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Abstract: In this paper, fractional order terminal sliding mode control 
(FOTSMC) method is used for trajectory tracking control performance of an 
unmanned ground vehicle (UGV). Firstly, a kinematic controller is designed to 
estimate the linear and angular velocities of the vehicle. Then, a FOTSMC 
design is carried out to track the vehicle reference velocities. Terminal sliding 
mode control (TSMC) and sliding mode control (SMC) methods are also used 
to demonstrate the performance of the proposed controller. The simulation 
results show that the proposed controller improves the tracking error by about 
13% over SMC and 6.146% compared to TSMC. 
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This paper is a revised and expanded version of a paper entitled ‘Trajectory 
tracking control of an unmanned ground vehicle based on fractional order 
terminal sliding mode controller’ presented at ISUDEF, Howard University, 
Washington DC, USA, 26–28 October 2021. 

 

1 Introduction 

Unmanned ground vehicles (UGV) are a type of non-holonomic mechanical systems and 
are divided into several groups as wheeled ground vehicles, legged ground vehicles and 
tracked ground vehicles. Wheeled ground vehicles are often preferred in real applications 
such as transport, mine clearance and carrying passengers luggage in airport terminals 
due to their many advantages such as high energy efficiency, good stability, fast motion 
and low mechanical complexity. Because the difficulties in implementation, uncertainties 
and non-holonomic constraints many researchers have focused on vehicle trajectory 
tracking control (Mevo et al., 2018). Trajectory control, both requires the controller 
design for the vehicle to follow a determined trajectory and must stabilise the closed-loop 
system robustly against system uncertainties (Xin et al., 2016). In recent years, studies 
have been dealing with kinematic tracking problems without considering the UGV 
dynamics. However, taking into account only a kinematic model in a real trajectory 
problem is inadequate to achieve good tracking performance due to vehicle dynamics, 
such as high speed or carrying heavy load (Başçi et al., 2015). Therefore, the combined 
use of both kinematic and dynamic models in trajectory tracking of UGVs provides more 
realistic results (Koubaa et al., 2015). 

PID controllers have been the most popular and widely used industrial controllers in 
recent years. The popularity and widespread use of PID controllers is primarily attributed 
to their simple construction, reliability, easy parameters adjust, good performance and not 
dependence on the precise dynamic mathematical model of the system they control. 
Linear fixed-gain PID controllers are tuned to operate based on system behaviour in a 
certain limited operating region. If a system’s behaviour and/or operating region changes 
over time, the PID controller will need to be readjusted to function as intended. An 
original combination of standard PID and kinematic based backstepping controllers has 
been developed for a differential drive mobile robot to be able to track a desired 
trajectory (Demirbas and Kalyoncu, 2017). Here, with the simplest nonlinear kinematic 
model, a backstepping controller was used to overcome the nonlinearity of the trajectory 
tracking and the PID controllers were applied for the DC motors’ speeds adjustments by 
the error signals. The responses of the developed simple controller were obtained with a 
significant reduction in the settling time and overshot. 

Nonlinear control methods such as fuzzy control, backstepping method, finite time 
control, neural network control and sliding mode control (SMC) are used to overcome the 
poor control performance encountered in the application of fixed parameter linear 
controllers to nonlinear or time-varying systems (Başçi and Derdiyok, 2014; Fierro and 
Lewis, 1997; Ou et al., 2014; Ding et al., 2020; Orman et al., 2018). SMC is one of the 
most effective control methods widely preferred to achieve trajectory tracking control of 
non-holonomic UGV due to its strong robustness against model uncertainties, 
disturbances, good transient performance and very easy design (Young et al., 1996; Asif 
et al., 2014; Sharma and Panwar, 2016; Sekban and Başçi, 2021). The biggest 
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disadvantages of the SMC controller are the chattering in the systems and the reaches 
asymptotic stability in infinite time. Various methods such as filtering, discontinuous 
approximation, fuzzy control and high-order sliding mode controller are used to reduce 
the chattering effect (Başçi and Derdiyok, 2013). The problem of asymptotic 
convergence of system states in infinite time is solved by using a terminal sliding mode 
controller (TSMC) (Yu et al., 2020; Sekban et al., 2021). 

