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Abstract: Nature-inspired algorithms are a relatively recent field of  
meta-heuristics introduced to optimise the process of clustering unlabelled data. 
In recent years, hybridisation of these algorithms has been pursued to combine 
the best of multiple algorithms for more efficient clustering and overcoming 
their drawbacks. In this paper, we discuss a novel hybridisation concept where 
we combine the exploration and exploitation processes of the vanilla bat and 
vanilla whale algorithm to develop a hybrid meta-heuristic algorithm. We test 
this algorithm against the existing vanilla meta-heuristic algorithms, including 
the vanilla bat and whale algorithm. These tests are performed on several single 
objective CEC functions to compare convergence speed to the minima 
coordinates. Additional tests are performed on several real-life and artificial 
clustering datasets to compare convergence speeds and clustering quality. 
Finally, we test the hybrid on real-world cases with unlabelled clustering data, 
namely a credit card fraud detection dataset, and a COVID-19 diagnosis 
dataset, and end with a discussion on the significance of the work, its 
limitations and future scope. 

Keywords: nature-inspired algorithms; cluster analysis; vanilla whale; vanilla 
bat; optimisation algorithms. 
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1 Introduction 

In the present-day world, there is a lot of raw data, most of which is unlabelled. Data is 
being produced at a much faster pace than it can be analysed. One of the best to process 
such unlabelled data can be done by grouping the data based on the common features. 
Unsupervised learning is one of the best ways in ML, which helps us to analyse the 
unlabelled data. Clustering is one of the best ML algorithms which allow us to group 
unlabelled data. Even though the modern-day clustering algorithms are an efficient way 
to group the data, they need not be the best in class since they were defined a few years 
back. A recent trend is taking inspiration from nature and the environment to solve the 
optimisation problem of the clustering algorithms. A more advanced and optimal way of 
solving these clustering issues is to combine the existing nature-based algorithms 
(Agarwal and Mehta, 2014) to create a hybrid algorithm (Ezugwu, 2020) that better 
optimises the model. In this project, we look into implementing a hybridised algorithm  
of two or more nature-based algorithms, which can be used as an optimiser for the 
clustering model to improve the accuracy. 

Clustering techniques are generally classified into three main classes: partitional, 
overlapping and hierarchical. The latter two are linked in which hierarchical clustering is 
a nested classification of partition clustering. Therefore, they present poor performance 
when the separation of overlapping clusters is conducted. Optimisation is required to 
have better accuracy in clustering. Hence in this paper, we propose and design a hybrid  
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nature-based heuristic algorithm inspired by the bat optimisation algorithm (Yang and 
He, 2013) and whale optimisation algorithm (WOA) (Mirjalili and Lewis, 2016). We 
infer this novel algorithm on several CEC objective functions, a set of artificial and  
real-world labelled clustering datasets, and also on a few unlabelled real-world datasets, 
to compare its performance against its corresponding vanilla versions (Yang and He, 
2013; Mirjalili and Lewis, 2016), and also against other nature-inspired, meta-heuristic 
algorithms (Oduntan and Thulasiraman, 2018). 

Modern-day problems require quick and accurate solutions, and in certain scenarios, 
are also constrained with respect to resource utilisation. Hence, providing an accurate 
solution in lesser time and budget constraints become a necessity. The hybrid proposed in 
this work aims to achieve the same by converging the result faster, fewer iterations, and 
more accurately than normal meta-heuristic algorithms. 

2 Literature survey 

Cluster analysis is a crucial tool in the mining of data. Clustering is the process of 
organising objects into groups whose constituents have similar features and are unique to 
the data points in other groups. Several clustering algorithms introduced have been 
pivotal to the success of this method. However, traditional clustering algorithms depend 
on preliminary data such as the number of clusters and may struggle to deal with 
obstacles where the number of clusters is unknown. This lack of information results in 
expanding computational burdens. However, these simulate various types of real-world 
problems where the number of clusters in data cannot be easily distinguished. The most 
commonly used clustering algorithm is the k-means, used to solve many clustering 
problems. Heuristic techniques are applied to compute global optimal solutions by 
identifying all possible centroid positions. Nature-inspired algorithms have been 
successfully applied to optimise a wide variety of numerical optimisation problems in the 
last few years. When joined with clustering algorithms such as K-means, the centroid for 
clusters is determined iteratively. 

Nature-inspired algorithms have proved to be highly efficient in solving NP-hard and 
NP-complete problems. Agarwal and Mehta (2014) helped decide the type of algorithms 
that would aid in exploring the local area to defeat the issue of ‘curse of dimensionality 
(COD). An extensive audit of the 12 calculations, in particular, genetic algorithm (GA), 
ant colony optimisation (ACO), particle swarm optimisation (PSO), memetic algorithm 
(MA), bacterial foraging enhancement calculation (BFOA), shuffled frog leaping 
algorithm (SFLA), artificial bee colony (ABC) algorithm, firefly algorithm (FFA), 
biogeography-based optimisation (BBO), cuckoo search algorithm (CSA), bat algorithm 
(BA) and flower pollination algorithm (FPA). The principal focal point was to illuminate 
the exploration of the local area with the streamlining ability of current algorithms over 
multi-modular and unimodal functions for optimisation on a global scale. 

In 2020, Ezugwu et al. presented an overview and analysis of the trends and 
development in nature-inspired meta-heuristic clustering methods. A brief review of 
clustering techniques such as partitional and hierarchical clustering is made, followed by 
ideas like proximity measures. A meticulous examination of the algorithms using 
different methods is undertaken. 
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Further, they present major meta-heuristic algorithms that have been used for the 
same in recent years. The authors also suggest three hybrid swarm intelligence  
and evolutionary algorithms: particle swarm differential evolution algorithm, firefly 
differential evolution algorithm, and invasive weed optimisation differential evolution 
(IWODE) algorithm. These are suggested to deal with the job of automated data 
clustering. The principal reason for the success of such meta-heuristic algorithms is that 
there is no necessity for predetermined data or preliminary information of the dataset to 
be classified. 

Results show that the FFA was more suitable for low and high-dimensional data 
clustering than any modern algorithm. Moreover, the paper shows the advantage of the 
three proposed hybrid algorithms over the standard state-of-the-art methods. Data 
clustering has a broad application because it uses relevant information that could be 
hidden within groups. This has been used in several fields like engineering, computer 
science, medical science, Earth science, life science, economics and bioinformatics. 

