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Abstract: Rice is one of the main crops grown in India and it is complicated for farmers to 
accurately classify rice diseases manually with their imperfect information. Thus, the automatic 
recognition of rice plant diseases is highly desired. Many methods are available and have been 
proposed for the rice plant diseases detection. The latest advances indicate that the use of CNN 
models can be very beneficial in such troubles. In this paper we have explored and trained 
various CNN models with the unique combinations of training and learning methods to enhance 
the accuracy. The most advanced large-scale architecture, such as VGG19, XceptionNet, 
ResNet50, DenseNet, SqueezeNet, and CNN are implemented with the baseline and transfer 
learning methods. These models are trained and tested on datasets collected from various 
sources. Experimental results show that the ResNet50 architecture achieved the highest accuracy 
of 97.5% as compared to other CNN architectures and existing literature. 
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1 Introduction 
In the current circumstance, the total populace keeps on 
rising quickly, while the developed land appropriate for 
development remains something similar. It powers farmers 
to show inventive strategies that further develop crop yields 

to support the expanding populace. Safeguarding the 
strength of yields is very basic in this regard. In this manner, 
early recognition of disease in crops is by all accounts 
exceptionally significant to screen illness and increment 
crop yield. 
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Plant health is closely related to food safety. The FAO 
(2017) concludes that the loss of global crops caused by 
pests or diseases is in between 20% to 40% in world food 
production and represents a threat to food sanctuary (FAO, 
2017). The use of pesticides is one way to protect crops 
from these violations or thus maintain yields. Though, the 
use of such a substance is not harmless to the environment. 
The application of these substances can have a negative 
impact on biodiversity, including insects, birds and fish, as 
well as on the quality of soil, air and water (Knillmann and 
Liess, 2019). Its use also represents a risk to human health, 
with acute and chronic effects (Kim et al., 2017). Though 
the number of bug juice used worldwide is escalating or 
active ingredients used increased by 78% between 1990 and 
2016 (FAO, 2018). 

2 Related work 
Early recognition of sicknesses in plants is perhaps the most 
difficult issues in farming. In the event that the diseases are 
not recognised in the beginning phases, they may 
antagonistically influence the total yield, bringing about a 
reduction in the farmers’ benefits. To beat this issue, 
numerous analysts have introduced distinctive cutting edge 
frameworks dependent on deep learning and machine 
learning advances. 

Iwendi et al. (2021) carries out an experimental analysis 
to find out the usefulness and overall performance of deep 
learning algorithms in indentifying affronts in social media 
comments. The deep learning models that have been used 
for experimental outcomes were bidirectional long  
short-term memory (BLSTM), gated recurrent units (GRU), 
long short-term memory (LSTM), and recurrent neural 
network (RNN). The results demonstrate that the BLSTM 
model achieved high accuracy and F1-measure scores in 
comparison to RNN, LSTM, and GRU. 

Chittathuru et al. (2021) examines ways to recognise 
malnutrition affected individuals and fat people by 
analysing BMI and body weight from facial images by 
proposing a regression method supported on the 50-layers 
residual network architecture. For face recognition,  
multi-task cascaded convolutional neural networks (CNNs) 
have been employed. A system is built to measure BMI in 
conjunction with age and gender from human facial  
real-time images. 

Five dissimilar tea tree diseases were identified from 
leaves. A neural network was trained using climatic 
parameters such as temperature, relative humidity, rainfall, 
or wind speed to predict the explosion of rice. Hughes and 
Salathé (2016) used deep CNN to detect leaf diseases, using 
54,306 images of 14 crops instead of 26 diseases, while 
Sladojevic et al. (2016) used the ResNet model to identify 
13 diverse types of plant diseases, Wang et al. (2017) used 
the plant village dataset to study the four stages of severity 
of apple black rot. They used CNN architectures with 
diverse depths or execute two different training techniques 
in each of the architecture. Kim et al. (2017) used deep 
learning to build a real-time tomato plant disease detector. 