With the developing technology, the interest in fractional order calculus has increased 
rapidly. Fractional order calculation plays an important role in many fields such as 
control engineering, viscoelastic fluids, physics, power converters, mechatronic systems, 
signal processing and its applied fields is increasing day by day (Sekban et al., 2020; 
Çelebi and Başçi, 2016; Can et al., 2020a). In recent years, studies on fractional order 
systems have been pioneers for control engineering applications. Studies have shown that 
fractional differential equations are an effective tool for describing complex equations 
and also an effective method for modelling many systems (Oustaloup et al., 2000). To 
take advantage of these advantages of fractional order calculus, various controllers such 
as the fractional order PID controller, the fractional order SMC and the fractional order 
adaptive controller have been developed one after the other (Orman et al., 2016; Can  
et al., 2020b). 

In this paper, fractional order terminal sliding mode control (FOTSMC), TSMC and 
SMC are used to perform trajectory tracking control of UGV under different linear and 
angular velocity references. Numerical simulation results demonstrate the efficiency and 
robustness of FOTSMC than to TSMC and SMC. 

2 Material and method 

Many parameters are taken into account for the number and arrangement of wheels to be 
used in the vehicle. However, the most important issues to be considered are the control 
mechanism of the wheels and the mechanical moment to be obtained. In this study, a 
non-holonomic UGV with one caster wheel at the front and two differential driving 
wheels at the rear is discussed. Many researchers have shown that this configuration is 
sufficient to stabilise the vehicle. The caster wheel at the front of the UGV is used to keep 
the vehicle in balance and reduce the load on the rear wheels. On the other hand, the rear 
differential driving wheels, are connected to independently controlled motors and provide 
the vehicle to change direction by moving the vehicle backward and forward. Thus, there 
is no need to use a separate motor for routing. This both reduces the cost and enables the 
size to be reduced. The illustration of the mentioned non-holonomic UGV is shown in 
Figure 1. 

In Figure 1, xI, yI is the global axis, xr, yr is the local axis, xA, yA is the coordinate 
components with respect to point A, A is the midpoint of the two wheels, C is the centre 
of gravity of the vehicle, r is the radius of the each used wheel, L is the distance of each 
wheel to point A, v is the linear velocity of vehicle, ω is the angular velocity of the 
vehicle, ωR and ωL are the angular velocity of the right and left wheel respectively, θ is 
the angle between the local and global axis and d is the distance between point A and C. 

To determine the position of UGV in its environment, two different coordinate axes 
called global axis (qI) and local axis (qr) are used and the transformation between the axes 
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is provided by the rotation matrix (R(θ)). These expressions are as specified in  
equation (1). 

cos sin 0
, , ( ) sin cos 0

0 0 1

I r

I I r r

I r

x x θ θ
q y q y R θ θ θ

θ θ

−     
     = = =     
          

 (1) 

Figure 1 Schematics of UGV 

 

3 Modelling of UGV 

Analysis of UGV’s mathematical model is the basis for controller design and obtaining a 
precise mathematical model is crucial to controller performance. The mathematical 
model of UGV is divided into kinematic and dynamic model. 

3.1 Kinematic model of UGV 

The purpose of kinematic modelling is to describe the relationship between the linear and 
angular velocity, position and angle of the UGV (Wang et al., 2020). The kinematic 
model of the UGV with the assumption that the wheel rolls without slipping and without 
pivoting on the ground constraints is as follows (Azzabi and Nouri, 2021). 

cos 0
sin 0 ( )

0 1

I
A

I I
A
I
A

x θ
v

q y θ S q η
ω

θ

   
    = = =           


 


 (2) 

The mathematical expression of the linear and angular velocities of the UGV can be 
expressed as a function of the linear and angular velocities of the left wheel and the right 
wheel and are calculated as follows. 

( ) ( )2 2R L R Lv v v r ω ω= + = +  (3) 

( ) ( )2 2R L R Lω v v L r ω ω L= − = −  (4) 
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The velocities of point A with according to the global coordinate axis are obtained in 
terms of the angular velocities of the right and left wheels by using the orthogonal 
rotation matrix as given below. 

cos cos
2 2

sin sin
2 2

2 2

I
A

RI I
A

LI
A

r rθ θ
x

ωr rq y θ θ
ω

θ r r
L L

 
 

   
    = =           

 −
  


 


 (5) 

3.2 Dynamic model of UGV 

The aim of the dynamic model is to express the relationship between linear and angular 
velocities, linear and angular acceleration of UGV motion (Wang et al., 2020). The 
dynamic equation of non-holonomic UGV is described as follows (Swadi et al., 2016). 