Test results for the hybrid FFA display better performance results concerning 
computation cost, with an enhanced convergence speed, while the hybrid particle  
swarm optimisation differential evolution (PSODE) and IWODE defeated their single 
algorithms variants by producing better quality clustering solutions. The performance of 
eight meta-heuristic algorithms and FA proved to be superior. 

Agarwal and Mehta (2015) examined a comparative study of three nature-inspired 
clustering algorithms, i.e., bat clustering, firefly clustering, and flower pollination 
clustering algorithms, to discuss the problem of obtaining the most optimal clusters in 
datasets. Clustering is the most effective unsupervised learning technique that deals with 
fixing a structure in a mysterious dataset. K-means clustering is a widely accepted 
clustering algorithm that gathers similar data objects instantly. The convergence speed  
of K-means clustering is quite palpable, but it can get stuck into local optima. The  
nature-inspired algorithm, when combined with clustering algorithms, provides a globally 
optimal solution. The comparison research on four real-life datasets collected from the 
UCI machine learning repository and two simulated datasets. Algorithms are tested based 
on several fitness functions and CPU time per run. 

The selection of clusters is an integral part of the optimisation problem. José-García 
and Gómez-Flores (2016) discussed several meta-heuristics that perform automatic 
clustering to select the most optimal number of clusters for an optimisation problem. 
They also discuss the characteristics of the meta-heuristics regarding automatic clustering 
like encoding schemes, validity indices, and proximity measures. These approaches are 
reviewed on a single objective and multi-objective optimisation problems, finally 
discussed with research directions. The authors discuss the significant meta-heuristics in 
physics and evolution-based fields. Several swarm intelligence-based techniques like 
PSO, its derivatives such as DCPSO, MEPSO, and other algorithms such as ACO, 
invasive weed optimisation, bee colony, artificial immune systems, etc., are researched. 
For multi-objective optimisation problems, they discuss powerful algorithms such as 
PESA II, MOCK, MOKGA, etc. They also discuss differential evolution techniques for 
optimisation, such as MODE and DEMO, finally cover multi-objective swarm 
optimisation methods such as ADCMC, MONOCLONAL, AMOSA, and others. The 
authors discuss how swarm-based and artificial immune system-based algorithms  
 
 



   

 

   

   
 

   

   

 

   

   174 D.P. Kumar et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

play a significant role in recent research, including hybrid approaches of existing  
meta-heuristics. They used distinct datasets in different scenarios to test the algorithms. 
They mentioned that if the clustering hassle is linearly separable, a clustering technique 
primarily-based totally on unmarried goal meta-heuristics can be enough to reap ultimate 
clustering solutions. On the other hand, if the clustering hassle is nonlinearly separable, a 
multi-goal clustering technique is suggested because, in general, they try to optimise the 
compactness and the connectedness of clusters simultaneously. 

An up-to-date review of all major nature-inspired algorithms for partitional clustering 
is provided by Nanda and Panda (2014), also discussing critical issues in the field of 
meta-heuristics in clustering and application areas. Apart from physics-based and 
evolution-based algorithms, swarm intelligence is employed when the clustering problem 
is inspired by the collective intelligence of social animals, such as bees, ants, dolphins, 
whales, bats, etc. A few notable works in this field are the ant colony algorithm, which 
uses the foraging behaviour of the ants, particle swarm algorithm, cat swarm 
optimisation, cuckoo search, BA, and many more. The authors also discuss multi-
objective algorithms, which closely resemble many real-world optimisation problems, 
where algorithms such as MOCK and NGSA-II have been proposed. Real-world 
application of the algorithms is made in several fields like character recognition, 
travelling salesman problem, blind channel equaliser design, human action classification, 
etc. The authors assert that meta-heuristic algorithms trump the traditional gradient 
descent approach by obtaining global minima. 

A new aim in clustering optimisation is to connect existing meta-heuristic algorithms 
to subdue their shortcomings. Oduntan and Thulasiraman (2018) proposed the 
hybridisation of the ant brooding sorting and the tabu search algorithms to reveal an 
optimal solution. These algorithms are joined in a collaborative and integrative manner to 
build two variants of the algorithm. They mix the positive traits from both algorithms to 
produce a single hybrid clustering algorithm which includes checking the component 
tactics of ant brooding and the tabu search. The final purpose is to recognise similar 
techniques and choose the ones that contribute to the clustering goal. The hybrids are 
applied to a synthetic dataset to learn its underlying behaviours. It is noted that it is 
usually easier to build a complex version of the hybrid rather than a simple one. But 
another conclusion was that any major defect of the starting algorithms also exists in the 
hybrid version. 

In another study, Ezugwu (2020) has presented an up-to-date review on powerful 
nature-inspired meta-heuristic algorithms, including PSO, FA, IWO, GA, and differential 
algorithm (DE), to solve automatic clustering problems. Comparative research is done on 
several modified well-known global meta-heuristic algorithms. A proposal is made for 
three hybrid meta-heuristic algorithms for resolving the automated data clustering task, 
namely, the PSODE, firefly algorithm differential evolution (FADE), and the IWODE. 
Forty-one benchmarked datasets that include 11 synthetic, and 30 real-world datasets are 
used to assess the performances of these nature-inspired clustering algorithms. Further, 
an empirical study proves the superiority of the three proposed hybrid algorithms over the 
standard state-of-the-art methods in obtaining essential clustering solutions to the 
problem at hand. In particular, the FA and its hybrid equivalent, the FADE algorithm, 
show better solution accuracy and attain higher levels of stabilities than the other 
compared algorithms. 

Along with their previous study, Mehta and Agarwal (2018) proposed a novel hybrid 
algorithm (ABC_DE_FP) produced by integrating FPA and DE in the original ABC 
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algorithm. Notwithstanding having good efficiency and more straightforward 
implementation, ABC suffers from a few disadvantages, such as getting caught in a local 
minimum. Several altered and hybridised versions of the algorithm were proposed. Still, 
the ABC_DE_FP outperformed them in terms of minimum error value achieved and 
convergence speed by maintaining stabler synchronisation between exploration and 
exploitation. To test the novel hybrid algorithm’s feasibility, it is principally compared 
with up-to-date ABC variants such as GABC, IABC, and AABC over simple benchmark 
problems. After that, it is evaluated concerning original ABC, FPA, hybrid ABC_FP, 
ABC_DE, and ABC_SN over CEC2014 optimisation problems up to 100 dimensions. 