Brahimi et al. (2017) used optimised AlexNet and 
GoogleNet to perceive nine tomato diseases. Cruz et al. 
(2017) insert some characteristics of texture or shape into a 
fully connected layer located after the convolutional layer, 
so that model can effectively detect Olive’s rapid decline 
syndrome from a set of limited data. Wiesner-Hanks et al. 
(2017) did not scale the image down or train model  
end-to-end, instead assume a three-stage architecture 
(consisting of multiple CNNs) and the stage was qualified to 
build a model in a full-size image by separating a single 
image into several smaller images. Barbedo et al. (2018) 
uses transfer learning (TL) on GoogleNet to detect 56 
diseases that infect 12 plants. Ferentinos (2018) used a data 
set of 87,848 images of leaves imprison in the laboratory or 
in the field to study 58 types of plants, including 25 
different plants. Reputable CNN that combined ideas of 
AlexNet and GoogLeNet to detect four apple diseases uses 
images of personality lesions or spots rather than images of 
whole leaves to identify 79 diseases of 14 plants. There are 
few studies on the classification of rice diseases (Liu et al., 
2017) behaviour and learning that detect ten unusual 
diseases of rice plants using a small manual architecture 
from CNN, which was inspired by 500 images, from 
previous deep learning frameworks (such as LeNet-5 or 
AlexNet). He used AlexNet (large-scale architecture) to use 
227 images to distinguish three types of normal rice plants, 
diseased rice plants, and snail-infested rice plants. 
Determining the healthiness of plants through images is a 
very complex task. Its evolution is constant, with leaves, 
flowers, or fruits that change throughout the season. Its 
emergence also modifies slightly during the day, because 
the amount of angle of incident solar radiation affects its 
spectral response. Either under controlled conditions or real 
conditions, a variety of techniques has been used to develop 
techniques for the identification of crop diseases. These 
technologies are especially based on the analysis of the 
reflectance of visible and near-infrared light, or the progress 
of specific vegetation indices even through analysis of 
models. These studies also found some issues that make it 
difficult to effectively use these technologies in the 
diagnosis of spontaneous diseases. Some of these problems 
are solvable and are connected to image availability, 
weather restrictions, application costs, availability, speed, or 
actual diagnostic capabilities. Analysing images in the field 
adds other issues, such as the ability to deal with complex 
elements such as leaves or their different origins. Other 
bottlenecks are associated with the severity of isolation 
problems, such as changes in symptoms over time and type, 
or the risk of multiple illnesses at the same time. 
Technology that can overcome these challenges is needed to 
produce automated disease diagnosis solutions. Deep 
learning architectures especially the data centre network 
(CNN), is highly effective in various computer vision tasks 
such as object detection or recognition, organisation and 
biometric recognition. The opposite layer of CNN can be 
viewed as a corresponding filter derived from the data. 
Thus, CNN can create a level of visual descriptions for 
specific jobs. The result of CNN training is to obtain a 
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model, a series of weights or biases, or then to respond to 
the specific tasks targeted by the model. One of CNN’s 
major advantages is its versatility, that is, the ability to 
organise data that has never been noticed before. This 
makes it resistant to background heterogeneity, image status 
or intra-class variability. However, the study of these 
products requires a great amount of training data. Given the 
multiple scales, a common problem with DNNs is their 
tendency to forget training data, which means they become 
free to select appropriate architecture for a particular 
difficulty or interpreting training results (produced by the 
black box) are other challenges facing CNN. For more 
information about CNN, Picon et al. (2019) studied three 
CNN architectures that combine metadata (such as product 
information) into an image-based filter network. This 
mingles the benefits of learning from multiple pieces of data 
while reducing the difficulty of disease organisation tasks. 
The park and disease classification system optimises all of 
the above methods. It eliminates 71% of the above methods 
by combining the facts’ data at the vector level to reach a 
value of 0.98, not a category. By using CNN’s growth 
characteristics, we get a richer or more robust visual image, 
with an average BAC of 0.98, which is better than the other 
method, or 71% of the time. Classification errors are 
removed. This demonstrates that other metadata can be 
easily incorporated into the in-depth learning model to 
achieve classification criteria that are superior to other 
methodological classification data. The proposed method 
uses all static information and data variables set without 
being affected by similar symptoms in plants. Sharma et al. 
(2020) work investigates possible solutions to this problem 
by training a CNN model using segmented image data. 
Compared to the F-CNN model trained with the full image, 
the S-CNN model trained with the segmented image 
doubled its performance when tested with independent data 
that even ten disease category models could not see before. 
98.6% accurate. Ramamurthy et al. (2020) investigate the 
plant village data set, which contains three ailments, namely 
early blight, late blight, and leaf mould. The planned work 
uses the attention mechanism, uses the characteristics 
learned by CNN in different processing hierarchies, and 
achieves an in general precision of 98% in justification set 
in a five-time cross-validation. Shunmugam and Dharmar 
(2020) proposed the use of an optimised deep neural 
network and Jaya’s algorithm to identify and classify rice 
leaf diseases. For image collection, images of normal rice 
plants with bacterial diseases, brown spots, pod rot and rice 
blight were captured directly from the farmland. In  
pre-processing, to remove background, the RGB image is 
transformed to an HSV image, or binary image is extracted 
according to hue or saturation part to segment diseased and 
non-diseased parts. 

The main constraint of two-stage instruction is that the 
entire data set must be manually divided into symptom 
categories. In large data sets, detecting all the important 
differences within a class is a very labour-intensive process. 
Some changes in symptoms are very likely to be missed. 
Minor changes in a particular category can be misread as 

disconnect symptoms. One probable solution is to use  
high-dimensional clustering algorithms on category-specific 
image sets to automate the procedure of recognising 
changes within the category. Confusion matrix produces by 
applying simple CNN on the whole data set (combining 
training or validation sets). 4.3% of the false smut images 
present in the data set is misclassified, maximum among all 
existing categories in this work. Compared to other existing 
images of pests and diseases, symptoms of false blight 
cover a small part of the whole image (captured on a 
heterogeneous background). The left and right columns 
respectively symbolise the production of the first stage or 
second stage of the simple CNN model. Each of the six 
images contains 16 two-dimensional micro-images with a 
size of 222 × 222 (output of first convolutional layer is a 
matrix with a size of 222 × 222 × 16). The output of the last 
convolutional layer of simple CNN has been produced with 
similar configurations. Each of these six images encloses 64 
two-dimensional thumbnail images with a size of 10 × 10 
(the last convolutional layer generates a matrix with a size 
of 10 × 10 × 64). Although some filters are blank (inactive), 
the first layer preserves the regional characteristics of the 
input image. Trigger retains almost all information present 
in the input image. The output of the final convolutional 
layer is visually difficult to understand. This depiction 
shows less information about the visual content of the input 
image. The transitional result of different categories is 
visually dissimilar for unusual categories. Compared to the 
second-stage model, the output of the final convolutional 
layer of the first stage model carries a much smaller number 
of blank two-dimensional thumbnail images. This shows 
that the second stage model has less efficient learning 
capacity. This helps simple CNN to get good precision and 
high precision after the second stage of training. Plant 
diseases are an important issue in agricultural production 
and if they cannot be discovered in time, they will have a 
negative impact on the yield and quality of crops as we all 
know, early detection and early warning are the foundation 
for effective prevention and control of plant diseases and 
plant diseases play an important role in management and 
decision-making. Many previous works have addressed this 
problem by processing plant leaf images and developing 
special categories to classify the samples. The reason plant 
leaf imagery was chosen as the analytical data is that plant 
leaf is often the first area of occurrence of most plant 
diseases (Garcia and Barbedo, 2016). With the help of 
computer science and technology (Garcia and Barbedo, 
2019), there are two methods: conventional machine 
learning and deep learning. Common machine learning 
algorithms used for disease recognition include K-nearest 
neighbours (KNN) (Singh and Kaur, 2018), support vector 
machines (SVM) (Naik and Sivappagari, 2016), rainforests 
(RF) (Chaudhary et al., 2016). However, these traditional 
methods have had a significant impact on the shape of the 
hand in various ways, such as histogram oriented gradient 
(HOG), scale invariant feature transform (SIFT), Gabor 
transformation, principal component analysis (PCA), etc. 
In-depth research techniques, particularly the network of 



