chacha has become an area of interest for cryptanalysis since its adoption
by Google. Almost all the existing cryptanalysis is experimental. Experimental cryptanalysis
identifies vulnerable areas of a cipher, whereas theoretical analysis helps in the development
of possible countermeasures. Differential cryptanalysis is a cryptanalytic technique that helps in
discovering distinguishers on stream ciphers. Recently, Dey and Sarkar (2021) have theoretically
explored the reason behind distinguishers in Salsa and Chacha 256 stream cipher. Motivated
by this work, we have theoretically analysed differential attacks on Chacha 128 (Chacha 256
variant) up to four rounds and we have the bias probabilities. Our theoretical analysis results
match the experimental results.

Keywords: transport layer security; stream cipher; Chacha; theoretical analysis; differential
cryptanalysis.
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The ciphertext is obtained by bitwise/bytewise XOR of
the keystream and the message in the stream cipher
encryption phase. When it comes to decryption, keystream
is regenerated by the receiver using the secret key, which
is then XORed with the ciphertext to get the message. The
most difficult aspect of any stream cipher is to create a
keystream that is indistinguishable from a random stream.
Using the same secret key to encrypt multiple messages

1 Introduction

Stream ciphers are fundamental cryptographic primitives 
that enable secure communication over insecure channels. A 
pseudo-random generator is the most important component 
of any stream cipher encryption. A short random stream, the 
secret key (seed) is fed into the pseudo-random generator, 
and the output is a long pseudo-random keystream.

Copyright © 2023 Inderscience Enterprises Ltd.
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will make it vulnerable to attacks. At the same time, a
new secret key for each message is nearly impossible. The
use of initialisation vector (IV) is the solution to this key
management problem. In a keystream generation, IVs serve
as randomisers. Furthermore, IVs are public variables that
vary depending on the encryption. Multiple messages can
thus be encrypted using the same key but different IVs.
A stream cipher’s security is based on the assumption that
the adversary will be unable to differentiate the keystream
created by the stream cipher from a random stream.

When compared to block ciphers, stream ciphers are
typically lighter and faster. As a result, stream ciphers
are more suited to mobile communication devices with
limited speed and memory. In recent years, along with
the advancement of the internet, mobile devices have
become increasingly important in communication. Mobile
communication devices provide wireless connectivity
anywhere, allowing users to communicate at any time
and from anyplace. Mobile devices are utilised for more
than just conversation – they are also used to exchange
and transfer data. The development in communication
technology has piqued the curiosity of attackers. Chacha
is a lightweight stream cipher that Google uses in its
transport layer. It is also used in mobile devices to ensure
confidentiality. Chacha is now used in cloud computing as
well. CloudFare’s internet security is supported by Chacha.
Chacha is also utilised in wireless sensor networks and the
internet of things for network security. Since Chacha stream
ciphers are used for TLS, Internet security, and network
security, crypt analysts has always been interested in them.

Chacha is a software-oriented stream cipher that is
a descendant of Salsa. Bernstein created both Salsa and
Chacha in 2005 and in 2008, respectively. Chacha was
created to improve the diffusion part of salsa, which had
been susceptible to several cryptanalytic attacks. The author
also claims that the minimal number of secure rounds for
Chacha is smaller than the minimum number of secure
rounds for Salsa. The cipher’s implementation is simple,
with minimal resources and low-cost operations, making
it appropriate for use on a variety of architectures. It
was created to avoid information leakage by side channel
analysis, has a simple and quick key setup, and has a good
overall performance.

Experimental cryptanalysis on a property of the cipher
helps to pose an attack on the cipher, whereas theoretical
cryptanalysis helps us to understand the vulnerability which
made the attack possible. Further, theoretical analysis of
a cipher can be used to assess the security of any cipher
design. The overhead in the theoretical cryptanalysis is
the manual computation and it is tedious when we try
to exploit distinguishers of higher rounds. To the best
of our knowledge, all the existing attacks on Chacha
are experimental, and the first theoretical analysis for
distinguishers of Chacha on the notion of neutral bits was
given by Dey and Sarkar (2020). Recently, the same authors
have presented a theoretical analysis on distinguishers of
Chacha 256 bits on the notion of differential cryptanalysis
(Dey and Sarkar, 2021).

1.1 Contribution

Motivated by the work of Dey and Sarkar (2020, 2021), we
have theoretically analysed Chacha 128 up to four rounds
and have mathematically computed the biases. We have
considered two matrices W and W ′ each of size 16 words.
These matrices W and W ′ are the same and they differ at
only the 18th bit of 15th word. Chacha round functions are
applied on these matrices individually up to four rounds.
After four rounds, we have computed the probability that
these two matrices are the same at a particular bit (bias).
The biases observed in round four are as in Table 1. The
observed theoretical results are on par with the experimental
results.

Table 1 Biases in round 4

Bias Theoretical Experimental
probability result result

λ4a
1 [19] 0.9688 0.9669

λ4a
16 [3] 0.9688 0.9677

λ4b
1 [19] 0.914 0.9158

λ4b
16[9] 0.875 0.8771

1.2 Paper outline

The paper is organised as follows – preliminaries about
Chacha and differential attack in Section 2, general
probability results in Section 3, theoretical analysis of
Chacha 128 with mathematical proof in Section 4,
experimental and theoretical result comparison in Section 5,
related work in Section 6 and conclusions in Section 7.

2 Preliminaries

2.1 Chacha

Chacha has a structure similar to that of Salsa with the only
difference between them being the core function. Chacha
takes a 64 byte input consisting of 16 words, each of
size 4 bytes. The 16 words are split into 8 words of key,
{k1, k2, ..., k8}, four words of IV, {IV1, IV2, IV3, IV4},
and four constant words, {c1, c2, c3, c4}. The Chacha
version of being it 128 bits or 256 bits depends on the key
type that is chosen. The eight keywords add up to 256 bits
and if the initial key is 128 bits, it is to be be padded to
itself to make it 256, bits i.e., the keys K5, K6, K7, K8

are same as K1, K2, K3, K4 respectively. The words of
Chacha are denoted as,

W =


W1 W2 W3 W4

W5 W6 W7 W8

W9 W10 W11 W12

W13 W14 W15 W16



=


C0 C1 C2 C3

K1 K2 K3 K4

K1 K2 K3 K4

t0 t1 v0 v1


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These words are processed in columns and diagonals. In
odd numbered rounds, the columns are processed and in
the even numbered rounds, the diagonals are processed.
In processing each column and diagonal, a function called
‘quarterround’ function is employed. The quarterround,
column round and diagonal round are denoted as follows.