The issue of NP-hard and NP-complete is shown by six original articles by Soto et al. 
(2020), which concentrate on theoretical and pragmatic aspects of neural networks, 
neural models, brain-computer interface, machine learning and optimisation algorithms. 

The initial article is named ‘Double-criteria active learning for multiclass  
brain-computer interfaces’ and concentrates on enhancing the data collection process  
for improving these systems. Usually, these systems are created by using 
electroencephalography (EEG) signal datasets. A proposal for connecting a two-query 
active learning algorithm with an extreme learning machine (ELM) to resolve this 
problem is made. The recommended approach even reveals that hybrid outperforms 
several state-of-the-art methods. 

In 2020, Tzanetos and Dounias (2020) discussed how evolutionary-based techniques 
had been developed, which are inspired by flora and fauna in nature to solve optimisation 
problems. But many of these proposed strategies have no such inspiration from nature 
and show no real-world utility due to lack of real-world applications. Hence, the authors 
focus on surveying the existing algorithms, which are swarm-based and derived  
from these algorithms, and display their preliminary findings. Several swarm 
intelligence-based algorithms have been introduced to solve such problems, among 
others, like the ABC, bacterial foraging, whale optimisation, grey wolf optimisation, and 
tons more, which are modelled based on the social behaviour of these animals when it 
comes to movement and hunting. 

Eesa et al. (2013), showcased a new meta-heuristic optimisation algorithm motivated 
by the mechanism of the colour-changing form of cuttlefish to find the optimal solution 
in numerical optimisation problems. The designs and colours seen in cuttlefish are 
created by reflected light from different layers of cells heaped together. The sequence of 
specific cells at once allows cuttlefish to possess an extensive collection of patterns and 
colours. The suggested algorithm simulates the light reflection process by combining 
these layers and the visibility of the matching pattern process used by cuttlefish to match 
its environment. 

The algorithm divides the population (cells) into four groups; each group works 
individually, sharing only the most suitable solution. Two of them were used as a global 
search, while others were used as a local search. 

In recent years, a lot of different meta-heuristics have been developed. Even the 
cuttlefish algorithm (CFA) is motivated by changing colour behaviour to find the optimal 
solution. The results achieved by the proposed CFA in all cases produce excellent 
outcomes when compared with GA, PSO, and BA. For future work, more study on CFA 
parameters is required. 

In 2017, Singh and Salgotra (2017) depicted a new modification of the FPA, i.e., 
enhanced flower pollination algorithm (EFPA), which has been suggested for the pattern 
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integration of non-uniform linear antenna arrays (LAA). However, the proposed 
algorithm implementing; however utilises the theory of Cauchy mutation in global 
pollination and developed local search to improve the exploration and exploitation trends 
of FPA. 

Antenna arrays find their purpose in several wireless uses such as radar, sonar, 
mobile, TV and satellite. Antenna arrays design is an elaborate and nonlinear problem. 
Hence, several optimisation methods such as GA, DE, PSO, BBO, and many others have 
been used to incorporate these. LAA consist of several antenna components arranged in a 
straight line. LAA has become very popular because of its simple geometry and 
applications. LAA design has been reviewed by many researchers using several 
optimisation algorithms in the past. 

In the recent past, many researchers have concentrated on enhancing the basic 
abilities of FPA. The algorithm, due to its linear character, makes it fitting for deeper 
investigation. But it has been proved that the FPA algorithm has little feasibility to 
optimise problems at hand. Additionally, the performance of FPA has not been 
investigated to a more intricate level, and the algorithm still has to show, through results, 
its effectiveness for becoming a feasible algorithm. Considering the above review, a new 
version of FPA, namely EFPA, has been suggested. Three modifications in the basic FPA 
have been introduced in the enhanced version. The changes in EFPA help in providing 
more helpful searchability and allow it to escape local minima. The proposed algorithm 
has been examined on seven benchmark functions. The results determine that EFPA can 
find the global optima of most of the benchmark functions. Furthermore, the EFPA is 
employed for pattern construction of non-uniform LAA. 

Dhiman and Kumar (2017) presented a novel swarm-based meta-heuristic algorithm 
named spotted hyena optimiser (SHO) motivated by the behaviour of spotted hyenas. The 
leading theory behind this algorithm is the social connection between spotted hyenas and 
their collaborative behaviour. The three fundamental steps of SHO are seeking  
prey, encircling, and attacking the target, and all three are mathematically formed  
and executed. The proposed algorithm is compared with eight recently developed  
meta-heuristic algorithms on 29 benchmark test functions. The results illustrate that the 
SHO provides remarkably competing results compared to other heuristics such as GWO, 
PSO, MFO, MVO, SCA, GSA, GA and HS. The analytical results, which are based on 
the comparisons of the proposed SHO against other optimisation techniques, show that 
the suggested method can handle different types of restrictions and offer better 
resolutions than other optimisers. 

In 2020, Martínez-Álvarez et al. suggested a novel bio-inspired meta-heuristic 
mimicking how the coronavirus disperses and infects healthy people. The virus swiftly 
spreads itself from patient zero (The first infected patient). The infected community 
initially grows exponentially over time, but taking into factor social isolation measures, 
the mortality rate, and the number of recoveries, the infected population slowly declines. 
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The coronavirus optimisation algorithm has two significant benefits when compared 
with other comparable strategies. First, the input parameters are already set according to 
the disease statistics, blocking researchers from initialising them with arbitrary values. 
Second, the system can end after many iterations without fixing this value either. 
Moreover, a parallel multi-virus version is introduced, where several coronavirus strains 
develop over time and explore more comprehensive search space areas in fewer 
iterations. The meta-heuristic has been coupled with deep learning models to find optimal 
hyperparameters during the training stage. 

The algorithm has shown to be exceptionally successful in applications such as time 
series forecasting. Names of the variables such as (P DIE), i.e., the probability of  
death from the virus, (P SUPER SPREADER), (SPREADING RATE) are relatively  
self-explanatory. 

CVOA has three significant advantages. First, its high relation to the coronavirus 
spreading model restricts users from judging the input values. Second, it stops after a 
certain number of iterations due to the transfer of individuals among healthy and 
dead/recovered lists. 

Nature-inspired algorithms have proved to be extremely efficient in solving NP-hard 
and NP-complete problems. But they have their limitations. It is seen that vanilla 
algorithms get stuck at local optima, have slower convergence, or both. Hybridisation of 
these algorithms can give much faster convergence rates, with a reduced probability of 
fixating on local minima. 