 Rice plant diseases detection using convolutional neural networks 33 

genetic engineers (CNN), have gained considerable 
attention when creating agricultural images such as plant 
diseases and insects (Kamilaris and Prenafeta-Boldú, 2018) 
and (Li and Chao, 2020; Chen et al., 2020; Li and Yang, 
2020; Thenmozhi and Reddy, 2019). CNN’s model 
dominates the field of image processing research (Too et al., 
2019). This phenomenon has to be linked to CNN’s 
powerful investigative work, which can be applied 
immediately through the hair-raising layer. As we all know, 
a high-quality CNN-related layer can produce important 
features, such as edges, textures and colours. As the CNN 
layer deepens, the actions taken will become more abstract. 
Therefore, it is necessary to see if CNN depth is needed to 
diagnose plant diseases, or if CNN depth can provide 
sufficient form to deal with it. This algorithm is applied to 
high-end devices (such as GPUs and servers). To get better 
performance, the depth of the network will be deepened 
with multiple computational constraints, which consume a 
lot of resources and time. However, due to insufficient 
production capacity, high-quality materials may be 
unsuitable for field applications. In contrast, embedded 
software has better software for simplicity and cost (Castro 
et al., 2020). In addition, considering the satisfaction, low 
power consumption and low computational cost, the 
application of high-end mobile devices that maintain 
intelligent classification algorithms is a calming trend (Tao 
et al., 2020). Based on the above analysis, we hope to 
explore CNN’s ability to resolve the symptoms on the 
ground. In this article, we propose two methods to treat 
nuclear disease: SCNN-KSVM (CNN nonsense with SVM 
kernel) and SCNN-RF (CNN nonsense with sudden forest). 
The features of the plant images can be obtained 
immediately from nearby CNN, and then combined into 
traditional machine learning algorithms, such as the SVM 
kernel and abrupt forest When comparing machine learning 
classification algorithms, the SVM algorithm is an 
important classification algorithm that can avoid excessive 
reactions, and it is also one of the most widely used 
machine learning classification algorithms (Liakos et al., 
2018). Meanwhile, the forest dense algorithm has very good 
efficiency and speed (Liang et al., 2020). Therefore, SVM 
seeds and unselected forests were selected to classify the 
works produced by CNN. Our method is compared to other 
in-depth learning models with three different data sets. The 
facts show that our method is superior to other deep 
learning models in terms of accuracy, memory and F1 
numbers, while (Qi et al., 2020) have a lower score. When 
the duration of period data is short, the performance of the 
traditional data obtained from the SMF method will 
decrease. In contrast, the estimated duration of the proposed 
network is well consistent with the results of the soil survey, 
the primary level is 83.9%, and the total error (MAE) is 
0.18. For the estimated phonological period, the division of 
the space at harvest time of 627 plots in the study area was 
calculated. The predicted value corresponds well to the date 
of the harvest found. The results show that the in-depth 
analysis method has good success in determining the actual 
physical time and evaluating the harvest time. 

This article focuses on the accurate definition and 
classification of rice diseases. For this reason, various CNN 
architectures have been implemented, such as VGG19, 
XceptionNet, ResNet50, DenseNet, SqueezeNet and CNN 
were used. 

• The major contribution of this work is to develop a 
machine learning architecture that can accurately (with 
> 95% accuracy) identify and classify rice disease. 

• Comparative analysis of deep learning models that are 
commonly used for the detection of rice diseases. 

• Development of CNN based disease detection and 
classification model based on available datasets 

• Improvisation of the developed model to predict pest 
attacks with high level of precision. 

3 Different types of rice plant diseases 
• Leaf blast (LB): symptoms of this disease are dark 

spots with reddish-brown round spots and white or 
white or white centres (Kim et al., 2017). 

• Brown spot (BS): this disease occurs on rice leaves. The 
symptoms of the disease are round to oblong, and the 
lesions are yellowish (Kim et al., 2017). 

• Sheath blight (SB): this disease occurs on leaves and 
stems. Symptoms are an elongated, white or straw-like 
area in the centre with a reddish-yellow dot (Kim et al., 
2017). 

• Leaf scald (LS): the symptom is a narrow  
reddish-brown band. Sometimes the lesions are on the 
margins of the leaves, the margins yellow or gold (Kim 
et al., 2017). 

• Bacterial leaf blight (BLB): the lesions appear as thin, 
long leaf tips, which are several centimetres long, and 
the bacterial reaction varies from white to yellow (Kim 
et al., 2017). 

• Rice blast (RB): it is because of fungus Magnaporthe 
Orysa. White to gray-green lesions or spots, with dark 
green borders in an initial stage. More established 
injuries on the leaves are elliptical or spindle-shaped 
and whitish to gray centres with red to a brownish or 
necrotic border. Spots are usually lengthened and 
pointed at each end (Brahimi et al., 2017). 

• Sheath rot (SR): it is created by two fungal species, 
Sarocladium Orysa and Sacroladium attenuate. The 
typical Sheath rot injury starts at the uppermost leaf 
sheath encasing the little panicles. It seems oblong or as 
an asymmetrical spot with dark reddish, brown 
margins, and gray centres or brownish-gray all through. 
Usually, several spots are observed and these spots 
enlarge and merge or rise together and can cover up 
most of the leaf sheath. Panicles remain within the 
sheath or may partially emerge. Affected leaflets may 
have plentiful whitish powdery fungal growth 
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(mycelium) visible on the outer surface. Panicles that 
have not appeared rot and the florets turn red-brown to 
dark brown (Brahimi et al., 2017). Figure 1 images 
showing symptoms of various rice plant diseases and 
pests (Agrawal and Agrawal, 2020). In some images, 
the background is the surroundings of the field, and in 
some other images, the background is our hand or 
papers of different colours. Weather conditions are also 
different at different times. Some images have been 
captured in overcast conditions; some have been 
captured in sunny weather. False smut, stem borer, 
healthy plant class, sheath blight and/or sheath rot class 
have multiple types of symptoms. This proposed 
covered all the symptoms of these classes. Moreover, 
early-stage symptoms of Hispa and brown plant hopper 
are different from their later stage symptoms. 