2.1.1 Quarterround

The quarterround takes a 4-word sequence as input and
outputs a 4-word sequence. If W = (W1,W2,W3,W4) is
the input to the quarterround, then quarterround (W) is
defined as,

W1 = W1 +W2; W4 = ((W4 ⊕W1) ≪ 16)

W3 = W3 +W4; W2 = ((W2 ⊕W3) ≪ 12)

W1 = W1 +W2; W4 = ((W4 ⊕W1) ≪ 8)

W3 = W3 +W4; W2 = ((W2 ⊕W3) ≪ 7)

2.1.2 Columnround

Let the input to the column round function be W =
(W1,W2, ...,W16). The column round for the 16-word
Chacha matrix is defined as,

(S1, S5, S9, S13) = quarterround(W1,W5,W9,W13)

(S2, S6, S10, S14) = quarterround(W2,W6,W10,W14)

(S3, S7, S11, S15) = quarterround(W3,W7,W11,W15)

(S4, S8, S12, S16) = quarterround(W4,W8,W12,W16)

2.1.3 Diagonalround

Let the input to the diagonal round function be W =
(W1,W2, ...,W16). The diagonal round for the 16-word
Chacha matrix is defined as,

(S1, S6, S11, S16) = quarterround(W1,W6,W11,W16)

(S2, S7, S12, S13) = quarterround(W2,W7,W12,W13)

(S3, S8, S9, S14) = quarterround(W3,W8,W9,W14)

(S4, S5, S10, S15) = quarterround(W4,W5,W10,W15)

2.2 Differential attack

Differential attack is a technique that involves changing one
or more bits of the input and observing its effect on the
output. The changes in the input are traced, which aids
in the identification of distinguishers for specific rounds.
This is commonly referred to as a chosen-plaintext attack.
The attacker has access to the public value of the input,
i.e., the IV is accessible to the adversary. A theoretical
analysis of a differential attack on Chacha 128 is presented
in this study. The following is the concept of the analysis:
Two 16-word sequences, W and W ′, are used, with W ′

differing by one bit from W . Each word is made up of
32 bits, numbered 0 to 31. In the fifteenth word of W ′,

the difference is presented at the 18th bit. This means
that when W and W ′ are XORed, the result will have
only the 18th bit of the 15th word as 1. Both these word
sequences are subjected to the Chacha round functions and
the differences are traced. W and W ′ are compared after
a specified number of rounds. This method is repeated for
different random inputs. We compared 221 random inputs
in this study. The probabilities of the outputs’ similarity
are compared and analysed. If the probability is more
than 0.5, the output is regarded distinguishable, and thus
proving the non-randomness of the cipher. In general,
differential attacks observe changes in the ciphertext which
occurred due to changes in the plaintext and thereby obtain
a distinguisher. This distinguisher is further exploited to
recover the key or the plaintext.

Differential attack using multiple bit differences in the
plaintext can also be performed. Multiple bit changes in
the plaintext will lead to higher diffusion in the ciphertext,
thereby making it difficult to trace the changes in the
ciphertext.

3 Probabilistic results

3.1 Basic notations

The following are the notations used in this paper,

1 Wi denotes a word with number i

2 Wi[n] indicates nth bit of Wi

3 W r
i [n] indicates nth bit of Wi at round r

4 Pr[E] denotes the probability of occurrence of an
event E

5 let λw[n] = Pr(W [n] = W ′[n]) denote the event that
nth bit of W and W ′ are equal

6 let λ̄w[n] = Pr(W [n] ̸= W ′[n]) denote the event that
nth bit of W and W ′ are different

7 let Φ(W [n], k) denote the event that for any pair of
words (W,W ′), the bits from n to k are
complemented exactly

8 let Φ̄(W [n], k) denote the event that for any pair of
words (W,W ′), the bits from n to k are
complemented at the least.

3.2 Proved results

Herewith we have stated a lemma and two theorems which
will be used in Chacha analysis.

Lemma 1: Let X and Y be two independently chosen
random 32 bit numbers. Let Y ′ be a 32 bit number
that differs exactly at one bit position (let it be n) as
to Y . Consider Z = X + Y mod 232 and Z ′ = X + Y ′

mod 232. Now, for any k ≥ 0 such that n+ k ≤ 31, the
probability that Z and Z ′ differ at (n+ k)th bit is 1

2k
.
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The proof of this Lemma is available in Dey and Sarkar
(2017).

Theorem 1: Let X and Y be two independently chosen
random single bit numbers. Let X ′ and Y ′ be two single bit
numbers such that Pr(X = X ′) = p and Pr(Y = Y ′) = q.
Let Z = X + Y and Z ′ = X ′ + Y ′. Then the probability
that Pr(Z = Z ′) is given as

pq + (1− p)(1− q) if c = c′

p(1− q) + q(1− p) if c ̸= c′

where c is the carry generated in word Z and c′ is the
carry generated in word Z ′.

Theorem 2: Let X and Y be two independently chosen
random n− bit numbers. Let X ′ and Y ′ be two n− bit
numbers such that Pr(X[n] = X ′[n]) = pi and Pr(Y [n] =
Y ′[n]) = qi for 0 ≤ n ≤ 31. Let c[n] be the carry generated
at position n in Z = X + Y and c′[n] be the carry
generated at position n in Z ′ = X ′ + Y ′. Then,

Pr
(
ci+1 ̸= c′i+1

)
= Pr (ci ̸= c′i) ·

(
1− p− q +

3pq

2

)
+Pr (ci = c′i)

(1− pq)

2

Theorems 1 and 2 are proved in Dey and Sarkar (2020).

4 Theoretical analysis of Chacha 128

The input to Chacha 128 is 16 words where eight words
are key bits, four words are IVs and four words are
constant values. To make a 8-word (256 bits) keystream,
the 4-word (128 bits) keystream is added to itself. Consider
two input matrices W = (W1,W2, ...,W16) and W ′ =
(W ′

1,W
′
2, ...,W

′
16). Here the matrices W and W ′ are same

and they only differ at the 18th bit of 15th word. The
difference is given at 18th bit of the fifteenth word and
the biases are observed up-to four rounds of Chacha 128.
In Chacha quarterrounds, each word is updated twice.
Therefore, for ease of understanding, here in this paper we
denote the first update as ‘a’ and the second update as
‘b’. Example, consider the word W1 is subjected to two
quarterround updates in round 2. The output of first update
is denoted as W 2a

1 and the output of second update is
denoted as W 2b

1 .

4.1 Observations of round 1

The Chacha core function is applied to the input matrices
W and W ′, where there is a single bit difference between
the two matrices at the 18th bit of the 15th word. Round
1 is done in a column-by-column fashion. Because there
is a change in column 3 (15th word), the differences can
only be seen in that column. The first, second, and fourth
columns have not been changed. The following are the
changed words in column 3 at the end of round 1:

• The first quarterround of column 3 is,

W ′1a
3 = W ′0

3 +W ′0
7 ;W ′1a

15 = (W ′0
15 ⊕W ′1a

3 ) ≪ 16

The initial difference set up at bit position 18 of W ′0
15

will reflect in bit position 2 of W ′1a
15 after XOR and

left rotation by 16 bits. Thus, at the end of the first
quarterround, W ′1a

15 [2] has a change.

• The second quarterround of column 3 is,

W ′1a
11 = W ′0

11 +W ′1a
15 ;W ′1a

7 = (W ′0
7 ⊕W ′1a

11 ) ≪ 12

The change in bit position W ′1a
15 [2] will cause a

change in W ′1a
11 [2] after the addition. This change will

further reflect in W ′1a
7 [14] after the XOR and 12-bit

left rotation. Thus, at the end of second quarterround,
the changes are at W ′1a

11 [2] and W ′1a
7 [14].

• The third quarterround of column 3 is,

W ′1b
3 = W ′1a

3 +W ′1a
7 ;W ′1b

15 = (W ′1a
15 ⊕W ′1b

3 ) ≪ 8

The change in bit position W ′1a
7 [14] causes a change

in W ′1b
3 [14] after the addition. The difference at

W ′1b
3 [14], along with the difference in W ′1a

15 [2] will
reflect in W ′1b

15 [22] and W ′1b
15 [10] respectively after the

XOR and 8-bit left rotation. At the end of this
quarterround, the changes are at W ′1b

3 [14], W ′1b
15 [10]

and W ′1b
15 [22].

• The fourth quarterround of column 3 is,

W ′1b
11 = W ′1a

11 +W ′1b
15 ;W ′1b

7 = (W ′1a
7 ⊕W ′1b

11 ) ≪ 7

The changes in W ′1a
11 [2], W ′1b

15 [10] and W ′1b
15 [22]

causes a change in W ′1b
11 [2], W ′1b

11 [10] and W ′1b
11 [22]

respectively after the addition. These changes will
reflect in W ′1b

7 [21], W ′1b
7 [9], W ′1b

7 [17] and W ′1b
7 [29]

correspondingly after the XOR and 7-bit left rotation.

