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Abstract: The perception ability has attained much recognition in the 
identification of cognitive processing and decision-making in autism spectrum 
disorder (ASD) individuals. However, the prior studies have subjectively 
worked on perception ability using conditioning paradigms that can be 
intolerable for ASD individuals. The present paper quantitatively investigates 
the perception ability of ASD individuals by modelling visual judgement and 
statistical learning. Thirty ASD and typically developing (TD) individuals are 
selected for experimenting distinguishing animated images related to risk 
situations with different risk levels. The experimental paradigm-based 
behavioural measures (reaction time, d′ index, and accuracy) revealed that ASD 
individuals, although performed poorly than TDs, they visually and statistically 
perceived the risk. Quantitatively, the perception level in ASD is (mean 0.57  
± 0.02) in the range [0 1]. In comparison to TDs, the attenuated visual and 
statistical learning during the experiment could lead to impaired perception in 
ASD. However, when statistical learning comes into action (comparing 
performance in block 1 and block 6), it played a crucial role in improving 
visual knowledge; thus, the perception ability of ASD individuals. In the future, 
the studies can implicate the quantitative perception to identify other deficits in 
the ASD phenotype. 

Keywords: autism; judgement; perception; quantitative; risk-sense; safety 
knowledge; statistical learning; visual understanding. 
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1 Introduction 

Autism spectrum disorder (ASD) individuals, along with the triad of core impaired traits 
(verbal and non-verbal communication, socialisation, and restricted and repeated 
behaviour), show impairment in mirror neuron system (MNS) (Iacoboni and Dapretto, 
2006) due to which they consider the monotonously occurring phenomenon’s as magical 
things. This impairment indicates the inability of ASD individuals to monitoring and 
perceiving social cues, other person’s actions, planning their actions (Oberman et al., 
2005), chaining the actions together, and processing visual information (Neri et al., 
2007). Thus, the perception ability has gained more recognition in the detection of ASD. 

Prior findings have provided evidence in favour of impaired perception ability in 
ASD individuals by showing disturbances in understanding and interpreting real-time 
interaction and impairment of mechanisms related to sensory evidence (Gardner and 
Steinberg, 2005; Kakkar, 2019). The preliminary studies have investigated the  
action-prediction abilities conveyed by the agent’s goal, movement kinematics,  
target-object, and situational constraints, and correlated prediction impairment with core 
symptoms viz. social interaction deficit (Slovic, 1987) and repetitive behaviours.  
In one such study, Vincent et al. (2018) employed an action occlusion paradigm to 
directly target two underlying mechanisms of prediction: statistical learning (frequency  
of occurrence of past actions helps in predicting future actions) and efficiency 
considerations (awareness of the situation in predicting agent’s goals efficiently).  
The author found that, compared to efficiency consideration, only statistical learning 
operates the action-perception in ASD individuals (Vincent et al., 2018). Hence, the 
evidence taken together infers perception impairment as one of the factors underlying 
ASD. 

To provide a vivid picture of perception ability in ASD, the present work has 
quantitatively incorporated risk knowledge and the role of action-perception in ASD. 
Also, to our knowledge, the literature lacks in providing quantitative studies evaluating 
fear conditioning and perception in ASD. The prominent fear conditioning in ASD is 
linked to core deficits’ severity, the poor interconnection of the amygdala with other 
cortical brain regions, and social communication deficits (Zürcher et al., 2013).  
The results conflict due to the difference in the strategies followed to acquire fear 
conditioning status. To account for their risk sense, no risk-model considering 
individual’s opinion, perception-patterns, and factors influencing their risk knowledge 
have been proposed so far. It has been found that ASD individuals lack in experiencing 
and reacting to the risk in a way most people do and possess lower fear recognising 
ability (Tanu and Kakkar, 2018). 
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The classical fear conditioning models examined that these children fail in associating 
their basic emotions to the environmental stimuli. The fear testing experiments generally 
involve presenting participants with a blast of air which is directed at their neck while 
performing cue conditioning tasks. The fear effect is then computed by measuring their 
blink rate, response timing (Bernier et al., 2005), discrimination ability, and checking 
their skin conductance response (SCR) (South et al., 2011). The autistic individuals 
showed an intact and persistent level of fear conditioning response similar to TD in 
situations involving simpler associations, fear-heightened experiments, walking in the 
crowd, and medical fears (South et al., 2011; Tanu and Kakkar, 2018). But, they show 
impaired fear conditioning to dangerous, harmful, and risky situations such as gunfire, 
moving cars, situations involving complex associations (South et al., 2012; Zürcher et al., 
2013). 

