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Abstract: In this paper, we use three common tail risk measurements of Value-
at-Risk (VaR), Expected Shortfall (ES) and Spectral Risk Measure (SRM) to 
calculate the tail risk of crude oil futures based on extreme value theory. 
Specifically, we propose a method to determine the optimal threshold in the 
extreme value theory, and further to calculate the values of VaR, ES and SRM 
based on Peak Over Threshold (POT) model. Empirical results show that the 
extreme value POT model can be used to characterise the tail risk of the price 
return under extreme fluctuations in Brent crude oil futures market. Moreover, 
the risk of VaR, ES and SRM in the Brent crude oil futures market based on 
extreme value theory is higher than that under the normal distribution 
assumption, which indicates that the traditional normal distribution assumption 
underestimates the tail risk. Owing the flexibility and the accuracy, we suggest 
that investors use ERM to measure the extreme risk of crude oil futures. 

Keywords: spectral risk measurement; hyperbolic risk spectral function; 
extreme value theory; tail risk. 
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1 Introduction 

As an important part of the energy markets, the energy futures market is commonly used 
by investors to avoid the risks caused by fluctuations of the energy spot prices. However, 
while hedging risks, the high leverage feature of the energy futures market makes the 
energy futures price faces greater risk than the spot price, which affects the realisation 
and effect of risk hedging. For example, in 2020, influenced by the comprehensive 
factors such as COVID-19, geopolitics and short-term economic shocks, the international 
commodity market fluctuated drastically. On 20th April 2020, the official settlement 
price of CME of WTI crude oil futures contract in May was –37.63 US dollars/barrel, 
which triggered the ‘crude oil treasure’ event. On 22nd April, the day after the emergence  
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of ‘negative oil price’ of Petro China, the Bank of China announced that investors 
holding multiple open positions of ‘crude oil treasure’ need to execute at the settlement 
price of –37.63 US dollars/barrel. It means that investors of crude oil treasure will not 
only lose the principal, but also double the funds of the bank. Therefore, how to 
effectively manage the price risk of the energy futures market, and further to prevent the 
risk of price fluctuations of energy spot has become one of the great concerns to energy 
investors and energy risk management departments. Since the occurrence of extreme 
events is likely to lead to investor bankruptcy, and even economic collapse and social 
unrest, people in today’s world pay more and more attention on extreme risk among other 
types of risks. The premise of effective control of crude oil futures risk is how to 
accurately measure its extreme risks.  

The study of risk measurement can be traced back to Markowitz’s paper (1952), 
which is entitled as ‘Asset Selection: Effective Diversification’. The classic mean-
variance model opened the beginning of quantifying risk, and the mean-variance model 
ruled financial risk management for decades till 1990s. However, the use of variance as a 
risk measure has been criticised in mean-variance model. Firstly, variance cannot be used 
to describe the asymmetry of risk. Secondly, for a specific distribution (such as credit 
risk), the second moment may not exist. Since Morgan (1996) first disclosed Risk Metric 
based on VaR model, VaR then has become the industry standard for risk measurement 
in the financial industry. Although VaR has a far-reaching influence in the field of risk 
management, it still has certain limitations. Artzner et al. (1999) proposed the concept of 
consistent risk measurement and pointed out that VaR is not a consistent risk 
measurement. However, ES is one of the representatives of adhesion risk measurement. 
Since then, some new risk measures have been proposed to measure financial risk. For 
example, Acerbi (2002) proposed a kind of consistent risk called measure-Spectral Risk 
Measure (SRM). Furthermore, ES and VaR are special cases of SRM. Since SRM takes 
account both tail risk and investor’s subjective risk aversion, and it satisfies internal 
consistency, so it provides a reasonable choice for effectively measuring financial risk. 
Since it was put forward, SRM has been widely used in the field of risk management. 
Sriboonchitta et al. (2010) studied the consistency between the expected utility function 
reflecting the investor’s risk attitude and the spectral risk measure. Brandtner (2018) 
studied the relationship between risk-free assets and risky assets in SRM-based 
portfolios. Mozumder et al. (2018) conducted an empirical analysis of major stock index 
futures using SRM based on the Lévy process. 