At the end of round 1, the changes are at W ′1b
3 [14],

W ′1b
7 [9], W ′1b

7 [17], W ′1b
7 [21], W ′1b

7 [29], W ′1b
11 [2],

W ′1b
11 [10], W ′1b

11 [22], W ′1b
15 [10] and W ′1b

15 [22].

4.2 Observations of round 2

Theorem 3: In the first and second quarterround of
diagonal 1,

1 Pr(W 2a
1 = W ′2a

1 ) = 1

2 Pr(W 2a
16 = W ′2a

16 ) = 1

3 Pr(W 2a
11 [2, 10, 22] = W ′2a

11 [2, 10, 22]) = 0

4 Pr(W 2a
6 [2, 14, 22] = W ′2a

6 [2, 14, 22]) = 0.

Proof: The first quarterround of diagonal 1 is,

W ′2a
1 = W ′1

1 +W ′1
6 ;W ′2a

16 = (W ′1
16 ⊕W ′2a

1 ) ≪ 16

Parts 1, 2: The words involved in this quarterround did not
exhibit any change at the end of round 1 and as a result
Pr(W 2a

1 = W ′2a
1 ) = 1 and Pr(W 2a

16 = W ′2a
16 ) = 1.
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The second quarterround of diagonal 1 is,

W ′2a
11 = W ′1b

11 +W ′2a
16 ;W ′2a

6 = (W ′1
6 ⊕W ′2a

11 ) ≪ 12

Parts 3, 4: The changes in bit positions 2, 10 and 22 of
W ′1b

11 will cause a difference in the same bit positions
of W ′2a

11 after the addition. Thus, Pr(W 2a
11 [2, 10, 22] =

W ′2a
11 [2, 10, 22]) = 0. The differences at W ′2a

11 [2, 10, 22] will
reflect in bit positions 14, 22 and 2 of W ′2a

6 respectively.
Therefore, Pr(W 2a

6 [2, 14, 22] = W ′2a
6 [2, 14, 22]) = 0. �

Theorem 4: At the end of third quarterround of diagonal 1,

1 Pr(W 2b
1 [2, 14, 22] = W ′2b

1 [2, 14, 22]) = 0

2 Pr(W 2b
1 [0, 1] = W ′2b

1 [0, 1]) = 1

3 Pr(W 2b
16 [10, 22, 30] = W ′2b

16 [10, 22, 30]) = 0

4 Pr(W 2b
16 [8, 9] = W ′2b

16 [8, 9]) = 1.

Proof: The third quarterround of diagonal 1 is,

W ′2b
1 = W ′2a

1 +W ′2a
6 ;W ′2b

16 = (W ′2a
16 ⊕W ′2b

1 ) ≪ 8

Parts 1, 2: There is a change in bits 2, 14 and 22 of W ′2a
6

(from Theorem 3) and there are no changes in W ′2a
1 (from

Theorem 3). The changes are received by bits 2, 14 and
22 of W ′2b

1 after the addition. Thus, Pr(W 2b
1 [2, 14, 22] =

W ′2b
1 [2, 14, 22]) = 0. During addition, the changes in bits

2, 14 and 22 may propagate to the left with probability 1
2k

according to Lemma 1. This implies that there could be a
change in bits 3 to 13, 15 to 21 and 23 to 31. The only
bits that are unchanged are 0 and 1. Thus Pr(W 2b

1 [0, 1] =
W ′2b

1 [0, 1]) = 1.

Parts 3, 4: During XOR operation, the changes in bits 2,
14 and 22 of W ′2b

1 are reflected in bits 2, 14 and 22 of the
XOR output. When the XOR output is subjected to 8-bit
left rotation, the changes are moved to bit positions 10,
22 and 30, respectively. Therefore, Pr(W 2b

16 [10, 22, 30] =
W ′2b

16 [10, 22, 30]) = 0. The unchanged bits 0,1 in W ′2b
1 will

move to bit positions 8 and 9. Therefore, Pr(W 2b
16 [8, 9] =

W ′2b
16 [8, 9]) = 1. �

Theorem 5: At the end of fourth quarterround of diagonal 1,

1 Pr(W 2b
11 [10, 22] = W ′2b

11 [10, 22]) = 1

2 Pr(W 2b
11 [2, 30] = W ′2b

11 [2, 30]) = 0

3 Pr(W 2b
6 [9] = W ′2b

6 [9]) = 1

4 Pr(W 2b
6 [5, 21, 29] = W ′2b

6 [5, 21, 29]) = 0

Proof: The fourth quarterround of diagonal 1 is,

W ′2b
11 = W ′2a

11 +W ′2b
16 ;W ′2b

6 = (W ′2a
6 ⊕W ′2b

11 ) ≪ 7

Parts 1, 2: There are changes in bits 2, 10 and 22 of W ′2a
11

(from Theorem 3) and in bits 10, 22 and 30 of W ′2b
16 (from

Theorem 4). It could be observed that bits 10 and 22 of
both the operands in the addition have change. When these

are added, the bit values in positions 10 and 22 of W ′2b
11

will be same as that of W 2b
11 . Therefore, Pr(W 2b

11 [10, 22] =
W ′2b

11 [10, 22]) = 1. The changes in remaining bits W ′2a
11 [2]

and W ′2b
16 [30] will be reflected in bits 2 and 30 of W 2b

11 .
Thus, Pr(W 2b

11 [2, 30] = W ′2b
11 [2, 30]) = 0.

Parts 3, 4: There are changes in bits 2, 14 and 22 of
W ′2a

6 (from Theorem 3) and in bits 2 and 30 of W ′2b
11 .

It could be observed that bit 2 of both the operands in
the XOR operation have change. When these are XORed,
the bit value in position 2 of XOR output in W ′ will
be same as that of XOR output of W . This result is
received by bit 9 of W ′2b[9] after 7-bit left rotation.
Therefore, Pr(W 2b

6 [9] = W ′2b
6 [9]) = 1. The changes in

remaining bits 14, 22 and 30 of the XOR output will be
reflected in bits 21, 29 and 5 of W 2b

6 respectively. Thus,
Pr(W 2b

6 [5, 21, 29] = W ′2b
6 [5, 21, 29]) = 0. �

Theorem 6: At the end of first quarterround of diagonal 2,

1 Pr(W 2a
2 [9, 7, 21, 29] = W ′2a

2 [9, 7, 21, 29]) = 0

2 Pr(W 2a
2 [0− 8] = W ′2a

2 [0− 8]) = 1

3 Pr(W 2a
13 [5, 13, 25, 26] = W ′2a

13 [5, 13, 25, 26]) = 0

4 Pr(W 2a
13 [16− 24] = W ′2a

13 [16− 24]) = 1

Proof: The first quarterround of diagonal 2 is,

W ′2a
2 = W ′1

2 +W ′1
7 ;W ′2a

13 = (W ′1
13 ⊕W ′2a

2 ) ≪ 16

Parts 1, 2: at the end of round 1, W ′1
7 had changes in

bit positions 9, 17, 21 and 29. These changes, after the
addition is received by bits 9, 17, 21 and 29 of W ′2a

2 .
Therefore, Pr(W 2a

2 [9, 7, 21, 29] = W ′2a
2 [9, 7, 21, 29]) = 0.

After addition, the change in bit 9, 17, 21 and 29 may
propagate to the left with probability 1

2k
according to

Lemma 1. This implies that there could be a change in
bits 10 to 16, 18 to 20 , 22 to 28 and 30, 31 respectively.
The unaltered bits are 0 to 8. Thus, Pr(W 2a

2 [0− 8] =
W ′2a

2 [0− 8]) = 1.