( )( ) , ( ) ( ) ( ) ( )T
dM q q V q q q F q G q τ B q τ A q λ+ + + + = −     (6) 

M(q) is the symmetric positive definite inertia matrix, ( , )V q q  is the centripetal and 
coriolis matrix, ( )F q  is the surface friction matrix, G(q) is the gravitational vector τd is 
the vector of bounded unknown disturbances including unstructured unmodelled 
dynamics, B(q) is the input matrix, τ is the input vector, A(q) is the matrix associated with 
the kinematic constraints, λ is the Lagrange multipliers vector, q, q  and q  denote 
position, velocity and acceleration vectors respectively. 

Assuming that vehicle moves in a horizontal plane and there is no surface friction, 
gravity and disturbance (Azzabi and Nouri, 2021). The resulting new equation is as 
follows. 

( )( ) , ( ) ( )TM q q V q q q B q τ A q λ+ = −    (7) 

For this, equation (2) and its derivative are obtained as follows. 

( )
( ) ( )

q S q η
q S q η S q η

= 
= + 


 

 (8) 

If equation (8) is substituted in equation (7) the following equation is obtained. 

( )[ ]( ) ( ) ( ) , ( ) ( ) ( )TM q S q η S q η V q q S q η B q τ A q λ + + = −     (9) 

Equation (9) in S(q) matrix is the null space of the A(q) matrix such that is given below. 

( ) ( ) 0T TA q S q =  (10) 

The dynamic equation of UGV, arranged by multiplying both sides of the equation (9) by 
S(q)T is obtained as follows (Chen et al., 2009). 

( ) ( , ) ( )M q η V q q η B q τ+ =     (11) 
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( ), ( , )M q V q q    and ( )B q  are obtained by using the following equations. 

( ) ( )
( ) ( ) ( ) ( )

, ( ) ( ) ( ) ( ) , ( )
( ) ( ) ( )

T

T T

T

M q S q M q S q
V q q S q M q S q S q V q q S q

B q S q B q

=


= + 
= 


  


 (12) 

The ( ), ( , )M q V q q    and ( )B q  matrices in equation (12) are obtained as follows, 

( ) ( )

( ) ( )

( )

2 2
2 2

2 2

2 2
2 2

2 2

2

2

4 4( )

4 4

0
2,

0
2

1 0
( )

0 1

w

w

c

c

r rI mL I mL I
L LM q

r rmL I I mL I
L L

r m dθ
LV q q

r m dθ
L

B q

 + + − 
 =
 − + +  
 
 
 =
 −  

 
=  
 




 





 (13) 

where I is the total equivalent inertia, Iw is the moment of inertia of each driving wheel 
with a motor about the wheel axis, m is the total mass of the UGV, mc is the UGV mass 
without driving wheels and actuators. If the matrices in equation (13) are substituted in 
equation (11), the dynamic equation of UGV is obtained as follows. 

( ) ( )

( ) ( )

2 2 2
2 2

2 2

2 2 2
2 2

2 2

0
4 4 2

0
4 4 2

1 0
0 1

w c

w c

R

L

r r rI mL I mL I m dθ
L L Lη η

r r rmL I I mL I m dθ
L L L

τ
τ

   + + −   
   +
   − + + −      
   

=    
   




  (14) 

Using equation (3) and (4), the equation (11) can be converted into an alternative form 
represented by the linear and angular velocities of the UGV, 

2 1

2 2
2

2 10 00
02 00

w

c

c
w

Im
v m dω v ur r
ω m dω ω L uLI I

rr

    +    −          + =                    +       




 (15) 

where u1 = τR + τL, u2 = τR – τL. τR is right motor torque and τL is the left motor torque. 
Equation (15) is the nonlinear model of UGV. The linearised dynamic model of UGV is 
as follows (Mevo et al., 2018). 
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2 1

2 2
2

2 10 0

2 00

w

w

Im v ur r
ω L uLI I

rr

    +          =            +       




 (16) 

3.3 Actuator modelling 

DC motors are generally used to drive the wheels of the UGV. Armature voltage (va) is 
used as control input in DC motors and the equations of armature circuit are expressed as 
follows, 

a
a a a a a

a b

m t a

m

div R i L e
dt

e K ω
τ K i
τ Nτ

 = + +
 =
 =


=

 (17) 

where Ra is the resistance of the armature, ia is the armature current, La is inductance of 
the armature, ea is the back electromotive force, Kb is the back electromotive force 
constants, ω angular velocities of the motor, τm is the motor torque, Kt is the torque 
constant, τ is the motor torque and N is the gear ratio (Dhaouadi and Abu Hatab, 2013). 