The study of extreme value theory was first introduced by Fisher. Fisher and Tippett 
(1928) gave a detailed proof of extreme value theory, which has laid the foundation for 
the development of extreme value theory. Longin and Pagliardi (1996) pointed out that 
the extreme value theory had its favourable property without considering the overall 
distribution characteristics of the sample sequence, only taking account the tail 
distribution of the sample. From this point of view, the characterisation of tail 
distribution is very important. McNeil (1998) combined extreme value theory with 
GARCH model and found that the results were better than those under normal 
distribution and t distribution through empirical research. Cotter and Dowd (2006) 
proposed the spectral risk measurement based on extreme value theory, applied the 
Generalised Pareto Distribution (GPD) to the spectral risk measurement and used the 
designed measurement method for empirical analysis. Longin and Pagliardi (2016) used 
the POT model in extreme value theory to study the relationship between the S&P 500 
tail rate of return and trading volume. Fuentes et al. (2018) examined extreme co-
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movements between the Australian and Canadian currencies, often known as commodity 
currencies and gold and oil markets respectively. Ji et al. (2019) focused on investigating 
financial asset returns’ extreme risks, which were defined as the negative log-returns over 
a certain threshold. Sun et al. (2020) and Ma et al. (2020) measured extreme risk of 
sustainable financial system. However, at present, there is not much research on 
combining spectral risk measurement and extreme value theory to study the tail risk of 
financial markets. 

In this paper, the Brent crude oil futures settlement price is used as sample data. After 
selecting the threshold and parameter estimation, the tail risk at different confidence 
levels is obtained and the extreme risks under the three measures of VaR, ES and SRM 
are compared. The structure of the paper is as follows: Section 2 introduces the model 
building including introducing the risk measure of SRM and the extreme value theory. 
Section 3 are the empirical results and analysis. Section 4 is the conclusion of this article. 

2 Model building 

2.1 SRM measurement 

Generally, risk hedged investors are risk-averse, and for risk-averse people, the greater 
the degree of loss, the greater the degree of aversion. In spectral risk measures, one can 
define the spectrum function precisely to reflect the decision maker’s risk preference. 
SRM is a risk metric constructed with a combination of risk spectrum function and return 
function in the framework of prospect theory, which is expressed by 

 
1

0 pM p q dp    

Among them,  p  is the risk spectrum function or weight function, and pq  is the 

negative value of the 1 p  quantile of the income distribution, which measures the gain 

at different confidence levels and indirectly reflects the degree of loss. In addition to 
inheriting the excellent characteristics of VaR and ES, SRM is a consistent risk 
measurement, and it can measure the tail risk more accurately. We can find that, for 
calculating SRM, there are two core problems to be solved: One is to construct an 
appropriate  p ; Another is to obtain an accurate pq . For the first problem, as a 

weighting function of SRM, its greatest advantage of  p  is to reflect the investor’s 

risk preference. Then, in order to add this factor to  p , we can refer to the nature of 

risk preference and related utility functions, investors with different risk preferences 
correspond to different utility functions, so the effect function is used to represent the 
investor’s risk preference, so that the tail risk is given a weight affected by the 
preference; for the second problem, it is the accuracy of pq  or VaR estimation. 

Generally, we can make a hypothesis about the overall distribution of the financial 
asset’s return and calculate VaR based on the assumed distribution. However, the return 
of the financial asset often has the characteristics of sharp peaks and thick tails. 
Therefore, an ideal distribution assumption is inconsistent with the true distribution of  
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returns. To solve this problem, the extreme value theory of the tail distribution is 
introduced as follows. According to extreme value theory, pq  will be calculated more 

accurately. 