Parts 3, 4: After the XOR of W ′1
13 and W ′2a

2 , the
changes in bits 9, 17, 21 and 29 of W ′2a

2 will reflect
in the XOR result and will move to bit positions 25,
26, 5 and 13 respectively after 16-bit left rotation. This
makes Pr(W 2a

13 [5, 13, 25, 26] = W ′2a
13 [5, 13, 25, 26]) = 0.

The unaltered bits 0 to 8 of W ′2a
2 will move to bit

positions 16 to 24 after 16-bit left rotation. Therefore,
Pr(W 2a

13 [16− 24] = W ′2a
13 [16− 24]) = 0. �

Theorem 7: At the end of second quarterround of
diagonal 2,

1 Pr(W 2a
12 [5, 13, 25, 26] = W ′2a

12 [5, 13, 25, 26]) = 0

2 λ2a
7 [21] = 0.0625

3 λ2a
7 [29] = 0.0625

4 λ2a
7 [9] = 0.125
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5 Pr(W 2a
7 [1, 5, 6, 17, 25] = W ′2a

7 [1, 5, 6, 17, 25]) = 0.

Proof: The second quarterround of diagonal 2 is,

W ′2a
12 = W ′1

12 +W ′2a
13 ;W ′2a

7 = (W ′1
7 ⊕W ′2a

12 ) ≪ 12

Part 1: From Theorem 6, we have changes in bit positions
5, 13, 25 and 26 of W ′2a

13 . After addition with W ′1
12 (no

changes so far), these changes reflect in bit positions 5, 13,
25 and 26 of W ′2a

12 . These changes may propagate to the
left with probability 1

2k
according to Lemma 1. Therefore,

Pr(W 2a
12 [5, 13, 25, 26] = W ′2a

12 [5, 13, 25, 26]) = 0.

Parts 2–5: From round 1 we have changes in bit positions
9, 17, 21 and 29 of W ′1

7 and from previous proof, we have
changes in bit positions 5, 13, 25 and 26 of W ′2a

12 . Also, it
is known that there may be changes in bits 6 to 12, 14 to
24 and 27 to 31 of W ′2a

12 (Lemma 1). From this, we have,

λ̄2a
12 [9] =

1

2(9−5)
= 0.0625

This implies, λ2a
12 [9] = 1− 0.0625 = 0.9375 and let p =

0.9375. Also, we know λ1
7[9] = 0 and let q = 0. By

applying Theorem 1,

λXOR[9] = pq + (1− p)(1− q) = 0.0625

This result, after the 12-bit left rotation, is received by
bit 21 of W ′2a

7 . Thus, λ2a
7 [21] = 0.0625. Similarly, it

can be proved for λ2a
7 [29] = 0.0625 and λ2a

7 [9] = 0.125.
The remaining changes in bits 5, 13, 25 and 26 of W ′2a

12

and bit 21 of W ′1
7 are shifted to bit positions 17, 25,

5, 6 and 1 respectively. Thus, Pr(W 2a
7 [1, 5, 6, 17, 25] =

W ′2a
7 [1, 5, 6, 17, 25]) = 0. �

Theorem 8: In the third quarterround of diagonal 2,

1 λ2b
2 [9] = 0.875

2 λ2b
2 [21] = 0.9375

3 λ2b
2 [29] = 0.9375

4 Pr(W 2b
2 [1, 5, 6, 7, 17, 25] = W ′2b

2 [1, 5, 6, 7, 17, 25]) =
0

Proof: The addition part in third quarterround of diagonal 2
is,

W ′2b
2 = W ′2a

2 +W ′2a
7

From Theorem 7, we have λ2a
7 [21] = 0.0625, λ2a

7 [29] =
0.0625 and λ2a

7 [9] = 0.125. Let these values be p21, p29
and p9 respectively. From Theorem 6, we have λ2a

2 [21] =
0, λ2a

2 [29] = 0 and λ2a
2 [9] = 0. Let these values be q21, q29

and q9 respectively. Applying Theorem 1,

λSum[21] = p21q21 + (1− p21)(1− q21) = 0.9375

This result applies to 21st bit of W ′2b
2 . Therefore, λ2b

2 [21] =
0.9375. Similarly it can be proved for λ2b

2 [29] = 0.9375

and λ2b
2 [9] = 0.875. The remaining changes in bit positions

1, 5, 6, 17, 25 of W ′2a
7 (from Theorem 7) and bit 7 of

W ′2a
2 (from Theorem 6) are received by bits 1, 5, 6, 7,

17 and 25 of W ′2b
2 . Thus, Pr(W 2b

2 [1, 5, 6, 7, 17, 25] =
W ′2b

2 [1, 5, 6, 7, 17, 25]) = 0. �

Theorem 9: At the end of third quarterround of diagonal 2,

1 Pr(W 2b
13 [13] = W ′2b

13 [13]) = 1

2 Pr(W 2b
13 [1] = W ′2b

13 [1]) = 1

3 λ2b
13[17] = 0.875

4 λ2b
13[29] = 0.9375

5 λ2b
13[5] = 0.9375

6 Pr(W 2b
13 [2, 9, 14, 15, 21, 25] =

W ′2b
13 [2, 9, 14, 15, 21, 25]) = 0

Proof: The XOR and left rotation part in third quarterround
of diagonal 2 is,

W ′2b
13 = (W ′2a

13 ⊕W ′2b
2 ) ≪ 8

Parts 1, 2: There are changes in bit positions 5 and 25
of W ′2a

13 and W ′2b
2 from Theorems 6 and 8, respectively.

This implies that, in the XOR of W ′2a
13 and W ′2b

2 , the
bits 5 and 25 differ in both the operands. When both the
operands have change in the same bit, the result of W ′

will be same as that of W in this operation. This result,
when rotated in left by 8 bits, will move to bit positions
13 and 1 respectively. Thus, Pr(W 2b

13 [13] = W ′2b
13 [13]) = 1

and Pr(W 2b
13 [1] = W ′2b

13 [1]) = 1.

Parts 3–5: From Theorem 8, we have λ2b
2 [9] = 0.875,

λ2b
2 [21] = 0.9375 and λ2b

2 [29] = 0.9375. This result in
W ′2b

2 , after the XOR with W ′2a
13 (No change in bits 9, 21

and 29), will reflect in bits 9, 21 and 29 of the XOR
result. After 8-bit left rotation, these get shifted to positions
17, 29 and 5 respectively. Therefore, λ2b

13[17] = 0.875,
λ2b
13[29] = 0.9375 and λ2b

13[5] = 0.9375.

Part 6: There are changes in bit positions 1, 6, 7 and
17 of W ′2b

2 (from Theorem 8) and 13, 26 of W ′2a
13 (from

Theorem 6). These changes after XOR and 8-bit left
rotation, reflect in the bit positions 9, 14, 15, 25, 21 and 2
of W ′2b

13 respectively. Thus, Pr(W 2b
13 [2, 9, 14, 15, 21, 25] =

W ′2b
13 [2, 9, 14, 15, 21, 25]) = 0. �

Theorem 10: In the fourth quarterround of diagonal 2,

1 Pr(W 2b
12 [25] = W ′2b

12 [25]) = 1

2 λ2b
12[5] = 0.0625

3 λ2b
12[17] = 0.875

4 λ2b
12[29] = 0.9375

5 Pr(W 2b
12 [2, 9, 13, 14, 15, 21, 26] =

W ′2b
12 [2, 9, 13, 14, 15, 21, 26]) = 0
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Proof: The addition part in fourth quarterround of
diagonal 2 is,

W ′2b
12 = W ′2a

12 +W ′2b
13

Part 1: There is a change in bit position 25 of both W ′2a
12

and W ′2b
13 from Theorem 7 and Theorem 9 respectively.