3 Design and implementation 

Initial collection of data and objective functions is done, followed by preprocessing  
the data to eliminate any missing values, outliers and corrupt data entries and  
non-informative features. The resulting dataset is normalised and given input to the 
vanilla algorithms with an evaluation function for minimising centroid distance. 
Alternatively, the target objective function is supplied to the algorithm to be minimised. 
A hybrid is developed from the vanilla algorithms, and the same dataset/objective 
functions are supplied to the hybrid. The results are collected, and graphical comparison 
is performed. 

The workflow mentioned in Figure 2 explains the flow of the hybrid algorithm more 
descriptively and how the vanilla algorithms are integrated to create the hybrid. The input 
to the algorithm is either the unlabelled data to be clustered or an objective function to be 
minimised. The hyperparameters and other variables for the hybrid, such as population 
size, number of generations, loudness, frequency, rate, spiral parameter, etc., are 
initialised. In the case of clustering data, we preprocess the input to eliminate corrupted 
entries, missing features, and redundant columns, normalise the data and convert it into a 
NumPy array for easier processing. In the case of an objective function, we define the 
function to be minimised and the boundary limits, i.e., the search space of the hybrid 
algorithm. 
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Figure 1 Proposed architecture 

  

The initial section of the hybrid is the bat exploration/exploitation section. The bat 
conducts its exploration and exploitation, as mentioned before. The best indices are 
obtained from the local search using equation (4), and the frequency, velocity, and 
position of the rest of the swarm members can be updated using equations (1), (2)  
and (3). Similarly, the rate and loudness are also updated using equations (5) and (6). 

The best swarm members, hence obtained from the bat exploration/exploitation, are 
used to update the leader positions of the swarm for the exploration and exploitation 
process of the whale optimisation section of the hybrid. With the best swarm members 
defined, the rest of the swarm now updates its position towards the best member 
encircling the prey using equation (7). A spiral equation is then calculated to mimic  
the helical structure adopted by whales, to exploit the location. This is described in 
equation (9). The exploration phase of the whale optimisation is conducted similarly, 
with the position vector being randomised to cover the entire search space, as described 
in equation (8). Hence, the leader positions of the swarm are obtained as the result of  
one generation of the hybrid. This process is repeated for a certain number of generations 
to obtain the best leader positions of the swarm for the hybrid algorithm. Suppose the 
input data is unlabelled clustering data. In that case, these leader positions specify the 
centroid locations for each feature of the unlabelled data. In the case of the input being an 
objective function to be minimised, these leader positions specify the location of the 
minima and the minima obtained for the objective function. 
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Figure 2 Workflow of the system 

 

3.1 Vanilla BA 

The idea of bat optimisation is based on the natural phenomenon of how bats use 
echolocation to sense distance from prey. The bats fly arbitrarily with velocity Vi at 
position Xi with a frequency F and loudness A to find its prey. They automatically adjust 
the pulse frequency and adjust the rate R, depending on the closeness of the target. There 
is a current best solution X among the whole swarm, to which the rest of the swarm 
updates its positions. Hence, the frequency of the bats is updated using the equation. 

 i min max minf f f f     (1) 
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where fmax and fmin are the predefined maximum and minimum bounds of frequency,  is 
a random number uniformly generated from the interval [0, 1]. The velocity of the bats is 
updated using the equation. 

 *
it it itv 1 v x x fi      (2) 

and finally, the location of the bats is updated using the equation 

it it itx 1 x v 1     (3) 

where xit + 1 and vit + 1 are the position and velocity of the bat i in generation t. Here, x* 
contains the best indices for the bats among the swarm. For local exploitation of best 
indices, the following equation is used: 

*
itx 1 x ε A     (4) 

where ε is a random number uniformly generated from the interval [1, 1], and AO is the 
average loudness of all bats. The loudness Ai and the rate ri of pulse emission are updated 
similarly as the iterations proceed. Loudness decreases once a bat has found the prey, and 
the rate increases. The equations for the same are given below. 

it i0r 1 r (1 e γt)      (5) 

it itA 1 σ A    (6) 

where Ait + 1 is the loudness and emission rate is rit + 1. 
This process is repeated for a certain number of iterations, and at the end, the best 

indices among the bats are returned as a result. 

3.2 Vanilla whale algorithm 

Humpback whales have a unique hunting method. This method of foraging is called the 
bubble-net feeding method. There exist two methods associated with bubbles called 
‘upward-spirals’ and ‘double-loops’. In the former manoeuvre, the whales create bubbles 
in a spiral shape around the prey and swim up toward the surface. The second manoeuvre 
includes three parts, coral loop, lobtail and capture loop. 

Encircling of prey is done using the following equation where t indicates the current 
iteration, C is the coefficient vector, X* is the position vector of the best solution obtained 
so far, X is the position vector. Here, the WOA algorithm assumes that the current best 
candidate solution is the prey or is close to the same. After the best whale is found, the 
other whales will try to update their positions towards the best whale. 

A similar search method is used for the exploration phase, where the whale randomly 
searches the space based on their position to each other. A is used for defining whether 
the whales explore or exploit. If A > 1, then it defines the exploration phase and is given 
by the equation. 

(t 1) randX X A D     (7) 

where Xrand is a random position vector. 
In the spiral updating part, first find the distance between the whale located at (X, Y) 

and the prey. We then create a spiral equation between the position of whales and prey to 
mimic the helix-shaped movement of whales as given below. 
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bl *
(t 1)X D e cos(2πl) X (t)      (8) 

Where D = |X(t) – X(t)| and indicates the distance of the tth whale to the prey that is the 
best solution obtained till then, b is a constant for setting the logarithmic spiral’s shape,  
l is a random number in [1, 1]. 

3.3 Selection of optimisers for hybrid 

To find appropriate optimisers for our hybrid, we go through a few prominent  
nature-inspired algorithms and test them on some standard datasets to find the best fit for 
our hybrid. The results of the testing on the IRIS dataset are shown in Figure 3. 

Figure 3 Convergence graph of seven optimisers on IRIS dataset (see online version for colours) 

 

Comparing the convergence of all optimisers, we find that the best performing algorithms 
are the FFA and the dispersive fly algorithm. However, these algorithms take very long to 
converge and train, which can be an issue while evaluating complex target functions. 
Hence, we consider the next best in this group, namely the WOA and the BA. 