4 Controller design 

4.1 Kinematic controller 

The kinematic controller is used to estimate the linear and angular velocities of the UGV 
and is necessary for the asymptotic stability of the system. For the controller design, the 
position error is expressed as follows (Kanayama et al., 1990). 

[ ]
cos sin 0
sin cos 0
0 0 1

e

P e r A

e

x θ θ
e y θ θ q q

θ

   
   = = − −   
      

 (18) 

The kinematic-based control rule proposed by Kanayama et al. (1990) is expressed as 
follows, 

( )
cos

sin
r e x ec

r r y e θ ec

v θ k xv
ω v k y k θω

+  
=    + +   

 (19) 

where kx, ky, kθ are the positive gain constant. 
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4.2 Dynamic controller design 

4.2.1 Fractional order control 
The history of fractional calculus, which is an extension of full calculus dates back 300 
years. In the correspondence between L’Hospital and Leibniz in 1695, the basis for 
fractional calculus was laid. Although its history is so old the first studies were carried 
out in the middle of the 19th century. It was first used in 1958 with fractional calculus 
controllers. With the development of technology, developments in computational systems 
have increased the interest in fractional control and modelling. The fractional 
differentiator has a general notation as in equation (20) and allows us to calculate for 
non-integer degrees of the derivative or integral. Fractional calculus is the use of the 
degree of any real number instead of the integer degree of derivative or integral 
expressions. 

0

1 0

( ) 0

r

r

r
a t

t
r

a

d r
dt

D r

dt r−

 >

= =

 <



 (20) 

In this notation a and t are the limits of the operation and r ∈ R. Grünwald-Letnikov 
(GL), Riemann-Louville (RL) and Caputo definitions are the most commonly used 
fractional differential definitions (Podlubny, 1999). These definitions are shown in 
equation (21) (Caponetto et al., 2010), 

0
0

1

1

lim ( 1) ( )

1 ( )( ) 1
( ) ( )

1 ( ) 1
( ) ( )

t a
h

r j
h

j

tn
r

a t n r n
a

t n

r n
a

r t ah f t jh Z GL
j h

d f τD f t dτ n r n RL
n r dt t τ

f τ dτ n r n Caputo
r n t τ

− 
  

−
→

=

− +

− +


   − − − ∈      

= − < <
 Γ − −


 − < <

Γ − −







 (21) 

where for n – 1 < r < n, n is an integer value and Γ(x) is the Gamma function. Since 
fractional order differential equations do not have exact solution methods, Laplace 
transforms are performed first in order to be able to solve them. The most general 
fractional Laplace transform notation is as in equation (22) (Na et al., 2012). 

{ }
1 1

1
00

( )( ) ( )
n m k

r r k
a t m k

tk

d f tL D f t s F s s
dt

− − −

− −
==

 = −     (22) 

If all derivatives of the f(x) function are zero, the transformation can be expressed in a 
simple form as follows. 

{ }( ) ( )r r
a tL D f t s F s=  (23) 
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Then, solutions are realised by using approaches such as Carlson, Matsuda, Tustin, 
Simpson and Crone (Valerio and Costa, 2005). In this study, the Crone approach 
developed by Oustaloup and frequently used in the literature is discussed, 

1

1

1

N
znr

n
pm

s
ws j
s

w
=

+
=

+
∏  (24) 

where r > 0, N is the degree of approximation, j is constant, wzn and wpm are the lower and 
upper cut off frequencies, respectively. 