Change in same bit position of both the operands in
addition will produce a result in W ′ that is same as that of
W . Therefore, Pr(W 2b

12 [25] = W ′2b
12 [25]) = 1.

Parts 2–4: From Theorem 7, we have λ2a
12 [5] = 0. So let

p = 0. From Theorem 9, we have λ2b
13[5] = 0.9375. Let this

be q = 0.9375. Applying Theorem 1,

λSum[5] = pq + (1− p)(1− q) = 0.0625

This result reflects in 5th bit of W ′2b
12 . Thus, λ2b

12[5] =
0.0625. From Theorem 9, we have λ2b

13[17] = 0.875 and
λ2b
13[29] = 0.9375. This reflects in the 17th and 29th bit of

W ′2b
12 . Therefore, λ2b

12[17] = 0.875 and λ2b
12[29] = 0.9375.

Part 5: There are changes in bit positions 2, 9, 14,
15 and 21 in W ′2b

13 (from Theorem 9) and changes in
bit positions 13 and 26 in W ′2a

12 (from Theorem 7).
These reflect in bit positions 2, 9, 13, 14, 15, 21 and
26 of W ′2b

12 . Thus, Pr(W 2b
12 [2, 9, 13, 14, 15, 21, 26] =

W ′2b
12 [2, 9, 13, 14, 15, 21, 26]) = 0. �

Theorem 11: At the end of fourth quarterround of
diagonal 2,

1 λ2b
7 [12] = 0.9375

2 λ2b
7 [16] = 0.875

3 λ2b
7 [28] = 0.9375

4 λ2b
7 [4] = 0.1171

5 λ2b
7 [24] = 0.125

6 Pr(W 2b
7 [0, 1, 8, 9, 13, 20, 21, 22] =

W ′2b
7 [0, 1, 8, 9, 13, 20, 21, 22]) = 0.

Proof: The XOR and left rotation part in third quarterround
of diagonal 2 is,

W ′2b
7 = (W ′2a

7 ⊕W ′2b
12 ) ≪ 7

Parts 1–5: From Theorem 7, we have λ2a
7 [5] = 0 and from

Theorem 10 we have λ2a
12 [5] = 0.0625. Let these values be

denoted as p = 0 and q = 0.0625. Applying Theorem 1,

λXOR[5] = pq + (1− p)(1− q) = 0.9375

This result is received by bit 12 of W ′2b
7 after 7-bit left

rotation. Therefore, λ2b
7 [12] = 0.9375.

From Theorem 7, we have λ2a
7 [9] = 0.125 and from

Theorem 10, we have λ2a
12 [9] = 0. Let these values be

denoted as p = 0.125 and q = 0. Applying Theorem 1,

λXOR[9] = pq + (1− p)(1− q) = 0.875

This result is received by bit 16 of W ′2b
7 after 7-bit left

rotation. Thus, λ2b
7 [16] = 0.875. Similarly it can be proved

for other parts.

Part 6: From Theorem 7, we have changes in bits 1, 6, 25
of W ′2a

7 and from Theorem 10 we have changes in bits 2,
13, 14, 15, 26 of W ′2b

12 . These changes, after XOR and 7-bit
left rotation, shifts to bit positions 8, 13, 0 and 9, 20, 21, 22,
1 respectively. Thus, Pr(W 2b

7 [0, 1, 8, 9, 13, 20, 21, 22] =
W ′2b

7 [0, 1, 8, 9, 13, 20, 21, 22]) = 0. �

Theorem 12: At the end of first quarterround of diagonal 3,

1 Pr(W 2a
3 [14] = W ′2a

3 [14]) = 0

2 Pr[Φ(W ′2a
3 [14 + k])] = 1

2k
for 1 ≤ k ≤ 17

3 λ2a
3 [18] = 0.9375

4 λ2a
3 [19] = 0.9688

5 λ2a
3 [20] = 0.9844

6 Pr(W 2a
14 [30] = W ′2a

14 [30]) = 0

7 λ2a
14 [2] = 0.9375

8 λ2a
14 [3] = 0.9688

9 λ2a
14 [4] = 0.9844.

Proof: The first quarterround of diagonal 3 is,

W ′2a
3 = W ′1

3 +W ′1
8 ;W ′2a14 = (W ′1

14 ⊕W ′2a
3 ) ≪ 16

Parts 1, 2: At the end of round 1 , there was a change at
bit position 14 of W ′1

3 and there was no change in W ′1
8 .

During addition of W ′1
3 and W ′1

8 , the change in W ′1
3 [14]

will reflect in the 14th bit of the addition result and it may
propagate to the left with probability 1

2k
(Lemma 1).

Parts 3–5: Using the above result, we have,

λ̄2a
3 [18] =

1

2(18−14)
= 0.0625

Therefore, λ2a
3 [18] = 1− 0.0625 = 0.9375

λ̄2a
3 [19] =

1

2(19−14)
= 0.0312

Therefore, λ2a
3 [19] = 1− 0.0312 = 0.9688

λ̄2a
3 [20] =

1

2(20−14)
= 0.0156

Therefore, λ2a
3 [20] = 1− 0.0156 = 0.9844

Parts 6–9: The changes in bits 14, 18, 19 and 20 of W ′2a
3

will reflect in the XOR result and will move to bit positions
30, 2, 3 and 4 of W ′2a

14 respectively. �

Theorem 13: At the end of second quarterround of
diagonal 3,
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1 λ2a
9 [4] = 0.9763

2 Pr(W 2a
9 [30] = W ′2a

9 [30]) = 0

3 λ2a
8 [16] = 0.9763

4 Pr(W 2a
8 [10] = W ′2a

8 [10]) = 0

Proof: The second quarterround of diagonal 3 is,

W ′2a
9 = W ′1

9 +W ′2a
14 ;W ′2a

8 = (W ′1
8 ⊕W ′2a

9 ) ≪ 12

Part 1: From Theorem 12, we have λ2a
14 [2] = 0.9375,

λ2a
14 [3] = 0.9688 and λ2a

14 [4] = 0.9844. Let these values be
denoted as, p2 = 0.9375, p3 = 0.9688 and p4 = 0.9844.
There are no changes observed so far in bits 2, 3 and
4 of W ′1

9 . Therefore, λ1
9[2] = 1, λ1

9[3] = 1and λ1
9[4] = 1.

Let these values be denotes as q2 = 1, q3 = 1 and q4 = 1.
During addition of W ′1

9 and W ′2a
14 , we consider only the

bits 2, 3, 4 and ignore the carry generated from the previous
bit 1. Therefore, Pr(c[2] = c′[2]) = 1. Using Theorem 2,
compute Pr(c[3] = c′[3]) as,

Pr(c[3] = c′[3]) = 1− Pr(c[2] ̸= c′[2])

= 1− 0.0156 = 0.9844

Similarly,

Pr(c[4] = c′[4]) = 1− Pr(c[3] ̸= c′[3])

= 1− 0.0083 = 0.9917

Pr(c[4] ̸= c′[4]) = 0.0083

Let Sum[4] = W 1
9 [4] +W 2a

14 [4] and Sum′[4] = W ′1
9 [4] +

W ′2a
14 [4]. Now,

λSum[4] = Pr(Sum[4] = Sum′[4])

= Pr(c[4] = c′[4])

Pr((Sum[4] = Sum′[4])|(c[4] = c′[4]))

+Pr(c[4] ̸= c′[4])

Pr((Sum[4] = Sum′[4])|(c[4] ̸= c′[4]))

Using Theorem 1, we can find Pr((Sum[4] =
Sum′[4])|(c[4] = c′[4])) = 0.9844 and Pr((Sum[4] =
Sum′[4])| (c[4] ̸= c′[4])) = 0.0156. Substituting these
values to find λSum[4] = Pr(Sum[4] = Sum′[4]), we get
λSum[4] = 0.9763. This will reflect in the 4th bit of W ′2a

9 .
Thus, λ2a

9 [4] = 0.9763.