Since the IRIS dataset has three clusters, we will get three centroids that represent the 
clusters. Thus, we get 12 variables that characterise four features for each centroid. The 
last row depicts the minimum of the cumulative sum of distances of the data points to its 
corresponding centroid obtained by the seven optimisers. After reviewing individual 
nature-based algorithms, we conclude that the whale and BA works better than other 
algorithms with faster and more accurate minima, according to Table 1. 

Concerning implementation, the hybrid was developed as a process of trial and error, 
which included experimenting with different types of integration between the vanilla 
algorithms. Initial experimentation of hybridising was performed by parallelly integrating 
the default algorithms by comparing individual bat and whale members and retaining the 
better among the 2. Although the integration was successful, the results were below 
average. More research was conducted in this field, which led to the eventual 
development of the present hybrid, which integrates the two default algorithms serially 
by executing the exploration/exploitation of the BA initially. The best indices obtained as 
a result are used to update the leader positions of the whale swarm, hence effectively 
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making the process of whale exploration more optimised as it now searches for the 
minima in a better-defined search space. Finally, the leader positions from the whale 
algorithm are returned as the centroid positions of the detected clusters, or it returns the 
minima of the specified target function in the case of target objective functions. 

Figure 4 Algorithmic description 

Algorithm 1 BA_WOA Hybrid Algorithm 

1: Initialise Hyper parameters position, velocity,loudness At ,rate Rt and other param- eters 

2: max_iter = Maximum number of iterations 

3: rand = random number between 0 and 1 

4: Initialize the swarm population Xi (i = 1, 2, ..., n) 

5: while t < max_iter do 

6: for each search agent do 

7: Randomly generate Frequency for each swarm individual with Eq. 1 

8: Update Velocity using equation (2) 

9: Update Position using equation (3) 

10: if rand > Rt then 

11: Update position using equation (4) 

12: Calculate the fitness 

13: if (rand< At ) && (ƒ (xt ) < ƒ (x*  )) then 

14: Replace the position with the new one 

15: Update Rt and At using equation (5) and equation (6) 

16: Select the current global best position 

17: Calculate the fitness of each search agent using best position 

18: X * = the best search agent 

19: for each search agent do 

20: Update a, A, C, l, and p 

21: if p < 0.5 then 

22: if ||A|| < 1 then 

23: Update the position of the current search agent by equation (7) 

24: else 

25: if ||A|| >1 then 

26: Select a random search agent (Xrand ) 

27: Update the position of the current search agent by the equation (8) 

28: else 

29: if p >= 0.5 then 

30: Update the position of the current search by equation (9) 

31: Check if any search agent goes beyond the search space and amend it 

32: Calculate the fitness of each search agent 

33: Update X* if there is a better solution 

34: t = t + 1 

35: Return X* 
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Table 1 Variable and minima values for the algorithms 

Val/Algo 
Whale 

optimisation 
Firefly 

algorithm 
Gray Wolf 

optimisation 

Dispersive 
fly 

algorithm 

Bat 
algorithm 

Artificial 
bee colony 

Cuckoo 
search 

Variable 
0 

5.937555 6.756563 6.679055 5.934326 4.970297 6.056295 5.557552 

Variable 
1 

2.798314 3.141794 3.027999 2.797795 3.423471 2.920790 3.719123 

Variable 
2 

4.419815 5.570584 5.519128 4.417893 1.479011 4.167382 1.699666 

Variable 
3 

1.423832 2.100884 2.022472 1.417253 0.262172 1.383642 0.513712 

Variable 
4 

6.732514 5.051060 5.014842 5.001879 6.894647 4.885129 6.001694 

Variable 
5 

3.066595 3.400815 3.402012 3.391111 3.160739 3.319504 2.742119 

Variable 
6 

5.630325 1.463851 1.480659 1.468645 5.769044 1.348613 5.330351 

Variable 
7 

2.102004 0.234059 0.310977 0.100000 2.175160 0.100000 1.497156 

Variable 
8 

5.012007 5.926498 5.827516 6.733348 5.822522 6.452000 4.586730 

Variable 
9 

3.400124 2.791996 2.771119 3.067850 2.796140 2.932192 2.937747 

Variable 
10 

1.471578 4.431637 4.307615 5.630075 4.299324 5.318797 3.830607 

Variable 
11 

0.215677 1.401602 1.334323 2.106808 1.521637 1.783736 1.265619 

Minimum 96.684575 97.025503 97.481687 97.900166 99.297205 104.760097 149.260500 

The algorithmic description of the hybrid whale × BA is described in Figure 4. This 
algorithm provides the descriptive working of the hybrid and explains the integration of 
the default algorithms into the hybrid and its working. 

Tables 2–8 describe the 14 functions being used to test the hybrid algorithm against 
its default counterparts. These functions are single objective CEC benchmark functions 
taken across various years to test the algorithm’s effectiveness in finding the location and 
value of the function’s global minimas. Each table/column consists of the function 
formulae, the global minima and its position, and a visual representation of the function 
in a 3D plane. 
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Table 2 Beale function and Easom function (see online version for colours) 

 Beale function Easom function 

Function 2
1 1 2

2 2
1 1 2

3 2
1 1 2

f (x) (1.5 x x x )

(2.25 x x x )

(2.625 x x x )

  

  

  

 

f(x) = –cos(xi)cos(x2)exp(–(x1 – π)2  
– (x2 – π)2) 

Minimum f(x) = 0 at x  [3, 0.5] f(x) = –1 at x  [π, π] 

Visualisation 

  

  

Table 3 Six-hump camel-back function, eggholder function and holder table function (see 
online version for colours) 

 Six-hump camel-back function 

Function 2 4 2 2 2
1 21 1 1 2 2f (x) (4 2.1x x / 3)x x x ( 4 4x )x        

Minimum f(x) = –1.0316 at x  [0.0898, –0.7126], [–0.0898, 0.7126] 

Visualisation 
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Table 3 Six-hump camel-back function, eggholder function and holder table function 
(continued) (see online version for colours) 

 Eggholder function Holder table function 

Function f(x) = –(x2 + 47)sin(|x2 + x1 / 2 
+ 47|) – x1(|(x1 – (x2 + 47)|) 

2 2
1 2 1 2f (x) | sin(x )cos(x )exp(|1 (x x ) / π) |)     

Minimum f(x) = –959.64 at x  
 [512, 404.2319] 

f(x) = –19.2 at x  [8.05, 9.66], [8.05, –9.66], 
[8.05, 9.66], [–8.05, –9.66] 