In the present paper, the risk perception in ASD individuals and the factors through 
which the risk information can propagate in ASD are investigated and compared to TD 
individuals. Our work is mainly involving environmental stationary constraints rather 
than the classical fear conditioning to investigate risk perception factors. The stimuli 
presented were taken from our previous work (Tanu and Kakkar, 2018) to study more 
about perception in ASD. Apart from providing the quantitative model to compute 
perception, the current work also aimed to test: 

1 whether ASD can perceive goal-oriented character’s actions 

2 whether social cues influence the performance of ASD. 

1.1 Risk-perception parameters 

The first factor involved in risk sensing is the visual attention that covers 83% portion of 
perception mechanism in normal people (Wästlund et al., 2010). The rest 17% portion 
involves gaining knowledge through social interaction or self-experiencing. The visual 
estimation and inference of this statistical information vary from individual to individual 
that eventually leads to differences in their risk understanding and decision-making 
(Adams and Kleck, 2003). To account for the opinion of ASD individuals these  
two factors as shown in Figure 1 are considered to model risk-perception. 

Figure 1 Risk-perception parameters 
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2 Proposed model 

2.1 Model parameters 

The knowledge of individuals is determined by two factors: danger and safety related to 
the risk image. Each of the stimulus/trial k has a certain danger level denoted by Dk and 
safety level Sk as represented in equations (1) and (2). Such that: 

{01}kD Blockage probability perception of risk in= ×  (1) 

1k kS D= −  (2) 

The blockage probability is defined as the ratio of area covered by constraint/obstacle 
(Ac) over the total cross-sectional area (A) of the road (Gannouni and Maad, 2015). 
Depending upon the blockage probability, there are three different levels of the stimuli – 
low danger, medium danger, and high danger. The resulting danger levels, constructed 
using the probability of blockage and impact of risk as provided by equation (3),  
are shown in Figure 2. 

cABlocakgeProbability
A

=  (3) 

Figure 2 Danger level of the risk involved (see online version for colours) 

 

2.2 Model equation and working 

The risk-sense of the individuals (say, n) is obtained by integrating the information 
mentioned in Section 2.1 and is given by using the equation (4) given in (Moussaïd, 
2013): 

( ), 1 exp n
n n

n

θDr S D
S θ
− = −  + 

 (4) 

where θ is model threshold parameter and n represents the number of individuals 
(Moussaïd, 2013). The varying parameters Sn and Dn are the weighted sums of safety 

n kS S=  and danger levels n kD D=  of the risk factor involved in the trials.  
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The risk perception acquired by the individuals can have values on a scale from 0 to 1 
(Moussaïd, 2013). The weight θ will keep on upgrading with the repetition of trials if 
there is an addition of some new information and otherwise, the weights will remain the 
same. The weight up-gradation simply follows a step function as described in Moussaïd 
(2013). The process can be explained with the flowchart as shown in Figure 3. 

Figure 3 Flowchart representing the weight up-gradation in risk assessment 
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3 Material and methodology 

3.1 Summary of subjects 

Thirty ASD individuals from local NGO’s and thirty TDs were selected in the present 
study. The ASD participants had already received DSM-IV-TR (APA, 2000) as well as 
ICD-10 (Volkmar et al., 1992) diagnosis from a practiced clinician. This maintained 
homogeneity among ASD. Both groups were correlated for age, non-verbal, and  
full-scale IQ. The mean (SD) values of demographic and clinical data for both groups 
have been summarised in Table 1. The level of non-verbal intelligence was attained using 
Raven’s (2003) progressive matrices. The verbal, performance, and full-scale IQs were 
administered using the India-based Malin intelligence scale for Indian children (MISIC) 
(Malin, 1971). All the participants have normal vision history. The individuals with  
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IQ < 70 were not recruited and apart from this the other exclusion condition was the 
absence of medical problems such as epilepsy or anxiety. 

The paired-sampled t-test reflect that the ASD individuals do not differ from TDs in 
terms of age [mean difference: 0.07, t(29) = 27.3 p = 0.43) and IQ (mean difference: 5.9, 
t(29) = 76.8 p = 0.51). The chi-square distribution reveals no impact of gender on the 
experimental results (χ2 = 1.6, p = 0.47). The parents of both groups were asked a few 
questions regarding the diagnosis of any psychiatric condition such as depression, an 
anxiety disorder in their children in past or currently. The experiment was then described 
to the individuals and their parents or caregivers to take written consent before 
conducting the study experiment. 