2.2 Extreme value theory 

The research goal of the extreme value theory is the extreme value distribution of the 
sample. When applying the extreme value theory, there is no need to make any 
assumptions about the overall distribution of the sample, only by fitting the distribution 
of the extreme value of the sample. Based on the tail distribution, qp in the spectral risk 
measurement is used to measure the value of an extreme quantile at the tail position. In 
this way, it can be effectively to measure the tail risk of the sample by using the extreme 
value theory. There are two main statistical models used in extreme value theory, namely 
block maximum method and Peaks Over Threshold (POT) distribution model. In this 
paper, we choose POT model to implement the study. 

Let  F x  be the overall distribution of a random variable X , and the threshold is 

 , then the over-limit value is Y X   . Therefore, the GPD of variable Y  is 

 

1

1 1 , 0
; , ,

1 exp , 0

y

G y
y


 

  





           

      
 

  (1) 

Here, 0  , which is called the scale parameter. When 0  , then 0 y x    . 

Otherwise, the range of y is 0 y



  .   is the shape parameter, which determines the 

type of GPD. If 0  , it is the Pareto type I distribution, and the tail gradually thickens 
as  increasing; when , it is the Pareto type II distribution, which is similar to the normal 
distribution; when , it is the Pareto type III distribution, which is a thin tail distribution. 

We can find that variable Y  is actually the part where variable X  exceeds the 
threshold  , and the distribution function of Y  constitutes a Conditional Excess 

Distribution Function (CEDF). Let  F y  be the conditional excess distribution 

function of y, and the conditional probability expression of  F y  is: 

   F y P x y x       

Then, 

       
 

   
 1 1

F y F F x F
F y P x y x

F F

  
  

 
  

     
 

 

Through deformation, we can obtain 

       1F x F F y F       
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Here, x y  . 

Following from Balkema-De Haan-Pickands theorem (Wüthrich, 2004) on the 
distribution of excesses (over a high threshold), when the threshold   is  

sufficiently large, the excess distribution converges to GPD. In other words,  G y  can 

approximately replace  F y , so 

       1F x F G y F       (2) 

Assuming that N is the total number of samples and N  is the number of samples that 

exceed the threshold. According to historical simulation methods,  F   can be 

expressed by the sample frequency that does not exceed the threshold, the expression of 

 F   is as follows: 

 
N N

F
n




  (3) 

And y x   , substituting equations (1) and (3) into equation (2), we can get 

 
1

1 1 , 0
N x

F x
N

  



         

 

When the tail probability is p , the  1 p  quantile of the loss distribution is 

 1 1F q p p    

Then, we have 

1 1
p

N
q p

N




         
    

  (4) 

So, the expression of SRM is: 

 
1

0
1

p

N
M p dp

N






 


                
  (5) 

2.2.1 Determination of the threshold    

The POT model is to model and analyse the part that exceeds the threshold η. The 
selection of the threshold is an important problem that the POT model needs to solve. 
According to the PBdH theorem mentioned above, if the set threshold is too small, the 
CEDF distribution cannot approximate to the GPD. The model established above cannot 
be applicable; if the set threshold is too large, the number of tail samples behind the 
threshold is too small to accurately fit the model. Therefore, we propose the method of 
selecting thresholds to ensure the availability and effectiveness of the POT model. 
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According to the current research and development of extreme value theory, we 
conclude that the commonly used threshold selection methods include Mean Excess 
Function (MEF) method, Hill graph method and kurtosis method. Considering that both 
the MEF and Hill graph methods use images to subjectively select a certain point as the 
threshold  , this method has a certain subjective arbitrariness, which makes the obtained 
threshold value may be not real and accurate; the kurtosis method is from a quantitative 
perspective to determine the threshold, to a certain extent, it makes up for the 
shortcomings caused by the observation image judgment threshold. In this paper, the 
results of the three methods are integrated in the selection of thresholds, and a more 
comprehensive consideration makes the selected thresholds more reasonable and 
effective.  

2.2.2 Parameters estimation of GPD distribution 

There are three important parameters denoted by  ,   and   in the GPD. After 

determining these three parameters, the specific form of GPD can be determined. The 
threshold   is determined by the MEF function graph, Hill graph and kurtosis mentioned 

in the previous section.   and   are estimated by applying the maximum likelihood 
estimation method. 