Visualisation 

  

  

Table 4 Levy N. 13 function and McCormick function (see online version for colours) 

 Levy N. 13 function McCormick function 

Function f(x) = sin2(3πx1) + (x1 – 1)2[1  
+ sin2(3πx2)] + (x2 – 1)2[1 + sin2(2πx2)] 

f(x) = sin(x1 + x2) + (x1 – x2)2 – 1.5x1  
+ 2.5x2 +1 

Minimum f(x) = 0 at x  [1, 1] f(x) = –1.913 at x  [–0.55, –1.55] 

Visualisation 

  

  

Tables 2–8 help understand the functions to be minimised. It consists of both simple and 
complex functions, including a few with many local minimas in which a naive algorithm 
can get stuck in. They help us to better understand the advantage of the hybrid algorithm 
against a default meta-heuristic algorithm. 
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Table 5 Rosenbrock function and MICHALEWICZ function (see online version for colours) 

 Rosenbrock function Michalewicz function 

Function 2 2
i 1 i

2
i

f (x) i 1d 1[100(x x )

(x 1) ]

   

 
 

2m 2
i if (x) i 1dsin(x )sin (ix / π)    

Minimum f(x) = 0 at x  [1, 1] f(x) = –1.8 at x  [2.2, 1.57] 

Visualisation 

  

Table 6 Schwefel function and Styblinski-tang function (see online version for colours) 

 Schwefel function Styblinski-tang function 

Function f(x) = 418.9829d – i = 1dxisin(|xi|) 4 2
ii if (x) 12i 1d(x 16x 5x )     

Minimum f(x) = 0 at x  [420.96, 420.96] f(x) = –39.16 at x  [–2.9, –2.9] 

Visualisation 

  

Table 7 Cross-in-tray function and Bukin N. 6 function (see online version for colours) 

 Cross-in-tray function Bukin N. 6 function 

Function f(x) = –0.0001sin(x2)exp100 – x12 + x22 
+ 10.1 

f(x) = 100x2 – 0.01x12 + 0.01x1 + 10 

Minimum f(x) = –2.06 at x  [1.35, 1.35], [1.35, –
1.35], [–1.35, 1.35], [–1.35, –1.35] 

f(x) = 0 at x  [–10, 1] 
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Table 7 Cross-in-tray function and Bukin N. 6 function (continued) (see online version  
for colours) 

 Cross-in-tray function Bukin N. 6 function 

Visualisation 

 

 

 

Table 8 Shubert function 

Function f(x) = i = 15icos((i + 1)x1 + i)i = 15icos((i + 1)x2 + i) 

Minimum f(x) = –186.7 at x  [–10, 10] 

Visualisation 

 

4 Result and performance analysis 

The following results were collected after extensively testing the hybrid against other 
meta-heuristic algorithms, on 14 CEC functions and 20 real-life and artificial datasets, 
and finally on two real-world scenarios, namely a credit card fraud detection dataset and 
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a COVID-19 diagnosis dataset. The below snapshots are divided into three sections for 
the same. 

4.1 CEC functions 

The results for each objective CEC function have been recorded in a box graph and 
convergence graph. The blue, yellow, and green boxes/lines represent the WOA, BA and 
the hybrid algorithm. 

4.1.1 Beale function 

Figure 5 shows box and convergence plots depicting the convergence of hybrid and 
vanilla algorithms over Beale function. For this function, the actual minima are the same 
as the expected value, which is depicted by lower whiskers of the box plot. It indicates 
that hybrid eventually performs better than WOA and BA in the Beale function since it 
has a minimum value in both box plot and convergence graph. 

Figure 5 Beale function box and convergence plot (see online version for colours) 

     

Figure 6 Hump camel back function box and convergence plots (see online version for colours) 
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4.1.2 Six-hump camelback function 

Figure 6 shows box and convergence plots depict the convergence of hybrid and vanilla 
algorithms over the six hump camel-back function. It can be seen that the hybrid has a 
better convergence rate right from the start. The whale performs comparatively poorer 
but eventually reaches the global minima. The BA converges better but gets stuck in a 
local minimum towards the end. 

4.1.3 Easom function 

Figure 7 shows box and convergence plots depict the convergence of hybrid and vanilla 
algorithms over Easom function. Here, we notice a change as per how the BA has an 
overall better convergence than the hybrid and whale algorithm, but eventually, six the 
hybrid converges better. The initial variance is due to the poor performance by the whale 
algorithm, which is carried forward to the hybrid. 

Figure 7 Easom function box and convergence plots (see online version for colours) 

 

Figure 8 Egg holder function box and convergence plots (see online version for colours) 

   

4.1.4 Eggholder function 

Figure 8 shows box and convergence plots depicting the convergence of hybrid and 
vanilla algorithms over eggholder function. Here, we see an issue with the vanilla bat and 
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whale algorithms, as to getting stuck in local minima. However, the hybrid beats both by 
converging to the global minima quickly. 

4.1.5 Holder table function 

Figure 9 shows box and convergence plots depicting the convergence of hybrid and 
vanilla algorithms over holder table function. This is another example of how the poorer 
performance of the default algorithm, in this case, the whale algorithm, affects the hybrid. 
The BA performs better at the beginning, but the hybrid eventually catches up. 

Figure 9 Holder-table function box and convergence plots (see online version for colours) 

 
   

4.1.6 Levy N. 13 function 

Figure 10 shows box and convergence plots depicting the convergence of hybrid and 
vanilla algorithms over Levy N. 13 function. Here, we see that all algorithms show a 
similar trend but the hybrid performs the best, eventually reaching the actual global 
minima, which the default algorithms would take more iteration to reach. 

Figure 10 Levy N. 13 function box and convergence plots (see online version for colours) 
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4.1.7 McCormick function 

Figure 11 shows box and convergence plots depicting the convergence of hybrid and 
vanilla algorithms over McCormick function. Here, we see the hybrid performing better 
from the beginning. The whale algorithm eventually reaches the global minima, whereas 
the BA is stuck in a local minima. 

Figure 11 McCormick function box and convergence plots (see online version for colours) 

 
   

4.1.8 Michalewicz function 

Figure 12 box and convergence plots depict the convergence of hybrid and vanilla 
algorithms over Michalewicz function. These results are similar to the previous function, 
as the hybrid performs the best, followed by the whale algorithm, and the BA being stuck 
in a local minima. 