4.2.2 Sliding mode controller design 
SMC is a robust nonlinear control method that can be easily design and applied to 
nonlinear systems whose parameters change over time. SMC design consists of two step. 
In the first step, the sliding surface is determined. The PI type sliding surface is as 
follows, 

1

2
c c

s
s e e dt

s
 

= = + 
  β  (25) 

where β is a positive sliding constant, ec is the error vector that is expressed as the 
difference between reference and measurement value of trajectory, ec is expressed as 
follows. 

v c
c

ω c

e v v
e

e ω ω
−   

= =   −   
 (26) 

In the second step the control signal is produced. In order to obtain the control signal (u), 
first the equivalent control signal (ueq) and then the switching control signal (uq) are 
generated. These two control signals are then summed. The general SMC law can be 
defined as the given below. 

eq du u u= +  (27) 

4.2.3 Fractional order terminal sliding mode controller design 
Similar processing steps apply to the FOTSMC law design. Firstly, the terminal sliding 
surface is defined as follows (Venkataraman and Gulati, 1993), 

p q
c cs e e= + β  (28) 

where p and q are both positive odd integers. The fractional order terminal sliding surface 
is defined as in equation (29) (Dadras and Momeni, 2012), 

r p q
c cs D e e= + β  (29) 

where 0 < r < 1. In this study, the r value is determined by trial and error method. Then 
the control signal is obtained. For this, ueq must be obtained first. Since only the ueq is 
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valid when the system is on the sliding surface. The equivalent control signal is obtained 
when s = 0 and 0.s =  From equation (29), s  is determined as given below, 

( ) 1r p q
c c c

ps D e e e
q

−= +  β  (30) 

where the finite time ts taken from ec ≠ 0 to ec(ts) = 0 is expressed as follows. 

1 1 ( )

2

1 ( )
( )

s q p
s c r

s

t
t e t

t p q
− 

= =  −  β
 (31) 

In equation, tr is the time when of sliding surface reaches zero from an initial condition. 
In order to obtain Dr(D–rf(t)) = f(t) if the derivative of equation (30) is taken from order  
(–r) and if it equals zero the following equation is obtained (Podlubny, 1999). 

( ) 10 r p q
c c c

pe D e e
q

− −= + β  (32) 

Using equation (32), the ueq of the first and second controllers are obtained as follows. 

( ) 1
1 2

2
( ) 1

2 2

2

2

w r p q
eq c v v

r p q
eq w c ω ω

I pu r m v D e e
r q

r L pu I I ω D e e
L r q

− −

− −

   = + +       


   = + +      

 

 

β

β
 (33) 

The switching control signal is as in equation (34), 

sgn( )du k s=  (34) 

where k is a positive constant and sgn(s) is symbolic function defined by. 

1 if 0
sgn( ) 0 if 0

1 if 0

s
s s

s

− <
= =
 >

 (35) 

The FOTSMC signals can be rewritten as in equation (36). 

( )

( )

( ) 1
1 1 12

2
( ) 1

2 2 22

2 sgn

2 sgn

w r p q
c v v

r p q
w c ω ω

I pu r m v D e e k s
r q

r L pu I I ω D e e k s
L r q

− −

− −

   = + + +       


    = + + +        

 

 

β

β
 (36) 

4.3 Stability analysis 

4.3.1 Kinematic controller analysis 
For Lyapunov stability, the candidate function must be positive definite and its derivative 
must be negative definite. The candidate L function for Lyapunov stability analysis is 
proposed as follows (Mevo et al., 2018). 
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( ) ( )2 21 1 1 cos
2 e e e

y
L x y θ

k
= + + −  (37) 

The time derivate of L is obtained as follows. 

( )1 sine e e e e e
y

L x x y y θ θ
k

= + +     (38) 

Substituting the derivative of equation (18) and (19) in equation (38) the following 
expression is obtained. 

2
2 sin 0r θ e

x e
y

v k θL k x
k

= − − ≤  (39) 

Consequently, so that if 0rv ≥  then the L  is a negative definite function. That means 
uniformly asymptotically stability (Mevo et al., 2018). 

4.3.2 Dynamic controller analysis 
The proposed candidate Lyapunov function for the first controller is as follows. 

2
1 1

1
2

L s=  (40) 

The following equation is obtained by taking the derivative of equation (40). 

1 1 1L s s=   (41) 

If equation (30) is substituted in equation (41), the following equation can be obtained. 

( ) 1
1 1

r p q
v v v

pL s D e e e
q

− = + 
 

  β  (42) 

If the expression ve  is substituted in equation (42) the following equation is obtained. 

( ) ( ) 1
1 1

r p q
c v v

pL s D v v e e
q

− = − + 
 

   β  (43) 

If the expression v  obtained using equation (16) is substituted in equation (43) the 
following equation is obtained. 