According to the steps of the maximum likelihood estimation method, the GPD 
function shown in formula (1) is derived, and its probability density function is obtained 
as follows:  

 
1

1
1

1 , 0g y y
 

 

   
      

 

Therefore, the maximum likelihood equation of the GPD according to the probability 
density function is 

   
1

1
, ln 1 ln 1 , 0

n

i
i

L n y
   

 

           
   

  

After obtaining the values of threshold  , the parameters of   and   are measured by 

the maximum likelihood estimation method. Then, the estimated values of the three 
parameters are obtained. We substitute the three parameters into formula (4) to obtain the 
tail loss function based on the POT model. 

3 Empirical research 

3.1 Sample selection 

First, the energy futures market is based on petroleum futures products. Second, market 
reports provided by Intercontinental Exchange ICE, Reuters and other institutions have 
revealed that the market’s benchmark pricing and main target contracts have gradually 
changed from the West Texas Crude Oil Futures WTI listed on the US New York 
Mercantile Exchange to the Intercontinental Exchange listed Brent crude oil futures. 
Therefore, this paper selects Brent crude oil futures as the international energy futures 
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price to study the extreme risks of energy futures markets. The sample period is from 5th 
June 2017 to 25th March 2020. There are 724 data in the Brent market. The data comes 
from the US Energy Information Administration (EIA) and SINA Finance. 

3.1.1 Descriptive statistics of data 

The log-return of the settlement price of Brent crude oil futures is shown in Figure 1. 

Figure 1  Log-return of Brent crude oil futures price 

 

It can be intuitively seen from Figure 1 that the return of Brent crude oil futures has 
experienced several violent fluctuations, and the frequency and amplitude of negative 
yield changes are significantly greater than the frequency and amplitude of positive yield 
changes, reflecting the price of Brent futures implies extreme risks. Therefore, it is 
feasible and valuable to use spectral risk measurement to conduct tail risk research. 
Descriptive statistics on the return of Brent futures price are shown in Table 1. 

Table 1 Descriptive statistics of Brent crude oil futures logarithmic returns 

Mean Standard 
deviation 

Maximum Minimum Skewness Kurtosis J-B statistics P-value 

–0.00047 0.01615 0.079 –0.194 –2.832 32.158 5701.7393 0.0001 

According to relevant regulations of futures markets, the daily price settlement limit of 
crude oil futures is 10%, while the maximum and minimum yields of Brent crude oil 
futures price are 7.9 and –19.4, respectively, which touches the boundary of price 
fluctuations. It reflects that the price of Brent crude oil futures has extreme risks and the 
losses caused by extreme risks are extremely large. If only the measurement of VaR is 
used to measure the tail risk of Brent crude oil futures price, the tail risk is destined to be 
far below the actual situation. The skewness of the sample data is –2.832, and the 
kurtosis is 32.158, indicating that the overall distribution of the Brent crude oil futures 
yield series is negatively skewed. The results indicate that distribution of the Brent crude 
oil futures return is non-normal. In order to further examine whether the distribution of 
the sample rate series is non-normal, the following is to test the normality of the return. 
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3.1.2 Normal distribution test 

The return sequences of financial assets often do not obey the normal distribution. The 
tail risk calculated under the assumption of normal distribution will be inconsistent with 
the actual situation. In order to ensure that it is reasonable to use extreme value theory 
instead of normal distribution to calculate the risk of crude oil futures price, it is 
necessary to test whether the return of Brent crude oil futures price is normally 
distributed. The normality of the time series is usually tested by Jarque–Bera test and  
Q-Q chart. 

Figure 2 Q-Q chart of sample distribution and standard normal distribution 

 

In summary, based on the results of JB test and the Q-Q chart, combined with the 
frequency of occurrence of extreme risks, it can be inferred that the return of Brent crude 
oil futures is not normal, and according to the characteristics of the Q-Q chart, the sample 
yield series is especially the data in the tail part is seriously not suitable for normal 
distribution. Therefore, according to the previous description of extreme value theory, the 
POT model in extreme value theory is a suitable alternative to normal distribution. 