Figure 1 Detected class of rice plant diseases, (a) bacterial leaf 
blight (disease) (b) brown plant hopper (pest)  
(c) brown spot (disease) (d) false smut (disease)  
(e) stemborer (pest) (f) Hispa (pest) (g) neck blast 
(disease) (h) sheath blight (disease) (i) sheath rot 
(see online version for colours) 

 
(a)  (b)  (c) 

 
(d)  (e)  (f) 

 
(g)  (h)  (i) 

4 Problem statement 
New technologies now playing a huge role in helping the 
farmers elevate their rice production. Farmers are looking 
into a faster and more reliable solution, a solution where 
they can easily take feasible action with their diseased rice 
crops. Most of the current plant leaf disease detection 
techniques are either classifying if the plant is diseased or 
they identify the diseased area of the leaf. The data provided 
is not big enough to allow the usage of a deep neural 
network which would provide a more accurate 
classification. The data set is considered very small, and 
images of different rice diseases look very similar, deep 
neural networks cannot be trained from scratch since the 
data is very small, shallow feature extraction produced 
around 80%. The challenge here is to use machine learning 
techniques, pre-trained deep learning models exist which 
can produce generic features for models such as VGG19, 

XceptionNet, ResNet50, DenseNet, SqueezeNet and CNN 
to not only classify if the rice plant is diseased or not but to 
also classify which disease it is and provide more accurate 
results. 

5 Methodology 
5.1 Rice plant disease detection by well-known deep 

learning architectures 
After the introduction of AlexNet (Castro et al., 2020) for 
image recognition, segmentation or classification, many 
next-generation DL models/architectures have been 
developed. This section presents an investigation on the 
classification of plant diseases using well-known DL 
architecture. Also, there are some connected works where 
new visualisation practices or modified/enhanced versions 
of DL architecture have been initiated to achieve better 
results. Among all of these, the plant village dataset has 
been widely used because it includes 54,306 images of 14 
dissimilar crops suffering from rice plant diseases. 
Additionally, they used various concert metrics to appraise 
the preferred DL model, as explained below. 

• Convolutional layer: the first layer of the CNN 
architecture is called the convolutional layer. It is used 
to learn the detection filters for basic features such as 
edges, corners, etc. It is the number of filters with a 
specific size that will convolve the input image. 

• Pooling/sub-sampling layer: the middle layer is the 
grouping layer, also called the sub-sampling layer. This 
layer helps to learn the filter that detects the part of the 
object. It helps to reduce the size of feature map space 
and is used to reduce the number of parameters. They 
perform three types of functions, namely, maximum 
group, average group, and sum group: 

• Max pooling: this function takes the maximum value in 
a given filter area. 

• Average pooling: this function gets the average value in 
the filter area. 

• Sum pooling: this function summarises all the elements 
of the feature map. 

• Fully connected layer: the last layer in the architecture 
is called the fully connected layer. This layer has a 
higher representation. This helps to learn to recognise 
whole objects of different shapes and positions. It takes 
the results of the convolutional layer and the grouping 
layer, processes them, and uses them to classify the 
image to be labelled. 

• SqueezeNet architecture: this architecture was 
proposed by Iandola et al. (2016). He uses three main 
strategies to improve the effectiveness of the traditional 
CNN network. First, most of the filters used in a 
network are 1 × 1 rather than 3 × 3; this greatly reduces 
the number of network values. Second, it reduces the 
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number of channels entering the 3 × 3 filter. This 
method also significantly reduces the number of 
network weights. Third, create a network block 
afterward on a larger activation map. The proposed 
hypothesis is that there is a direct relationship between 
the size of the activation map by down sampling and 
the accurate final classification results. Another 
important strategy to significantly reduce the number of 
network weights is to remove the commonly used thick 
layer in the last layer of the network and replace it with 
a convolutional layer with the same number of output 
channels. By the number of data classes, followed by 
the flight and softmax activation function. 

• ResNet-50: in the last two CNNs, what we have seen an 
increase in the number of layers in a form and 
achieving better performance. But as the depth of the 
network increases, the accuracy rate gradually 
increases, and then decreases rapidly. People at 
Microsoft Research have used ResNet to solve this 
problem by tracing the connections (also known as 
short, residuals), and in the meantime building a more 
in-depth model. The ResNet architecture is one of the 
first contributors to batch normalisation. A deeper CNN 
mixed with more layers will address the problem of 
loss of gradients. To solve this problem, an additional 
model that has been trained with additional layers is 
used to implement the identity map. The efficiency of 
deeper networks and lighter networks should be the 
same. The remaining study structure was proposed as a 
solution to the problem of impairment. Therefore, the 
remaining map (H(x) = F(x) + x) instead of the required 
base plate (H(x)) is inserted into the network and is 
called a model. 

• VGG-19: the visual geometry group network 
(VGGNet) is a deep-seated network with multiple 
operating layers. VGGNet is based on the CNN model 
and is applied to ImageNet advertising (Singh and 
Kaur, 2018). VGG-19 is necessary for its simplicity, as 
a 3 × 3 convolutional layer is placed on top of it to 
increase its depth. To reduce the size, the topmost 
collection layer is used as the processing program in 
VGG-19. Two fully connected layers are applied to 
4,096 neurons. In the training process, the 
convolutional layer is used for feature extraction, and 
the topmost delineation layer is associated with some 
convolutional layers to reduce refinement of features. 
In the first Convolutional layer, 64 kernels (3 × 3 filter 
size) are applied to remove shapes from the input 
image. A fully integrated layer is used to prepare the 
featured content. 