1 ( ) 1
1 1

2
2

r p q
c v v

w

u pL s D v e e
I qr m

r

−  = − +     + 
    

  β  (44) 

If the expression u1 in equation (36) is substituted in equation (44) the following equation 
is obtained. 
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1 1( ) 1 ( ) 1
1 1

2

sgn( )
2

r r p q p q
c c v v v v

w

p k s pL s D v v D e e e e
Iq qr m

r

− − −   = − + − +        +      

    β β  (45) 

As a result, if equation (45) is rearranged, the expression given in equation (46) is 
obtained. 

( )1 1
1 1

2

sgn 0
2 w

k sL s
Ir m

r

= − <
 + 
 

  (46) 

As can be seen from equation (46), if the value of k1 is chosen positive and the candidate 
Lyapunov function itself is positive definite, the derivative of the Lyapunov function will 
be negative definite. This shows that the designed controller is stable. For the second 
controller, the same steps as in the first controller are applied and the expression given in 
equation (47) is obtained. It is seen from the equation that the second controller is also 
stable. 

( )2 2
2 22

2

sgn 0
2

w

k sL s
r LI I
L r

= − <
 + 
 

  (47) 

5 Simulation results 

In order to demonstrate the performance of the proposed controller, trapezoidal and 
sinusoidal signals are used as reference for linear and angular velocity, respectively. The 
simulation results are given in Figures 2–5. It can be seen from Figures 2 and 3 that 
FOTSMC follows the reference velocity faster and with lower error than TMSC and 
SMC. In addition, the improvements made by the proposed controller in the reference 
trajectory tracking error are given in Tables 1 and 2. In Table 1, the MAE results of the 
tracking performances of linear and angular velocities obtained using FOTSMC and 
SMC are given. FOTSMC appears to improve tracking error by about 13% over SMC. In 
Table 2, it is seen that the proposed FOTSMC approach improves the tracking error by 
approximately 6.146% compared to TSMC. It can also be seen from Figures 4 and 5 that 
the proposed controller produces control signals with smoother and lower amplitude 
chattering to follow reference velocities. 
Table 1 Mean absolute error (MAE) for reference tracking of FOTSMC and SMC 

Controllers 
The linear velocity tracking 
performance for trapezoidal 

reference 

The angular velocity tracking 
performance for sinusoidal 

reference 
FOTSMC 0.6291 0.1255 
SMC 0.7241 0.1399 
Total improvement 13.119% 10.293% 
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Table 2 MAE for reference tracking of FOTSMC and TSMC 

Controllers 
The linear velocity tracking 
performance for trapezoidal 

reference 

The angular velocity tracking 
performance for sinusoidal 

reference 
FOTSMC 0.6291 0.1255 
TSMC 0.6703 0.1279 
Total improvement 6.146% 1.876% 

6 Conclusions 

Firstly, a kinematic controller is designed to estimate the linear and angular velocities of 
the vehicle. Then, a FOTSMC design is carried out to track the vehicle reference 
velocities. The use of the kinematic controller and the FOTSMC controller together in the 
control of an UGV is the novelty of this study. In the study, trapezoidal linear velocity 
and sinusoidal angular velocity references are chosen for the trajectory tracking control of 
the UGV. In order to show the performance of the proposed controller, TSMC and SMC 
controllers are applied to the same system and the results are compared. The simulation 
results show that FOTSMC is more flexible than other controllers, has lower tracking 
error and is more efficient as it provides good robustness and accuracy. In addition, the 
control signals generated by FOTSMC to follow the reference velocities are smoother 
compared to other controllers and chattering is negligible. As a result, it has been shown 
that the trajectory tracking performance of the FOTSMC method is better than other 
controllers. 

Figure 2 The linear velocity tracking performances of controllers for trapezoidal reference  
(see online version for colours) 
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Figure 3 The angular velocity tracking performances of controllers for sinusoidal reference  
(see online version for colours) 

 

Figure 4 The control signals generated by controllers for linear velocity tracking  
(see online version for colours) 

 

Figure 5 The control signals generated by controllers for angular velocity tracking  
(see online version for colours) 
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6.1 Future works 

The controller proposed in this study has been tested in the simulation environment and 
on a vehicle with a known model. In future studies, it is desired to be tested in real-time 
on a vehicle with a similar configuration including disturbances and model uncertainties. 
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