3.1.3 Stationary test 

Although the extreme value theory can better describe the tail risk, the premise of 
applying the extreme value theory POT model is that the related variables in the series 
are all independent and identically distributed. However, variables in the time series of 
financial asset returns often have very strong autocorrelation. According to the research 
of McNeil (1998) and other scholars, as long as the sequence satisfies the condition of 
stationary, even if there is a certain autocorrelation in the time series, the extreme value 
theory also holds under this condition. 

ADF test is usually used to test the stationarity of the sequence, which is to 
determine whether the unit root exists in the sequence: if the sequence is stationary, there 
is no unit root; otherwise, there is a unit root. The original hypothesis of ADF test is that 
there is a unit root. When the original hypothesis is rejected, the unit root does not exist 
and the sequence is stable. 

According to the results shown in Table 2, the t-statistic in the ADF test of the Brent 
crude oil futures return is –46.8311, which is far less than the critical value at the 1% 
confidence level. Therefore, the return of Brent oil futures price is stationary. 
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Table 2 ADF test results of Brent crude oil futures return  

  t-statistic P-value 

Critical value 

1% Confidence level 

5% Confidence level 

10% Confidence level 

–46.8311 0.0001 

–2.3279 0.000 

–1.6455 0.000 

–1.2819 0.000 

3.2 Parameter estimation of the POT model 

(1) Threshold selection: The first step in parameter estimation of the POT model is to 
determine the appropriate threshold. This paper will comprehensively determine the 
threshold based on the threshold results obtained by Hill graph and kurtosis method. 

We can observe the change trend of Hill statistics through the Hill graph and determine 
the size of the threshold. According to Reiss and Thomas (2001), when the tail data of 
the sample is small, the Hill chart shows strong fluctuations due to the extreme risk. As 
the number of tail samples increases, the amplitude of the fluctuation will gradually 
decrease and stabilise. Therefore, by capturing the starting point when the curve in the 
Hill graph begins to stabilise, an appropriate threshold can be accurately obtained, 
thereby reducing the influence of tail extreme data on tail risk measurement. 

According to the Hill chart patterns of the left tail distribution and the right tail 
distribution in Figures 3 and 4, the Hill tail statistics of the left tail distribution begins to 
show a stable trend between the 120th variable and the 140th variable. The threshold 
value is roughly between 2.13 and 2.25; the right-tailed Hill statistics begin to show a 
stable state between the 80th and 110th variables, and the threshold value is roughly 
between 2.55 and 2.93. 

Figure 3 Hill graph of left tail distribution 
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Figure 4 Hill plot of right tail distribution 

 

Based on the principle of the kurtosis method, we remove the value that deviates the 
most from the mean value in the time series, and continue to shrink the kurtosis until the 
kurtosis of the remaining samples is equal to when the normal distribution is 3, from the 
quantitative point of view, we find the intersection of the peak distribution of the Brent 
crude oil futures distribution and the normal distribution. According to the principle of 
kurtosis method, the variables in the left tail distribution and the right tail distribution are 
screened, and finally the threshold values of the left and right tail portions are 2.0182 and 
2.9341, respectively. 

In summary, it can be found that the threshold value obtained by the kurtosis method 
is significantly higher than the threshold values obtained by the other two methods. The 
results obtained by the kurtosis method are used as the basis for selecting the threshold 
value. In this paper, the threshold value of the tail distribution is left 1.5736  , and the 

threshold value of the right tail distribution is right 1.7047  . 