Figure 12 Michalewicz function box and convergence plots (see online version for colours) 

 

4.1.9 Rosenbrock function 

Figure 13 shows box and convergence plots depicting the convergence of hybrid and 
vanilla algorithms over Rosenbrock function. Here, we see a common trend among all 
algorithms, but again, the hybrid is the overall winner, followed by the bat and then the 
whale algorithm, which are apparently stuck in a local minima. 
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4.1.10 Schwefel function 

Figure 14 shows box and convergence plots depicting the convergence of hybrid and 
vanilla algorithms over Schwefel function. Here, we see the whale algorithm performing 
better initially, while the hybrid catches up later on. The bat shows a slow convergence 
for this function. 

Figure 13 Rosenbrock function box and convergence plots (see online version for colours) 

     

Figure 14 Schwefel function box and convergence plots (see online version for colours) 

  
 

   

4.1.11 Styblinski-Tang function 

Figure 15 shows box and convergence plots depicting the convergence of hybrid and 
vanilla algorithms over Styblinski-Tang function. Here, we see a close common trend 
among all three algorithms since they eventually almost reach the same minima, but with 
the hybrid performing better overall. 
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Figure 15 Styblinski-Tang function box and convergence plots (see online version for colours) 

 
 

4.1.12 Cross-in-tray function 

Figure 16 shows box and convergence plots depicting the convergence of hybrid and 
vanilla algorithms over cross-in-tray function. Here, we see a different outcome, showing 
the BA performing the best. The hybrid eventually converges too, but the whale 
algorithm occasionally gets stuck in some local minimas. 

Figure 16 Cross-in-tray function box and convergence plots (see online version for colours) 

 
 

Figure 17 Shubert function box and convergence plots (see online version for colours) 
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4.1.13 Shubert function 

Figure 17 shows box and convergence plots depicting the convergence of hybrid and 
vanilla algorithms over Shubert function. Like the above function, this one also shows the 
BA performing the best, followed by the hybrid which eventually converges better. The 
whale algorithm gets stuck in a local minima after the second iteration. 

4.1.14 Bukin N. 6 function 

Figure 18 box and convergence plots depict the convergence of hybrid and vanilla 
algorithms over Buckin N. 6 function. These graphs show the whale and hybrid algorithm 
directly attaining global minima, whereas the BA shows a slow convergence. 

Figure 18 Buckin N. 6 function box and convergence plots (see online version for colours) 

     

4.2 Inference on real-life/artificial datasets 

The following results are concerning tests on a set of real-world and artificial datasets, 
with six graphs for each dataset. The first convergence graph compares the hybrid with 
seven vanilla meta-heuristic algorithms, and the second graph compares it with only the 
constituent whale optimisation and BAs. The third is a box graph which represents the 
same information as the second graph. The last three graphs are visualisations of the 
clustering performed by the BA, WOA and the hybrid, respectively. 

4.2.1 Aggregation dataset 

Figure 19 represents the graphical comparison of the hybrid with the WOA and BA, 
along with other vanilla meta-heuristic algorithms, for the aggregation dataset. As seen, 
the hybrid performs better than BA and WOA and also better than most of the other 
vanilla algorithms. The clustering data is better among the hybrid and WOA when 
compared to BA. 
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Figure 19 Aggregation dataset results (see online version for colours) 

 

Note: Number of clusters: 7. 
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Figure 20 Aniso dataset results (see online version for colours) 

 

Note: No. of clusters: 3. 
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4.2.2 Aniso dataset 

Figure 20 represents the graphical comparison of the hybrid with the WOA and BA, 
along with other vanilla meta-heuristic algorithms, for Aniso dataset. Here, we see some 
of the other vanilla algorithms performing better, but nevertheless, the hybrid performs 
better than BA and WOA. The clustering looks identical due to all algorithms almost 
reaching the same minima. The clustering graphs are not perfect for any algorithm since 
the convergence is based on a naive Euclidean closest distance formula. A better fitness 
function would result in more accurate graphs. 

4.2.3 Appendicitis dataset 

Figure 21 represents the graphical comparison of the hybrid with the WOA and BA, 
along with other vanilla meta-heuristic algorithms, for appendicitis dataset, which is a 
real-life dataset. Here, we see the hybrid being the best performer among all the vanilla 
algorithms. Not much can be inferred from the clustering graphs as they are based on a 
real-life dataset without much structure. 

4.2.4 Balance dataset 

Figure 22 represents the graphical comparison of the hybrid with the WOA and BA, 
along with other vanilla meta-heuristic algorithms, for the balance dataset. We see that 
the hybrid is not the best performer for this dataset, but eventually reaches the same 
global minima. The clustering graphs look identical since all algorithms reach the same 
minima. 

4.2.5 Banknote dataset 

Figure 23 represents the graphical comparison of the hybrid with the WOA and BA, 
along with other vanilla meta-heuristic algorithms, for banknote dataset, which is a  
real-life dataset. The hybrid is one of the best performers as it converge the fastest. Not 
much can be inferred from the clustering data since all algorithms reach the same 
minima. 

4.2.6 Blood dataset 

Figure 24 represents the graphical comparison of the hybrid with the WOA and BA, 
along with other vanilla meta-heuristic algorithms, for blood dataset, which is a real-life 
dataset. Again, the hybrid is one of the best performers due to its faster convergence. The 
clustering graphs help visualise how the clustering occurs among the algorithms. 

4.2.7 Diagnosis dataset 

Figure 25 represents the graphical comparison of the hybrid with the WOA and BA, 
along with other vanilla meta-heuristic algorithms, for the diagnosis dataset, which is a 
real-life dataset. This dataset shows a clear distinction as to how the hybrid performs 
better among the other algorithms. The clustering graphs also provide valuable 
information, as it can be seen that the hybrid can isolate the two clusters accurately, but 
WOA and BA have a few mispredictions in both clusters. 
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Figure 21 Appendicitis dataset results (see online version for colours) 

 

Note: No. of clusters: 2. 
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Figure 22 Balance dataset results (see online version for colours) 

 

Note: No. of clusters: 3. 