3.2 Stimuli presentation 

The stimulus in form of animated images (1,396 × 561 res) is shown in PsychToolbox in 
MATLAB software (Mathworks Inc., Natick, USA) on a computer (1,366 × 768 res,  
40 pHz refresh rate) as shown in Figure 4. The participants sat 51 cm away from the 
laptop screen. At the beginning phase of the experiment, the experimenter has drawn the 
participant’s attention by clapping and pointing towards the laptop screen. 

Figure 4 Experimental stimuli presented to the participants (see online version for colours) 

   

    

Table 1 Characteristic traits of subjects 

Characteristics/subjects ASD TD 
Subjects 30 30 
Male and female ratio 14:1 11:4 
Mean age (S.D.) years 13.2 (3.9) (10–15 years) 12.5 (2.3) (10–15 years) 
Non-verbal IQ (Raven’s 
progressive matrices) 

Mean = 110.8 
S.D. = 9.9 

Mean = 108.3 
S.D. = 8.5 

Verbal IQ (MISIC) Mean = 102.17 
S.D. = 7.2 

Mean = 111.3 
S.D. = 10.3 

Performance IQ (MISIC) Mean = 104.2 
S.D. = 12.1 

Mean = 107.3 
S.D. = 10.8 

Full scale IQ (MISIC) Mean = 104.3 
S.D. = 12.1 

Mean = 110.2 
S.D. = 10.3 
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3.3 Procedure 

The experiment initially familiarised with risk factor viz. stone debris. The participants 
were required to infer the character’s intentions and give a response by pressing a key 
with alphabet D for danger and S for safe from the keyboard and pressing any other key 
would not affect the experiment. Participants were presented with six blocks, with each 
block having ten trials containing random stimulus from Figure 4. Thus, participants 
experienced 60 trials in totality. The response of the participants are recorded in the excel 
sheet linked to the PsychToolbox. The time taken by a participant in giving a response is 
recorded by the internal clock of the laptop. 

4 Results 

4.1 Probability of visual perception 

The perception in ASD and TD individuals is computed to identify how much they 
understand the data. The probability of visual judgement and perception in ASD and TDs 
is computed by finding the number of correctly identified stimuli in the initial block 
(block 1) and the final block (block 6). The acquired results are shown in the form of bar 
graphs in Figure 5. The plot clearly shows that ASD individuals are found impaired in 
visually judging the risk as compared to TDs. In the last block (number 6), both the 
groups showed performance improvement, although it was lower in the case of ASD.  
The comparison of block 1 and block 6 is done to find statistical learning. The result 
signifies that ASD individuals do learn statistically from prior events. 

Figure 5 Mean visual perception in ASD and TD individuals for block 1 and block 6 (see online 
version for colours) 

  

4.2 Behavioural analysis: reaction time (RT), accuracy and discrimination 
index (d′) 

RT is the total time measured in milliseconds required to find the correct stimulus and 
give a response. As per the literature on the RT concept, the values lower than 300 ms 
and greater than 3,000 ms could involve complex decision processes and thus were not 
considered in the analysis process (Mulder et al., 2010). 
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Accuracy checked the response correctness probability from the total given 
responses. The discrimination index (d′; Macmillan and Creelman, 2004) evaluated the 
stimulus discrimination ability with a value equal to 0 signifies an inability to 
discriminate between two intentions (following the long or short path) whereas greater  
> 0 showed discrimination between two intentions. The d′ was calculated by finding the 
difference between the normal inverse transform of hit rate and false alarm rate.  
The larger values of this difference reflect measures sensitivity. 

( )
AHitRate

A BforA
=

+
 (5) 

( )
( )

AforBFalseRate
AforB B

=
+

 (6) 

( ) ( )d Norminv hit rate Norminv false rate′ = −  (7) 

Using equations (5) and (6), the hit rate and false alarm rate have been calculated which 
further provided d′ index values using equation (7). 

The RT, accuracy, and d′ values of participants are analysed by applying a 2  
(group: ASD, TD) x3 (risk: low, medium, and high) repeated-measures ANOVA.  
The RT, accuracy, and discrimination index (d′) are computed and analysed statistically 
after investigation of sphericity assumption (insignificant Mauchly’s test) condition. 
Mauchly’s condition checks the robustness of the data and if it is insignificant (P > 0.05) 
then the corresponding sphericity assumption fails. Consequently, corrective measures 
are followed to make the data robust 

The RTs are compared across the different conditions of the experimental task among 
participants of both groups. The response values (correct and incorrect) are entered in the 
2 × 3 matrix. The Mauchly’s sphericity value for all three measures was insignificant  
(p > 0.05) which violated the assumption of sphericity. Therefore, the use of Huynh-Feldt 
correction has been used (considering epsilon value > 0.75). The RT is significantly 
affected by group (F = 5.73, p = 0.033) and group × risk-level (F = 1.91, p = 0.018). 