• Xception: dedicated to himself by François Cholet, the 
creator and chief maintainer of the Keras library. 
Xception is an extension of the Inception architecture. 
It replaces the traditional Inception model with a 
convolution that can be viewed separately. Xception 
has the smallest serialisation value, only 91MB. 

• DenseNet: DenseNet is one of the discoveries in neural 
networks for visual object recognition. DenseNet is 
quite similar to ResNet with some fundamental 
differences. ResNet uses an additive method (+) that 
merges the previous layer (identity) with the future 
layer, whereas DenseNet concatenates (.) the output of 
the previous layer. n output of the previous layer acts as 
an input of the second layer by using composite 
function operation. This composite operation consists 
of the convolution layer, pooling layer, batch 
normalisation, and non-linear activation layer. These 
connections mean that the network has L(L + 1)/2 direct 
connections. L is the number of layers in the 
architecture. The DenseNet has different versions, like 
DenseNet-121, DenseNet-160, DenseNet-201, etc. The 
numbers denote the number of layers in the neural 
network. 

5.2 Training and evaluation phases 
If time or computing property allows, using the same 
hyperparameters for multiple training sessions can improve 
accuracy, as random initialisation can affect results. When 
comparing hyperparameters, it is recommended to consider 
fixed random number generators to avoid skewing the 
comparison, which is also desirable. Testing more than one 
nature of architecture can also play an optimistic role. To 
obtain the same precision, it is more advantageous to choose 
the least complicated architecture from a prepared  
point of view. If related, TL is suggested to recover  
computational time or generalise ability. After correcting all 
hyperparameters, the model must be retrained by combining 
the images previously used for preparation or validation  
into the overall training set. In fact, previously all 
hyperparameters are defined; it is no longer necessary to 
maintain the validation set. So it’s worth using this global 
training set to try to recover exactness one last time (i.e., no 
post-adjustment to any hyperparameters). The retrained 
model can be evaluated on test apparatus. The visualisation 
step is also imperative because it helps to better recognise 
what is happening in the model or to ensure the toughness 
of the results. This advance can also supply opportunities to 
recover routine. 

• Basic training: in this process, we train all the layers 
from scratch. We initialise all the layers at random or 
train them from graze. This training method takes a 
long time to converge but produces pretty good 
accuracy. We denote this preparation process as BT. 

• Fine tuning: fine-tuning is a way of utilising TL. 
Specifically, it is a process that takes a model that has 
already been trained for one given task and then tunes 
the model to make it perform a second similar task. In 
this training method, we keep the net weight of 
pertained image of the convolutional layer unchanged. 
We just aimlessly initialise weights of compactly 
related layers. Then we train all the layers to a junction. 
It should be noted that the convolutional layer is trained 
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based on the net weights of the pertained image, while 
the dense layer is trained based on the arbitrarily 
initialised weights. We denote this technique as FT. 

• Transfer learning: TL occurs when we use knowledge 
that was gained from solving one problem and apply it 
to a new but related problem. For example, knowledge 
gained from learning to recognise one class of vehicle 
could be applied in a problem of recognising another 
class of vehicle with similar features. In this method, 
we do not train the convolutional layer of the CNN 
architecture at all. Instead, we retain the previously 
trained image network weights. We only train dense 
layers from erratically initialised weights. We denote 
this process as TL. 

5.3 Dataset collection 
The rice plant disease image data collection was obtained 
from various sources. All images are marked with 
categories or saved in JPG format. The background 
condition of the image is difficult and the intensity of the 
illumination is uneven. For further calculations, first use 
Photoshop tools to render these images into RGB models, 
and then adjust the size of the images. These images of rice 
disease mainly include rice pile burns, rice leaf burns, rice 
leaf blight, white rice sprouts, and rice leaf bacterial stripes. 
The general process of our rice disease detection method is 
as follows: First, collect and label image samples of rice 
disease to the knowledge of experts in the field; then 
perform image resizing, image sharpening and image edge 
fill on the acquired images. Internal image dispensation 
knowledge and the use of rotation and translation data 
enhancement methods has been used to generate new 
sample images to enrich data set to generate the expanded 
data set; then the sample image is entered into the proposed 
model training method. 

Rice pests or diseases occur in unusual parts of rice 
plants. Its incident depends on many features, such as 
warmth, humidity, rainfall, rice varieties, seasons, nutrition, 
etc., and then the task of collecting data at the field level is 
long or arduous task. 

Classifications considered: we have a total of ten rice 
disease ailment classifications. Symptoms of dissimilar 
diseases can be observed in dissimilar parts of the rice plant, 
such as leaves, stems, or grains. There is bacterial leaf 
blight, brown spot, sheath blight rot1, sheath blight rot2, 
sheath blight rot3, stemborer, false smut1, neck blast1 and 
healthy class. We have measured all these parts when 
incarcerating the image. 1,584 images were taken for the 
bacterial blight and 1,308 images were taken from the 
Tungro class (Sethy et al., 2020). To prevent the model 
from mystifying dead and diseased parts of rice plants, we 
together enough images of dead leaves, stems, and grains of 
rice plants. In the category of plant health, images of dead 
spots of plants are considered. We consider nine classes in 
total. Example images for each category are provided in 
Figure 1. Images have been collected from (Chowdhury  
et al., 2020) research paper, the author collected datasets in 

a real-life scenario with heterogeneous backgrounds from 
December 2017 to June 2018 for a total of seven months. 
The image collection has been performed in a range of 
weather conditions – in winter, in summer and in the 
overcast condition to get as fully representative a set of 
images as possible. Four different types of cameras have 
been used by (Chowdhury et al., 2020) in capturing the 
images. There are nine different classes of diseases with one 
class of healthy images. The class names along with the 
number of images collected for each class are shown in 
Table 1. Note that sheath blight, sheath rot and their 
simultaneous occurrence have been considered in the same 
class because their treatment method and place of 
occurrence are the same. 