3.3 Tail risk measurement 

The parameters  ,   and the threshold   calculated based on the maximum likelihood 

estimation has been obtained under the premise of a given confidence level  1 p , and 

the corresponding VaR along with ES and SRM based on the POT model are also 
obtained. Tables 3 and 4 present the tail risks under different distribution assumptions. 
Table 3 is the values of VaR, ES and SRM obtained under the POT model. Among them, 
the confidence levels are 95%, 97.5% and 99%, respectively. The risk aversion factor   

of the spectral function is respectively 0.01, 0.1 and 0.5. Table 4 is the values of VaR, 
ES, SRM obtained under the assumption of normal distribution. The confidence level 
selected and risk aversion factor in Table 4 are the same as in Table 3. 

Tables 3 and 4 reflect the tail risks measured by different risk measurements at the 
same confidence level. We find that the risk measured by SRM is larger than those by ES 
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and VaR. The reason for this sort is that, VaR only measures the value of a certain 
position in the return, and ES measures the average value of the part that exceeds VaR. 
Then, ES is larger than VaR. Since SRM gives greater weights to the greater risk of the 
tail, it makes sense that SRM is larger than ES. We can also find that as the confidence 
level increases, the risks measured by the three risk measurement tools are increasing, 
intuitively reflecting that the closer to the end of the tail, the greater the severity of the 
risk. Under different risk aversion factors, the risk measurement results of SRM are also 
changing, and as the risk aversion factor γ increases, the SRM results also increase. Since 
γ reflects the degree of risk aversion of investors, when γ increases, even if the risk level 
remains the same, the investor’s aversion to the same risk level or the confidence level, 
will increase, which also makes SRM increase. So, the risk measurement tool of SRM is 
a flexibility tail risk measurement by adjusting the risk aversion factor  .  

Table 3 VaR, ES, SRM based on POT model 

  VaR ES 
SRM 

0.02   0.1   0.5   

Left  
tail 

0.05p   3.5358 6.2971 7.3756 7.4919 8.8505 

0.025p   4.8247 8.5185 9.9611 10.1168 11.9342 

0.01p   7.2195 12.6465 14.7652 14.9938 17.6637 

Right 
tail 

0.05p   2.3972 3.6856 4.1341 4.1809 4.7083 

0.025p   3.1054 4.6719 5.2169 6.5347 6.7672 

0.01p   4.2813 6.3097 7.0146 7.0883 7.9181 

Table 4 VaR, ES, SRM under the assumption of normal distribution 

 
 VaR ES 

SRM 

0.02   0.1   0.5   

Left 
tail 

0.05p   3.8634 4.2996 8.8284 8.8557 9.1379 

0.025p   4.3731 4.5389 9.5244 9.5495 9.8097 

0.01p   4.9656 5.6517 10.3651 10.4371 10.6177 

Right 
tail 

0.05p   2.3396 3.6793 3.4010 3.4095 3.4981 

0.025p   2.6251 4.0796 3.6193 3.6272 3.7089 

0.01p   2.9570 4.4130 3.8805 3.8877 3.9623 

4 Conclusions  

Based on the HARA family of utility functions, this paper proposes a general hyperbolic 
risk weight function, establishes a hyperbolic spectral risk measure, and combines 
extreme value theory POT model to measure the extreme risk of crude oil futures. 



   

 

   

   
 

   

   

 

   

   64 C. Gao    
 

    
 
 

   

   
 

   

   

 

   

       
 

Research results show that the tail risks measured by the three measurement tools of 
VaR, ES and SRM under the normal distribution are all less than those corresponding to 
the POT model. The reason is that the return series of Brent crude oil futures does not 
follow the normal distribution, but it shows the characteristic of peak and thick tail, the 
tail risk brought by this feature is higher than the tail risk in the case of normal 
distribution. In addition, the VaR, ES and SRM based on the extreme value theory POT 
model are higher than those based on the normal distribution. Based on the POT model, 
the results of SRM are affected by both the confidence level and the risk aversion factor. 

Although the price of crude oil futures fluctuated violently in the past two years, 
crude oil futures is still an effective hedging tool for crude oil spot price risk control. 
When using crude oil futures for risk hedging, investors need to pay close attention to its 
tail risk. We suggest that investors use ERM risk measure to measure the extreme risk of 
crude oil futures in order to better capture possible extreme losses. ERM increases with 
the increase of risk aversion coefficient. Investors can flexibly choose different risk 
aversion coefficients according to their own risk aversion attitude to achieve the purpose 
of effective risk management.  