Part 2: The change in 30th bit of W ′2a
14 will reflect in W ′2a

9

after the addition. Thus, Pr(W 2a
9 [30] = W ′2a

9 [30]) = 0.

Parts 3 ,4: The change in 4th and 30th bit of W ′2a
9 will

reflect in bit positions 16 and 10 of W ′2a
8 respectively. �

Theorem 14: In the third quarterround of diagonal 3,

1 Pr(W 2b
3 [10, 14] = W ′2b

3 [10, 14]) = 0

2 λ2b
3 [18] = 0.9375

3 λ2b
3 [19] = 0.9688

4 λ2b
3 [20] = 0.9844

5 λ2b
3 [16] = 0.7381

Proof: The addition part of third quarterround of diagonal 3
is,

W ′2b
3 = W ′2a

3 +W ′2a
8

Part 1: From Theorems 12 and 13, we know that bits
14 and 10 of W ′2a

3 and W ′2a
8 change respectively. These

changes reflect in bit positions 10 and 14 of the addition
result.

Parts 2–4: From Theorem 12, we have λ2a
3 [18] = 0.9375,

λ2a
3 [19] = 0.9688 and λ2a

3 [20] = 0.9844. These reflect in
the addition result at the same bit positions.

Part 5: From Theorem 13, we have λ2a
8 [16] = 0.9763. Let

this value be denoted as p = 0.9763. When W ′2a
3 and W ′2a

8

are added, the change in W ′2a
3 [14] may propagate to the left

with probability 1
2k
. Therefore,

λ̄2b
3 [16] =

1

2(16−14)
= 0.25

This implies,

λ2b
3 = 1− λ̄2b

3 = 0.75

Let this value be denoted as q = 0.75. Applying Theorem 1,

λ2b
3 [16] = pq + (1− p)(1− q) = 0.7381

�

Theorem 15: At the end of third quarterround of diagonal 3,

1 Pr(W 2b
14 [6, 18, 22] = W ′2b

14 [6, 18, 22]) = 0

2 λ2b
14[10] = 0.9375

3 λ2b
14[11] = 0.9688

4 λ2b
14[12] = 0.9844

5 λ2b
14[24] = 0.7381

6 λ2b
14[26] = 0.9375

7 λ2b
14[27] = 0.9688

8 λ2b
14[28] = 0.9844.

Proof: The XOR and shift part in the third quarterround of
diagonal 3 is,

W ′2b
14 = (W ′2a

14 ⊕W ′2b
13 ) ≪ 8

There are changes in bit 30 of W ′2a
14 (from Theorem 12)

and in bits 10 and 14 of W ′2b
13 (from Theorem 14). These

changes, after the XOR and 8-bit left rotation, move to
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bit positions 6, 18 and 22 respectively. The result of bit
positions 2, 3 and 4 in W ′2a

14 (from Theorem 12) move to
bit positions 10, 11 and 12 of W ′2b

14 respectively after XOR
and 8-bit left rotation. The result in bit positions 16, 18, 19,
20 in W ′2b

13 (from Theorem 14) move to bit positions 24,
26, 27, 28 respectively after XOR and 8-bit left rotation. �

Theorem 16: In the fourth quarterround of diagonal 3,

1 Pr(W 2b
9 [6, 8, 22, 30] = W ′2b

9 [6, 8, 22, 30]) = 0

2 λ2b
9 [4] = 0.9763

3 λ2b
9 [10] = 0.9375

4 λ2b
9 [11] = 0.9688

5 λ2b
9 [12] = 0.9844

6 λ2b
9 [24] = 0.7381

7 λ2b
9 [26] = 0.9375

8 λ2b
9 [27] = 0.9688

9 λ2b
9 [28] = 0.9844.

Proof: The addition part in fourth quarterround of
diagonal 3 is,

W ′2b
9 = W ′2a

9 +W ′2b
14

There are changes in bit position 30 of W ′2a
9 (from

Theorem 13) and in bit positions 6, 8 and 22 of W ′2b
14

(from Theorem 15). These will reflect in bit positions 6, 8,
22 and 30 of W ′2b

9 . The results of bit position 4 in W ′2a
9

(from Theorem 13) and bit positions 10 to 12, 24, 26 to 28
in W ′2b

14 (from Theorem 15) will be received by same bit
positions of W ′2b

9 . �

Theorem 17: At the end of fourth quarterround of
diagonal 3,

1 Pr(W 2b
8 [5, 13, 15, 29] = W ′2b

8 [5, 13, 15, 29]) = 0

2 λ2b
8 [11] = 0.9763

3 λ2b
8 [18] = 0.9688

4 λ2b
8 [19] = 0.9844

5 λ2b
8 [23] = 0.9763

6 λ2b
8 [31] = 0.7381

7 λ2b
8 [1] = 0.9375

8 λ2b
8 [2] = 0.9688

9 λ2b
8 [3] = 0.9844

10 λ2b
8 [17] = 0.0625

Proof: The XOR and left shift part in fourth quarterround
of diagonal 3 is,

W ′2b
8 = (W ′2a

8 ⊕W ′2b
9 ) ≪ 7

There are changes in bit positions 6, 8, 22 and 30 of W ′2b
9

(from Theorem 16). These changes move to bit positions
13, 15, 29 and 5 of W ′2b

8 respectively after XOR and
7-bit left rotation. The result of bit 16 in W ′2a

8 (from
Theorem 13) moves to bit position 23 of W ′2b

8 . Similarly
the results of bit positions 4, 11, 12, 24, 26, 27, 28 of W ′2b

9

(from Theorem 16) moves to bit positions 11, 18, 19, 31,
1, 2, 3 of W ′2b

8 respectively.
From Theorem 13, we have λ2a

8 [10] = 0 and from
Theorem 16, we have λ2b

9 [10] = 0.9375. Let these values
be p = 0 and q = 0.9375. Applying Theorem 1,

λ2b
8 [10] = pq + (1− p)(1− q) = 0.0625

�

Theorem 18: In the first quarterround of diagonal 4,

1 Pr(W 2a
4 = W ′2a

4 ) = 1

2 Pr(W 2a
15 [6, 16] = W ′2a

15 [6, 16]) = 0.

Proof: The first quarterround of diagonal 4 is,

W ′2a
4 = W ′1

4 +W ′1
5 ;W ′2a

15 = (W ′1
15 ⊕W ′2a

4 ) ≪ 16

From round 1 results, we know that there are no changes in
the words W ′1

4 and W ′1
5 . Therefore, there are no changes

in W and W ′ after the addition part. Thus, Pr(W 2a
4 =

W ′2a
4 ) = 1. From round 1, there were changes in bits 10

and 22 of W ′1
15. This change, after the XOR with W ′2a

4

and rotation by 16 bits, reflects in the bit positions 16 and
6 respectively of the output. Therefore, Pr(W 2a

15 [6, 16] =
W ′2a

15 [6, 16]) = 0. �

Theorem 19: In the second quarterround of diagonal 4,

1 Pr(W 2a
10 [6, 16] = W ′2a

10 [6, 16]) = 0

2 Pr(W 2a
10 [0− 5] = W ′2a

10 [0− 5]) = 1

3 Pr(W 2a
5 [8, 18] = W ′2a

5 [8, 18]) = 0

4 Pr(W 2a
5 [7− 12] = W ′2a

5 [7− 12]) = 1.