5.4 Proposed approach 
We use some modern CNN architectures, such as VGG19, 
XceptionNet, ResNet50, DenseNet, Mobile SqueezeNet and 
CNN. The simple CNN is a CNN using a 3 × 3 convolution 
filter. After each maxpool layer, the number of difficulty 
filters is doubled in VGG19. In each initial block, 
convolution filters of various sizes and groupings are used 
in parallel input. Before providing the output, connect them 
in series across their channels. In addition to the direct 
connections from the top layer, you also have jump 
connections from top layer. XceptionNet, SqueezeNet 
combines the parallelism concept of the Inception 
architecture with the jump connection of the DenseNet 
architecture, and each layer connects directly to other layers 
in the form of feedback (within each dense block). For each 
layer, feature maps from all previous layers are considered 
disconnect inputs and their characteristic maps are passed as 
the input from all following layers. In addition, we use 
different learning and training methods for each of the 
architecture. 

Table 1 Image collection of different classes 

Class name No. of collected images 

Bacterial blight 1,584 
Bacterial leaf blight (BLB) 138 
Brown spot 111 
False smut 93 
Healthy 180 
Hispa 73 
Neck blast 286 
Sheath blight 1, 2, 3 219 
Stemborer 201 
Tungro 1,308 

6 Experimental evaluation 
We have qualified our dataset using the latest five CNN 
architectures. They are – VGG19, XceptionNet, ResNet50, 
DenseNet, and SqueezeNet. We have used baseline learning 
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and TL with these CNN architectures. To evaluate our 
method with existing methods, we train the model for the 
data set. If the image size is set to 224 × 224, the precision 
of the test set is%. The image size declares is 512 × 512. 
This image size can provide less than 30% verification and 
proof accuracy. Here, we can see that when we adjust the 
previously trained ImageNet weights, all of our 
architectures give the best precision in the test set. On other 
hand, we did not train various layers of innovative 
convolutional planning in TL. Therefore, the model may not 
be able to capture all individuality of the data set. To get the 
best presentation changes from each architecture (that is 
when we adjust the architecture), the verification precision 
and the test precision are very high. Rice images are used 
which are taken from (Chowdhury et al., 2020) and some of 
the images are collected from the Kaggle dataset. 

Stochastic gradient descent with momentum (SGDM), 
adaptive moment estimation (ADAM) and root mean square 
propagation (RMS propagation) techniques are used for 
training. Performances are examined for the study. 

SGDM and its variants are the optimisation method of 
choice for many large-scale learning problems including 
deep learning (Barbedo et al., 2018). Momentum is a 
method that helps accelerate SGDM in the relevant 
direction and dampens oscillations (Ramamurthy et al., 
2020). The momentum term is set to 0.9. As a result, 
momentum obtains faster convergence and reduced 
oscillation. 

ADAM is an optimisation algorithm. It can be used 
instead of stochastic gradient descent to update network 
weights (Sladojevic et al., 2016). This technique computes 
adaptive learning rates for each parameter. Additionally, 
ADAM keeps an exponentially decaying average of past 
gradients similar to momentum (Ramamurthy et al., 2020). 
ADAM is a popular algorithm in the field of deep learning 
because it achieves good results quickly (Sladojevic et al., 
2016). 

RMS Propagation obtains parameter learning rates that 
are adapted based on the average of recent magnitudes of 
the gradients for the weight. This means the algorithm is 
successful for online and non-stationary problems 
(Sladojevic et al., 2016). RMS propagation divides the 
learning rate by an exponentially decaying average of 
squared gradients (Ramamurthy et al., 2020). 

6.1 Experimental setup 
All experimental studies were conducted on a 64-bit 
machine with Windows 10 operating system running on 
Intel i5 processor @ 2.20GHz and 16 GB RAM with 500 
GB SSD. MATLAB 2019B was used for coding.  
Pre-trained models were used from deep learning library. 

Table 2 shows the number of parameters used for each 
of the five architectures alongside simple CNN architecture. 

 

 

Table 2 Number of parameters in state-of-the-art CNN 
architectures 

CNN architecture Number of parameters 

VGG19 144 million 
SqueezeNet 5 million 
ResNet50 23 million 
DenseNet 20 million 
XceptionNet 60 million 
Simple CNN 10 million 

Our work aims to use deep CNNs to efficiently perceive 
eight types of pests and diseases that influence rice and 
healthy rice. An overview of our organisation is shown in 
Figure 2. We collected a large dataset from nature by 
capturing images of infected rice plants. We have ten 
categories: nine disease categories and one healthy plant 
category. We annotate images by placing images from 
different categories in separate folders to train our CNN. 
We aimlessly sample 70% of all images from each class and 
include them in the training set. Similarly, the other 15% of 
the images in each category are placed in the verification set 
and the remaining ones are placed in the test set. We then 
use different intensity conversion or image enhancement 
techniques to increase the number of images in the training 
set tenfold. The model in Table 1 shows the number of 
images in each category in the training set, validation set, or 
test set. All images are sized 224 × 224 pixels. We 
determine the CNN architecture performance evaluation 
indicators from the overall structure and identified the 
hyperparameters, adjust these hyperparameters, or set the 
situation for the research. Figure 2 showing the confusion 
matrix for the entire dataset used for training. 

We have trained our dataset using next-generation CNN 
architectures. They are VGG19, XceptionNet, ResNet50, 
DenseNet, SqueezeNet and simple CNN to compare our 
method with the existing recognition methods of 
(Chowdhury et al., 2020). 