References 

Acerbi, C. (2002) ‘Spectral measures of risk: a coherent representation of subjective risk aversion’, 
Journal of Banking and Finance, Vol. 26, No. 7, pp.1505–1518. 

Artzner, P., Delbaen, F. and Eber, J.M. et al. (1999) ‘Coherent measures of risk’, Mathematical 
Finance, Vol. 9, No. 3, pp.203–228. 

Brandtner, M. (2018) ‘Expected Shortfall, spectral risk measures, and the aggravating effect of 
background risk, or: risk vulnerability and the problem of subadditivity’, Journal of Banking 
and Finance, Vol. 89, No.4, pp.138–149. 

Cotter, J. and Dowd, K. (2006) ‘Extreme spectral risk measures: an application to futures 
clearinghouse margin requirements’, Journal of Banking and Finance, Vol. 30, No. 12, 
pp.3469–3485． 

Fisher, R.A. and Tippett, L.H.C. (1928) ‘Limiting forms of the frequency distributions of the 
largest of smallest member of a sample’, Proceedings of Cambridge Philosophical Society, 
Vol. 24, pp.180–190. 

Fuentes, F., Herrera, R. and Clements, A. (2018) ‘Modeling extreme risks in commodities and 
commodity currencies’, Pacific-Basin Finance Journal, Vol. 51, No. 10, pp.108–120. 

Ji, J., Wang, D. and Xu, D. (2019) ‘Modelling the spreading process of extreme risks via a simple 
agent-based model: evidence from the China stock market’, Economic Modelling, Vol. 80, 
No. 8, pp.383–391. 

Longin, F. and Pagliardi, G. (2016) ‘Tail relation between return and volume in the US stock 
market: an analysis based on extreme value theory’, Economics Letters, Vol. 145, No. 8, 
pp.252–254. 

Ma, X., Yang, R., Zou, D. and Liu, R. (2020) ‘Measuring extreme risk of sustainable financial 
system using GJR-GARCH model trading data-based’, International Journal of Information 
Management, Vol. 50, No. 2, pp.526–537.   

Markowitz, H. (1952) ‘Portfolio selection’, Journal of Finance, Vol. 7, No. 1, pp.77–91. 

McNeil, A.J. (1998) ‘Calculating quantile risk measures for financial time series using extreme 
value theory’, ASTIN Bulletin, Vol. 27, pp.117–137. 

Morgan, J.P. (1996) Risk Metrics – Technical Document, 4th ed., New York.  



   

 

   

   
 

   

   

 

   

    Crude oil futures tail risk measurement 65    
 

    
 
 

   

   
 

   

   

 

   

       
 

Mozumder, S., Choudhry, T. and Michael, D. (2018) ‘Spectral measures of risk for international 
futures markets: a comparison of extreme value and Lévy models’, Global Finance Journal, 
Vol. 37, No. 8, pp.248–261. 

Reiss, R.D. and Thomas, M.M. (2001) ‘Statistical analysis of extreme value with applications to 
insurance, finance, hydrogy and other fields’, Berlin: Birkhauser. 

Sriboonchitta, S., Nguyen, H.T. and Kreinovich, V. (2001) ‘How to relate spectral risk measures 
and utilities’, International Journal of Intelligent Technologies and Applied Statistics, Vol. 3, 
No. 2, pp.141–158. 

Sun, X., Liu, C., Wang, J. and Li, J. (2020) ‘Assessing the extreme risk spillovers of international 
commodities on maritime markets: a GARCH-Copula-CoVaR approach’, International 
Review of Financial Analysis, Vol. 68. Doi: 10.1016/j.irfa.2020.101453. 

Wüthrich, M.V. (2004) ‘Bivariate extension of the Pickands – Balkema – de Haan theorem’, 
Probability and Statistics, Vol. 40, No. 1, pp.33–41. 