Figure 6 RT values (ms) in ASD and TD participants for block 1 and block 6 for different risk 
proportions (low, medium, and high) (see online version for colours) 
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The RT values are compared for block 1 and block 6 in ASD and TD participants a 
shown in Figure 6. The mean RT values are higher in the initial stages of the experiment 
(block 1) and reduce with statistical learning of the individual (block 6). For all  
three conditions, the mean RT of the individuals is reducing with the rising frequency of 
blocks. The paired-samples t-test on all the measures compared the performance of ASD 
and TD participants. The overall task RT values in ASD participants showed higher RT 
in bock 1 (mean difference: 557 ± 4.5; t(29) = 5.64, p = 0.001) and block 6 (mean 
difference: 319 ± 3.2; t(29) = 6.23, p = 0.01) compared to TDs. 

Figure 7 (a) Accuracy (b) Discrimination index (d′) mean values in ASD and TD participants for 
block 1 and block 6 for different risk proportions (low, medium, and High) (error bars 
show 95% confidence interval) (see online version for colours) 

  
(a)     (b) 

In the case of accuracy, the ANOVA reveals no difference in the accuracy for various 
risk levels (F = 0.29, p = 0.78). The d′ index values significantly differ for different risks 
(F = 4.72, p = 0.001). No other interaction is found significant. 

The mean values of accuracy and d′ index are shown in Figure 7. Among the different 
conditions, it is clear that the accuracy and d′ index values are improving with  
the practice of the individuals. The paired t-test reflect that accuracy is higher in TD  
for block 1 (mean difference: 30 ± 4.5; t(29) = 12.3, p = 0.001) and block 6  
(mean difference: 21 ± 10.22; t(29) = 10.41, p = 0.003) compared to ASD participants. 
Similarly, for d′ index values, TDs have more discrimination ability in block 1  
(mean difference: 0.35 ± 0.02; t(29) = 8.21, p = 0.02) and block 6  
(mean difference: ±0.24; t(29) = 7.41, p = 0.001) compared to ASDs. 

On comparing the mean values among low, medium, and high-risk conditions;  
the values were higher for low-risk conditions and reduced effectively with the task 
complexity. However, the impact of statistical learning is observed in all three conditions. 
On comparing the impact of statistical learning (block 6–block 1) among two conditions 
(for example, medium-low risk condition), the performance was insignificant for both 
ASD (mean difference = 0.01, t(29 = 5.43), p = 0.36) and TD (mean difference = 0,  
t(29 = 8.43), p = 0.86) individuals. Other comparisons were also found insignificant. 
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4.3 Quantitative risk-sense 

The risk-sense in ASD and TDs is evaluated using equation (2). On integrating the effect 
of visual judgement and statistical learning, it is found that statistical learning has more 
impact on weights and consequently, on risk perception. 

The pair-wise t-test comparisons showed that ASD participant’s performance in  
block 1 is significantly lower than block 3 (p = 0.00001) and block 6 (p = 0.0014) 
respectively. Similarly, the other comparisons between blocks were significant also,  
ps < 0.05. However, the comparison between block 5 and block 6 was insignificant,  
p = 0.1377. The mean values of risk-sense for all trails (90 trials) in ASD and TD 
participants have been calculated using equation (2). The plot in Figure 8 has shown that 
growth in risk-perception of the ASD participant’s first increases then saturates with the 
repetition of trials. Hence, they are learning with the repetition of trials. The paired 
sampled t-test shown higher perception values in TD than ASD (mean difference:  
0.24 ± 0.05, t(59) = 13.2, p = 0.001). 

Figure 8 Risk-sense in ASD and TD individuals with number of trials (see online version  
for colours) 

 

Quantitatively, the perception level in ASD is (mean = 0.57 ± 0.02) if measured in range 
[0 1] compared to TDs who have (mean = 0.81 ± 0.05). 

4.4 Comparison with existing studies 

The present study results have been compared with the results of the existing studies in 
the domain of perception-based tasks computing RT, accuracy, and d′ index parameters. 
The comparison has been provided in a tabular form in Table 2. 