After training of each model we get the classification 
layer output for each model like weighted 1,000 * 4,096 
fully connected layer output getting in VGG-19 model, 
weighted 1 * 1 * 1,000 fully connected layer output getting 
in SqueezeNet model. Weighted 1 * 1 * 1,920 fully 
connected layer output getting in DenseNet model. 
Weighted 1,000 * 2,048 fully connected layer output getting 
in InceptionNet model. Weighted 1,000 * 2,048 fully 
connected layer output getting in ResNet model. Weighted 
1,000 * 4,096 fully connected layer output getting in 
InceptionNet model. They are simple CNN models. Each of 
the six images contains two 16-dimensional thumbnails with 
a size of 222 × 222 (the end of the first coordinate field is a 
matrix of the same size 222 × 222 × 16). The six images 
contain 64 double-dimensional images with a size of 10 × 
10 (the output of the last convolutional layer is a matrix 
with a size of 10 × 10 × 64). 

 



38 M. Agrawal and S. Agrawal  

Figure 2 Confusion matrix of dataset (see online version  
for colours) 

 

The first layer retains the peripheral properties of the input 
image, although there are some filters. Activation stores 
almost all of the information found in the introductory 
image. The exit of the last convolutional layer is not easy to 
understand. This representation defines a lack of visible 
internal information about the introductory image. Instead, 
this layer attempts to display information related to the 
image category. For different classes, the median results 
with different classes differ in visibility. The release of the 
final proposal of the first model yields a slightly less mixed 
image than the second phase model which demonstrates the 
ability to learn fewer features. This helps CNN achieve high 
accuracy and precision after the second phase of training. 
To improve the ability of deep neural networks, the most 
direct way is to increase the depth of the network. However, 
as the depth of the network width increases, there are too 
many internal dimensions, which results in more resource 
consumption. Therefore, in order to overcome these 
problems, Sladojevic et al. (2016) introduced the Inception 
model into the GoogleNet architecture and then completed 
an impressive performance and read the record as the 
winner of the ImageNet ILSVRC Challenge. The first 
model consists of an upper layer and a corresponding plate. 
The sizes of the mixed layers were 1 × 1, 3 × 3 and 5 × 5, 
which were combined. Between two 1 × 1 separate layers, a 
max-pooling layer is used to reduce the dimensionality, and 
a concatenation filter is required to mix the different layers. 
DenseNet connects the outputs of all layers to the barriers 
that all layers insert into it. The thick barrier is the repetition 
of batch normalisation, ReLU, 1 × 1 convolution, batch 
normalisation, ReLU, and 3 × 3 convolution over a period 
of time, as we see the three layers block. Each time after the 
thick barrier, the translation layer reduces the size as a  
1 × 1. 

7 Result and discussion 
Process performance is precisely based on concert 
indicators such as precision, sensitivity, specificity, or time 
consumption. Performance measure: in our data set, the 
sample size is fairly isolated among 11 categories. When the 
sample size is not biased towards any particular category, 
precision is a good performance indicator. 

• TP – is the total number of properly categorised 
prospects (true positives). 

• TN – is the total number of poorly classified prospects 
(true negative numbers). 

• FN – is the total number of false rejections, which 
represents the number of false pixels of foreground 
pixels classified as background (false negatives). 

• FP – is the total number of false positives, which 
means that pixels are mistakenly classified as 
foreground (false positives). 

• Accuracy: in the field of material retrieval, accuracy is 
the number of recovered documents related to the 
query. A test technique is supposed to be precise when 
it estimates what it supposed to estimate. It is the ratio 
of correctly labelled predictions to the total number of 
predictions. 

Accuracy Correct number of predictions
/ total number of predictions

=
 

Accuracy (TP TN) / (TP FP TN FN)= + + + +  

• Specificity: specificity is distinct as a proportion of 
definite refusals that can be predicted as negatives (or 
true negatives). 

( ) / ( + )Specificity TP TN FP=  

• Precision: precision is used with the retrieval rate, 
which is the percentage of all relevant documents 
returned by the search. A test technique is supposed to 
be precise when repeated determinations (analyses) on 
the same sample give similar results. 

( ) / ( + )Precision TP TP FP=  

• Recall (sensitivity): recall is the ratio of correctly 
positive identified subjects by test against all positive 
subjects in reality. 

/ ( + )Recall TP TP FP=  

• F1 score: F1 score considers both precision and recall. 

1 2*( ) / ( )F Score Recall Precision Recall Precision= ∗ ∗  

Figure 3 shows the interface for learning and training 
method used. 

Figure 4 shows the interface for different CNN models 
used for rice disease detection. 

Figure 5 shows the input images and Figure 6 shows the 
corresponding segmentation images. 
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Figure 3 Learning and training method (see online version  
for colours) 

 

Table 3 showing the quantitative performance of the 
different CNN models with different learning algorithms 
and training methods. In case of the VGG-19 model for 
baseline learning method with SGDM training method the 
accuracy has come 90%, for ADAM, accuracy has come 
92%, for RMS propagation accuracy has come 85%. In case 

of the TL method with SGDM training method the accuracy 
has come 90%, for ADAM accuracy has come 92%, and for 
RMS propagation accuracy has come 97.45%. 

Figure 4 Implemented CNN models (see online version  
for colours) 

 

 

Figure 5 Input images (see online version for colours) 

 

Figure 6 Segmentation images (see online version for colours) 

 

 
 

 

 