Proof: The second quarterround of diagonal 4 is,

W ′2a
10 = W ′1

10 +W ′2a
15 ;W ′2a

5 = (W ′1
5 ⊕W ′2a

10 ) ≪ 12

From Theorem 18, it is evident that there are changes
in bit positions 6 and 16 of W ′2a

15 . Also, from results of
round 1 we know that there are no changes in W ′1

10. After
the addition of W ′1

10 and W ′2a
15 , changes are reflected in bit

positions 6 and 16 of W ′2a
10 . Therefore, Pr(W 2a

10 [6, 16] =
W ′2a

10 [6, 16]) = 0. These changes may propagate to their
left with probability 1

2k
(according to Lemma 1). The

bits that are unchanged after the addition are in positions
0 to 5. Thus, Pr(W 2a

10 [0− 5] = W ′2a
10 [0− 5]) = 1. The

changes in bits 6 and 16 of W ′2a
10 reflects in bit

positions 18 and 28 respectively after the XOR and 12-bit
left rotation. Therefore, Pr(W 2a

5 [8, 18] = W ′2a
5 [8, 18]) = 0.

The unchanged bits in bit positions 0 to 5 of W ′2a
10 are

unchanged after the XOR with W ′1
5 and 12-bit left rotation.

Thus, Pr(W 2a
5 [7− 12] = W ′2a

5 [7− 12]) = 1. �
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4.3 Observations of round 3

Theorem 20: At the end of first quarterround of column 1,

1 Pr(W 3a
1 [2, 14, 22] = W ′3a

1 [2, 14, 22]) = 0

2 Pr(W 3a
13 [18, 30] = W ′3a

13 [18, 30]) = 1

3 Pr(W 3a
13 [5, 6, 9, 25, 31] = W ′3a

13 [5, 6, 9, 25, 31]) = 0

4 λ3a
13 [1] = 0.875

5 λ3a
13 [13] = 0.9375

6 λ3a
13 [21] = 0.9375

Proof: The first quarterround of column 1 is,

W ′3a
1 = W ′2b

1 +W ′2b
5 ;W ′3a

13 = (W ′2b
13 ⊕W ′3a

1 ) ≪ 16

Part 1: From Theorem 4 we know that there are changes in
bit positions 2, 14 and 22 of W ′2b

1 . These changes reflect
in the same bit positions of W ′3a

1 after the addition.

Parts 2–6: There are changes in bit positions 9, 15, 21 and
25 of W ′2b

13 (from Theorem 9) and bit 22 of W ′3a
1 (from

part 1 of this theorem). These changes, after the XOR and
16-bit left rotation, moves to bit positions 25, 31, 5, 9
and 6 of W ′3a

13 respectively. Also, from Theorem 9 and
part 1 result of this theorem, it is evident that the bits at
positions 2 and 14 of both W ′2b

13 and W ′3a
1 have changes.

These, when XORed and left shifted by 16 bits, will
produce result at bits 18 and 30 that is same as the result in
W. Therefore, Pr(W 3a

13 [18, 30] = W ′3a
13 [18, 30]) = 1. From

Theorem 9, we have results for bit positions 17, 29 and 5
of W ′2b

13 . These results will apply to bit positions 21,1 and
13 of W ′3a

13 respectively. �

Theorem 21: At the end of third quarterround of column 1,

1 Pr(W 3b
1 [2, 14, 22] = W ′3b

1 [2, 14, 22]) = 0

2 Pr(W 3b
13 [1, 7, 10, 13, 14, 17, 22, 30]

= W ′3b
13 [1, 7, 10, 13, 14, 17, 22, 30]) = 0

3 λ3b
13[9] = 0.875

4 λ3b
13[21] = 0.9375

5 λ3b
13[29] = 0.9375

Proof: The third quarterround of column 1 is,

W ′3b
1 = W ′3a

1 +W ′3b
5 ;W ′3b

13 = (W ′3a
13 ⊕W ′3b

1 ) ≪ 8

Part 1: From Theorem 20, we know that there are changes
in bit positions 2, 14 and 22 of W ′3a

1 . These reflect in the
same bit positions of W ′3b

1 after the addition.

Part 2: From part 1, we have changes in bit positions 2, 14
and 22 of W ′3b

1 . Also, from Theorem 20, we have changes
in bit positions 5, 6, 9, 25 and 31 of W ′3a

13 . These changes,
after the XOR of W ′3a

13 and W ′3b
1 and 8-bit left rotation,

reflect in bit positions 10, 22, 30, 13, 14, 17, 1 and 7
respectively.

Parts 3–5: The results of bits 1, 13 and 21 of W ′3a
13 (from

Theorem 20) will reflect in bit positions 9, 21 and 29 of
W ′3b

13 respectively after the XOR and 8-bit left rotation. �

4.4 Observations of round 4

Theorem 22: At the end of first quarterround of diagonal 1,

1 Pr(W 4a
1 [2, 14, 22] = W ′4a

1 [2, 14, 22]) = 0

2 λ4a
1 [17] = 0.875

3 λ4a
1 [18] = 0.9375

4 λ4a
1 [19] = 0.9688

5 Pr(W 4a
16 [6, 18, 30] = W ′4a

16 [6, 18, 30]) = 0

6 λ4a
16 [1] = 0.875

7 λ4a
16 [2] = 0.9375

8 λ4a
16 [3] = 0.9688

Proof: The first quarterround of diagonal 1 is,

W ′4a
1 = W ′3b

1 +W ′3b
6 ;W ′4a

16 = (W ′3b
16 ⊕W ′4a

1 ) ≪ 16

Parts 1–4: From Theorem 21, we know that bits 2, 14 and
22 of W ′3b

1 have difference. This difference is received by
the same bit positions of W ′4a

1 during addition. After the
addition, the changes in the mentioned bit positions may
propagate to the left with probability 1

2k
(Lemma 1). This

implies,

λ̄4a
1 [17] =

1

2(17−14)
= 0.125

Therefore, λ4a
1 [17] = 1− 0.125 = 0.875

λ̄4a
1 [18] =

1

2(18−14)
= 0.0625

Therefore, λ4a
1 [18] = 1− 0.0625 = 0.9375

λ̄4a
1 [19] =

1

2(19−14)
= 0.0312

Therefore, λ4a
1 [19] = 1− 0.0312 = 0.9688.

Parts 5–8: During the XOR and left rotation by 16 bits,
the changes observed in part 1 will shift to bit positions 18,
30 and 6 of W ′4a

16 respectively. Also, the results of bits 17,
18 and 19 of W ′4a

1 will apply to bit positions 1, 2 and 3
respectively after XOR and 16-bit left rotation. �

Theorem 23: At the end of third quarterround of diagonal 1,

1 Pr(W 4b
1 [2, 14, 22] = W ′4b

1 [2, 14, 22]) = 0

2 λ4b
1 [19] = 0.914

3 Pr(W 4b
16 [6, 14, 22, 26, 30] = W ′4b

16 [6, 14, 22, 26, 30]) =
0
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4 λ4b
16[9] = 0.875

5 λ4b
16[11] = 0.9375

6 λ4b
16[27] = 0.914

7 λ4b
16[10] = 0.0625.

Proof: The third quarterround of diagonal 1 is,

W ′4b
1 = W ′4a

1 +W ′4a
6 ;W ′4b

16 = (W ′4a
16 ⊕W ′4b

1 ) ≪ 8

Part 1: There is difference in bit positions 2, 14 and 22 of
W ′4a

1 (from Theorem 22). These differences are received
by same bit positions of W ′4b

1 after the addition.