From the tabular data, it is clear that the experimental task varies from study to study, 
however, our motive for showing the comparison is to reveal the estimation of perception 
in ASD using the behavioural measures. Since the literature lacks in providing 
computational studies, therefore, the comparisons are carried out subjectively. 
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Table 2 Comparison with the existing datasets 

Reference Stimuli utilised Parameter Favouring result 
Corbett et al. 
(2016) 

Typical Ebbinghaus 
display with small, 
medium, and large 
circles 

Accuracy = 0.65 in  
ASD for the simple  
task which reduced to 
0.53 during complex 

Perception learning is present 
in ASD at an average level 
and depends upon the  
task complexity 

Karaminis et al. 
(2016) 

Time discrimination  
Task with green 
discs 

Intervals to detect the 
stimuli were of longer 
duration in TD (400 
ms) than ASD (600 
ms) 

Our results contradict this 
study finding as  
this study showed  
no dependency on statistical 
learning in ASD 

Baisch et al. 
(2017) 

Discrimination task 
using coloured 
squares 

Reaction time on 
average is 664 ms in 
simple and 733 ms for  
a complex task 

Lower reaction times are 
found in ASD which reported 
poor cognition and perception 
in ASD 

Van den Boomen 
et al. (2019) 

Categorising 
texture-defined 
object 

Reaction time is 
found more in ASD 
than TD 

Atypical visual perception is 
found  
in ASD 

Present work Discrimination task 
based on risk and 
danger level 

Reaction time,  
accuracy, d′ value,  
and quantitative risk 
perception 

Impaired perception in ASD 
due to attenuated visual and 
statistical learning 

5 Discussion 

The goal of the present paper is to quantitatively acquire risk perception and to find out 
the role of visual judgement and statistical learning in ASD. The results imply that ASD 
participants showed difficulty in risk inference under certain conditions (i.e., low risk or 
high risk), rather than generalised risk knowledge deficit. The weights of their knowledge 
get updated with statistical learning as compared to visual judgement. With the increase 
in the number of trials, the performance of ASD individuals gets improved which 
indicates the learning and development of risk knowledge. Noteworthily, this infers that 
the probability of risk/constraint consideration strongly impacted the perception abilities 
of ASD individuals. 

Initially, via visual judgement, ASD individuals were not able to gain much risk 
knowledge, and hence, they do not follow any visual action plan which is in line with  
(De Silva et al., 2019; Meedeniya and Rubasinghe, 2020; Shah and Sowden, 2015;  
Von Hofsten and Rosander, 2012; Wadhera and Kakkar, 2020b). The increased RT 
values for both ASD and TDs for a high probability of risk as compared to a low 
probability risk which follows the fact the RT rises as the condition becomes quite 
difficult (Mulder et al., 2010). The reduced discrimination ability in ASD with high-risk 
proportions is in line with the hypothesis inferring that ASD individuals have a deficit in 
processing complex information, which a complex process demands (Brihadiswaran  
et al., 2019; Williams et al., 2006). Our work favours the conclusions of Wadhera and 
Kakkar (2019, 2020a), and contradicts (Bernier et al., 2005) which concluded fully 
impaired fear knowledge in ASD. 

Although the repetition of the trials showing agent’s actions under similar situational 
constraints had a low influence on ASD individuals, it enhanced the accuracy of 
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perception in participants of both the groups. This point favours the literature work 
showing statistical learning improves action perception (Haputhanthri et al., 2019, 2020; 
Vincent et al., 2018; Wadhera and Kakkar, 2020c) and response outcomes. In the initial 
phase of repetition, the risk-sense increases with the number of trials, and with the 
frequent repetition of trials, it becomes gradual which might be due to over-exposure of 
information and habituation (Lu et al., 2015). 

In summary, the current work imparts support to the belief that in investigating  
risk-sense of individuals the important parameters to be modelled are: 

1 visual extraction 

2 building perception statistically. 

The inability of ASD individuals in differentiating the risk, suggests an underdeveloped 
perception level, due to poor action perception and visual judgement impairment.  
This proves that visual judgement covers 16% of their cognitive mechanism and the rest 
83% depends on social training and guidance and this distribution distinguishes these 
individuals from NT. The repetition of the trials has the power to impel action prediction 
and learning in autistic individuals that can enhance their social skills. 

In the future, the information about the additional factors which underlies the poor 
processing of emotions such as risk-taking behaviour of individuals needs to be studied. 
Also, it would be interesting to consider the effect of the target object, situational 
constraints, and movement kinematics in the prediction of observed actions by 
individuals with autism. The influence of age on risk-perception will also be a topic of 
great interest. 
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