40 M. Agrawal and S. Agrawal  

Table 3 Quantitative performance of different CNN 
architectures 

Deep learning 
architecture 

Learning 
method Training method Validation 

accuracy 

VGG 19 Baseline SGDM 90% 
ADAM 92% 

RMS propagation 85% 
Transfer 
learning 

SGDM 90% 
ADAM 92% 

RMS propagation 97.25% 
SqueezeNet Baseline SGDM 95% 

ADAM 89% 
RMS propagation 92% 

Transfer 
learning 

SGDM 89% 
ADAM 85% 

RMS propagation 96% 
ResNet50 Baseline SGDM 92% 

ADAM 93% 
RMS propagation 94% 

Transfer 
learning 

SGDM 96% 
ADAM 97.50% 

RMS propagation 94% 
DenseNet Baseline SGDM 92% 

ADAM 91% 
RMS propagation 90% 

Transfer 
learning 

SGDM 90% 
ADAM 94.50% 

RMS propagation 86% 
XceptionNet Baseline SGDM 93% 

ADAM 94% 
RMS propagation 93% 

Transfer 
learning 

SGDM 91% 
ADAM 96.50% 

RMS propagation 93% 
CNN Baseline SGDM 93% 

ADAM 91% 
RMS propagation 86% 

Transfer 
learning 

SGDM 91% 
ADAM 86% 

RMS propagation 95% 

In the case of the SqueezeNet model, the accuracy for the 
baseline learning method with SGDM training method the 
accuracy has come to 95%, for ADAM the accuracy has 
come 89%, for RMS propagation the accuracy has come 
92%. In the case of TL method with the SGDM training 
method the accuracy has come to 89%, for ADAM the 
accuracy has come 85%, and for RMS propagation the 
accuracy has come 96%. 

Table 4 Comparison of proposed model with existing 
techniques 

Reference Year 
Deep 

learning 
architecture 

Learning/ 
training method Accuracy 

Hu et al. 2019 SVM Deep learning 90% 
Garcia and 
Barbedo 

2019 CNN Transfer 
learning 

85% 

Picon et al. 2019 CNN Learning 
algorithm 

93% 

Yang et al. 2020 CNN SGDM 83.9% 
Sambasivam 
and Opiyo 

2020 CNN Deep learning 93% 

Rahman  
et al. 

2020 Deep 
learning 
models 

Baseline/ 
transfer learning 

95% 

Proposed 
techniques 

VGG-19 Transfer 
learning/RMS 

97.25% 

SquuezeNet Transfer 
learning/RMS 

96% 

ResNet50 Transfer 
learning/ADAM 

97.50% 

DenseNet Transfer 
learning/ADAM 

94.50% 

XceptionNet Transfer 
learning/ADAM 

96.50% 

CNN Transfer 
learning/RMS 

95% 

In case of the ResNet50 model, the accuracy for baseline 
learning method with SGDM training method has come to 
92%, for ADAM the accuracy has come 93% and for RMS 
propagation the accuracy has come 94%. In case of TL 
method with SGDM training method the accuracy has come 
96%, for ADAM the accuracy has come 97% and for RMS 
Propagation the accuracy has come 94%. 

In case of the DenseNet model the accuracy for baseline 
learning method with SGDM training method has come 
92%, for ADAM the accuracy has come 91% and for RMS 
propagation the accuracy has come 90%. In case of TL 
method with SGDM training method the accuracy has come 
90%, for ADAM the accuracy has come 94.5% and for the 
RMS propagation the accuracy has come 86%. 

In the case of XceptionNet model, the accuracy for the 
baseline learning method with SDGM training method has 
come 93%, for ADAM the accuracy has come 94% and for 
RMS propagation the accuracy has come 93%. In case of 
TL method with SGDM training method the accuracy has 
come 91%, for ADAM the accuracy has come 96.5% and 
for RMS propagation the accuracy has come 93%. 

In case of the CNN model the accuracy for baseline 
learning method with SGDM training method has come 
93%, for ADAM the accuracy has come 91% and for RMS 
propagation the accuracy has come 86%. In case of TL 
method with SGDM training method the accuracy has come 
91%, for ADAM the accuracy has come 86% and for RMS 
propagation the accuracy has come 95%. 
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In Table 3, for each of the architecture, the best 
accuracy achieved has been mentioned in bold character. 

Table 4 showing the quantitative performance of 
proposed architectures with the previous work done by 
different authors. The proposed models are compared with 
the other deep learning model. After the training and testing 
process, we have found that the ResNet50 model gets higher 
accuracy as compared to other models. 

8 Conclusions 
We have proposed a rice disease detection classifier based 
on deep CNNs. We have conducted an extensive 
investigation on rice plant diseases which includes nine 
types of rice diseases, pests and healthy plants. We have 
used a dataset of different rice plant diseases consisting of 
4,193 images. We apply agricultural knowledge to solve the 
problem of the classification of rice diseases. We use 
various types of CNN architectures and implemented the 
unique combination of various training and learning 
methods in each of the architectures. In this paper, we 
evaluated the performance of five different CNN 
architectures namely VGG-19, SqueezeNet, ResNet50, 
DenseNet, XceptionNet and simple CNN. TL and baseline 
methods have been implemented on these architectures on 
the dataset collected from various sources. The 
experimental result shows that the ResNet50 model 
achieved the highest accuracy as compared to other CNN 
architectures and existing literature. We have been able to 
successfully discriminate among within-class variations of 
diseases and rice plants in complex environments. The 
verification precision and test precision of most CNN 
architectures are very high because of our training, 
verification and testing. We plan to combine location, 
climate and soil data, or images of diseased plant parts to 
develop a complete or automated plant disease detection 
mechanism. Due to a large number of parameters, our CNN 
architecture is very large. We plan to make efforts to 
achieve a high-efficiency classification accuracy of plant 
diseases and insect pests and deploy them with efficient 
CNN architecture. Our model is 98.2% accurate on 
independent test images. Also, due to the reduced number of 
network parameters, our model is efficient for memory 
storage. Although the precision is higher, our goal is to 
recover the reliability or robustness of the model in 
dissimilar data sets from other regions. When the 
background is complex and the lighting conditions change, 
we will classify the picture of rice leaf disease because 
categorisation accuracy is an imperfect explanation of most 
real-world tasks. In future, we intend to deploy the hybrid 
approach for the two or more models in which we have 
obtained the highest accuracy. One can also implement 
these architectures with lesser number of training 
parameters. Moreover a large dataset can also be used to 
achieve higher accuracy. This will help developing models 
that can make more accurate predictions in difficult 
environments. 
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