Part 2: From Theorem 22, we have λ4a
1 [17] = 0.875,

λ4a
1 [18] = 0.9375 and λ4a

1 [19] = 0.9688. Let these values
be denoted as p17 = 0.875, p18 = 0.9375 and p19 =
0.9688. Assuming that there are no differences in the same
bit positions of W ′4a

6 , let q17 = 1, q18 = 1 and q19 = 1.
During the addition of W ′4a

1 and W ′4a
6 , we consider only

the bits 17, 18, 19 and ignore the carry generated from the
previous bit 16. Therefore, Pr(c[17] = c′[17]) = 1. Using
Theorem 2, compute Pr(c[18] = c′[18]) as,

Pr(c[18] = c′[18]) = 1− Pr(c[17] ̸= c′[17])

= 1− 0.0625 = 0.9375

Similarly,

Pr(c[19] = c′[19]) = 1− Pr(c[18] ̸= c′[18])

= 1− 0.0584 = 0.9416

Pr(c[19] ̸= c′[19]) = 0.0584

Let Sum[19] = W 4a
1 [19] +W 4a

6 [19] and Sum′[19] =
W ′4a

1 [19] +W ′4a
6 [19]. Now,

λSum[19] = Pr(Sum[19] = Sum′[19])

= Pr(c[19] = c′[19])

Pr((Sum[19] = Sum′[19])|(c[19] = c′[19]))

+Pr(c[19] ̸= c′[19])

Pr((Sum[19] = Sum′[19])|(c[19] ̸= c′[19]))

Using Theorem 1, we can find Pr((Sum[19] =
Sum′[19])|(c[19] = c′[19])) = 0.9688 and Pr((Sum[19] =
Sum′[19])| (c[19] ̸= c′[19])) = 0.0312. Substituting these
values to find λSum[19] = Pr(Sum[19] = Sum′[19]), we
get λSum[19] = 0.914. This will reflect in the 19th bit of
W ′4b

1 . Thus, λ4b
1 [19] = 0.914.

Part 3: There is difference in bit positions 14 and 22
of W ′4b

1 (from part 1). Also, there are differences at bit
positions 6, 18 and 30 of W ′4a

16 (from Theorem 22). These
changes are received by bit positions 22, 30, 14, 26, 6 of
W ′4b

16 respectively after XOR and 8-bit left rotation.

Parts 4–6: There are results for bit positions 1,3 of W ′4a
16

(from Theorem 22) and result for bit 19 of W ′4b
1 (from

part 2). These are received by bit positions 9, 11 and 27 of
W ′4b

16 respectively.

Part 7: From Theorem 22, we have λ4a
16 [2] = 0.9375. Also,

from part 1 of this theorem we have λ4b
1 [2] = 0. Let these

values be denoted as p = 0.9375 and q = 0. Applying
Theorem 1,

λ4b
XOR[2] = pq + (1− p)(1− q) = 0.0625

This result moves to bit position 10 of W ′4b
16 after 8-bit left

rotation. Thus, λ4b
16[10] = 0.0625. �

5 Theoretical and experimental result comparison

We have compared the theoretical results obtained in this
work with the experimental results. In Section 4, we
have theoretically analysed Chacha 128 with probability.
The theoretical results are compared with the experimental
results. For experimental verification, we took random
combinations of IVs and applied Chacha round function
to it. Also, for the same set of random combinations with
one bit input difference, we applied Chacha round function
and observed the output differences at each round. The
probabilities of the output difference at the end of every
round were computed. The experiments were conducted
with 221 random sets of IVs and the results were computed
using probabilistic methods. We have depicted the results
of each bit of the words up-to 4 decimal digits. The
comparative results are shown in Table 2. Table 2 shows
that the theoretical analysis is on par with the experimental
results. The theoretical analysis was performed up to four
rounds in this work. For higher rounds, the diffusion was
more and therefore it was increasingly difficult to track the
changes.

Table 2 Theoretical and experimental result comparison

Bias Theoretical Experimental
probability result result

λ2a
7 [9] 0.125 0.129

λ2b
2 [9] 0.875 0.881

λ2b
13[29] 0.9375 0.9481

λ2b
12[5] 0.0625 0.0684

λ2b
7 [4] 0.1171 0.1189

λ2a
3 [19] 0.9688 0.9701

λ2a
14 [4] 0.9844 0.9840

λ2a
9 [4] 0.9763 0.9757

λ2a
8 [16] 0.9763 0.9759

λ2b
3 [16] 0.7381 0.7596

λ2b
14[27] 0.9688 0.9523

λ2b
9 [28] 0.9844 0.9838

λ2b
8 [17] 0.0625 0.0649

λ3a
13 [13] 0.9375 0.9395
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Table 2 Theoretical and experimental result comparison
(continued)

Bias Theoretical Experimental
probability result result

λ3b
13[9] 0.875 0.8774

λ4a
1 [19] 0.9688 0.9669

λ4a
16 [3] 0.9688 0.9677

λ4b
1 [19] 0.914 0.9158

λ4b
16[9] 0.875 0.8771

6 Related work

To the best of our knowledge, the first ever attack on
Chacha was done by Aumasson et al. (2008). Their
attack is inspired by correlation analysis and the notion
of neutral bits. The idea is to perform a single bit
differential cryptanalysis and to observe the correlation
in the output bits. The authors have attacked a 6- and
7-round Chacha. Later Ishiguro et al. (2011), improved
the single bit differential cryptanalysis by Aumasson et al.
(2008) to a double bit differential cryptanalysis and have
attacked a 8-round Chacha. In Shi et al. (2012), a new
distinguisher called chaining distinguisher was used to
recover the key from Chacha. Maitra (2016) proposed
chosen IV cryptanalysis on Chacha which is claimed to
be better than the previous attacks. Later, Choudhuri and
Maitra (2016), for the first time, showed how to choose
output bit combinations theoretically to improve biases in
Chacha. In Dey and Sarkar (2017), the authors presented an
algorithm to probabilistically construct neutral bits which
can be further exploited to find distinguishers. Improved
cryptanalytic techniques were suggested by Deepthi and
Singh (2017, 2019). In CRYPTO 2020, Beierle et al. (2020)
have recovered key bits in 6-round Chacha with time
complexity 277.4 and 7-round Chacha with time complexity
2230.86.

Some more distinguishing attacks on literature include
probabilistic neutral bits (PNB)-based attack, chaining
distinguishers, impact of differential attack on add, rotate,
XOR (ARX) operations and chosen IV attack. The
differential characteristics in ARX operations and its
application in stream cipher salsa was given by Mouha and
Preneel (2013). Distinguishing attacks by choosing optimal
parameters were introduced by Maitra et al. (2015).

7 Conclusions

Chacha is a lightweight stream cipher used by Google and
in cloud computing for transport layer security and internet
security respectively. In this work, we have theoretically
analysed the differential attack on Chacha stream cipher.
Most of the cryptanalytic works in literature are focused on
experimental analysis. Very few are done in a theoretical
aspect. Theoretical analysis of differential attacks helps
in identifying the reason for biases in the cipher. Also,
theoretical analysis of an attack provides an insight into

designing a cipher that resists the attacks. We have
theoretically analysed 128 bit Chacha and have recorded
the biases caused by differences in input using probability.
We have mathematically proved the biases up-to 4 rounds
of Chacha 128 and have compared it with experimental
results. This proves that, the stream cipher 128-bit Chacha
has observable biases up to round 4 and that thereby it
has a distinguisher in round 4. The theoretical results are
confirmed with the experimental results. In future, this
mathematical analysis can be extended to further rounds to
theorise in the light of the existing experimental results.
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