 
 

  
 

  



   

 

   

   
 

   

   

 

   

   200 D.P. Kumar et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 23 Banknote dataset results (see online version for colours) 

 

Note: No. of clusters: 2. 
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Figure 24 Blood dataset results (see online version for colours) 

 

Note: No. of clusters: 2. 
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Figure 25 Diagnosis dataset results (see online version for colours) 

 

Note: No. of clusters: 2. 
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Figure 26 E. coli dataset results (see online version for colours) 

 

Note: No. of clusters: 7. 
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4.2.8 E. coli dataset 

Figure 26 represents the graphical comparison of the hybrid with the WOA and BA, 
along with other vanilla meta-heuristic algorithms, for E. coli dataset, which is a real-life 
dataset. The hybrid is one of the best performers, and the WOA performs almost 
similarly. It can be seen for the clustering graphs, how the hybrid and WOA show 
variability in up to seven clusters, but the BA clusters the points in only 2 or 3 clusters. 

4.2.9 Flame dataset 

Figure 27 represents the graphical comparison of the hybrid with the WOA and BA, 
along with other vanilla meta-heuristic algorithms, for flame dataset. The hybrid is one of 
the best performers here, as can be seen in the convergence graphs. The clustering graphs 
are almost similar, with the BA with a few mispredictions. The clustering graphs are not 
perfect for any algorithm since the convergence is based on a naive Euclidean closest 
distance formula. A better fitness function would result in more accurate graphs. 

4.2.10 Glass dataset 

Figure 28 represents the graphical comparison of the hybrid with the WOA and BA, 
along with other vanilla meta-heuristic algorithms, for glass dataset, which is a real-life 
dataset. The hybrid is the clear winner among all algorithms among the convergence 
graphs. It can be seen that the hybrid and WOA display good variability of clustering 
with up to six clusters whereas the BA, which got stuck in a local minima, has only 
detected up to three major clusters. 

4.2.11 Heart dataset 

Figure 29 represents the graphical comparison of the hybrid with the WOA and BA, 
along with other vanilla meta-heuristic algorithms, for heart dataset, which is a real-life 
dataset. The hybrid is one of the best performers, with WOA being in the same lines, but 
BA is stuck in a local minima. The cluster does not help much in deciding which is  
the best algorithm but does show the poor performance of BA, having detected only  
one major cluster. 

4.2.12 Ionosphere dataset 

Figure 30 represents the graphical comparison of the hybrid with the WOA and BA, 
along with other vanilla meta-heuristic algorithms, for ionosphere dataset, which is a  
real-life dataset. Again, the hybrid is a clear winner among all algorithms. Not much can 
be inferred from the clustering graphs as the points coincide at two points. But this 
dataset is one with 34 features. This is a good example of how well the hybrid algorithm 
handles data with high dimensions, while others like BA gets stuck in local minima due 
to the ‘COD’. 
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Figure 27 Flame dataset results (see online version for colours) 

 

Note: No. of clusters: 2. 
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Figure 28 Glass dataset results (see online version for colours) 

 

Note: No. of clusters: 6. 
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Figure 29 Heart dataset results (see online version for colours) 

 

Note: No. of clusters: 2. 
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Figure 30 Ionosphere dataset results (see online version for colours) 

 

Note: No. of clusters: 2. 
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Figure 31 IRIS dataset results (see online version for colours) 

 

Note: No. of clusters: 3. 
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4.2.13 IRIS dataset 

Figure 31 represents the graphical comparison of the hybrid with the WOA and BA, 
along with other vanilla meta-heuristic algorithms, for IRIS dataset, which is a real-life 
dataset. This is a relatively easier dataset, which again shows better convergence in the 
hybrid. The clustering graphs are the same since all the algorithms achieved the same 
minima. 

4.2.14 Moons dataset 

Figure 32 represents the graphical comparison of the hybrid with the WOA and BA, 
along with other vanilla meta-heuristic algorithms, for moons dataset. This is another 
example of the above scenario showing better convergence in hybrid, with no much 
difference in the clustering graphs. The clustering graphs are not perfect for any 
algorithm since the convergence is based on a naive Euclidean closest distance formula. 
A better fitness function would result in more accurate graphs. 

4.2.15 Path-based dataset 

Figure 33 represents the graphical comparison of the hybrid with the WOA and BA, 
along with other vanilla meta-heuristic algorithms, for path-based dataset. The hybrid 
shows faster convergence, and eventually all algorithms reach the global minima. The 
clustering graphs are not perfect for reasons mentioned before. 

4.2.16 Sonar dataset 

Figure 34 represents the graphical comparison of the hybrid with the WOA and BA, 
along with other vanilla meta-heuristic algorithms, for sonar dataset, which is a real-life 
dataset. The hybrid again is the clear winner with fastest convergence and reaching the 
global minima. The bat performs poorly as it detects only a single major cluster. This 
dataset is also a good example of a high dimension dataset with up to 60 features, which 
normally causes issues such as the ‘COD’, but the hybrid is able to handle it better than 
most algorithms. 

4.2.17 Varied dataset 

Figure 35 represents the graphical comparison of the hybrid with the WOA and BA, 
along with other vanilla meta-heuristic algorithms, for varied dataset. The hybrid shows 
the better convergence rate. Additionally, the cluster graphs show a more accurate level 
of distinction among the clusters for the hybrid algorithm, when compared to WOA and 
BA. 

4.2.18 Vary-density dataset 

Figure 36 represents the graphical comparison of the hybrid with the WOA and BA, 
along with other vanilla meta-heuristic algorithms, for the vary-density dataset. Like 
before the hybrid has better convergence compared to other algorithms. Not much can be 
inferred from the cluster graphs. 
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4.2.19 Vertebral II dataset 

Figure 37 represents the graphical comparison of the hybrid with the WOA and BA, 
along with other vanilla meta-heuristic algorithms, for vertebral II dataset, which is a 
real-life dataset. This is a case where the hybrid may be better than the WOA and BA, but 
there are a few vanilla algorithms that perform better than the hybrid. 

4.2.20 Vertebral III dataset 

Figure 38 represents the graphical comparison of the hybrid with the WOA and BA, 
along with other vanilla meta-heuristic algorithms, for vertebral III dataset, which is a 
real-life dataset. The hybrid is one of the best algorithms with the best convergence rate. 
This proves to be a deciding factor in constrained environments. 

4.3 Inference on unlabelled real-life clustering data 

For more concrete inferences on real-world data, testing was conducted on two 
unlabelled real-world datasets. 

4.3.1 Credit card data 

This dataset requires the development of customer segmentation/clustering to define 
marketing strategy. The dataset summarises the usage behaviour of about 9,000 active 
credit card holders in a certain time period. Each entry has 18 behavioural variables. 

Figure 39 shows the graphical comparison of hybrid with the vanilla bat and whale 
algorithm. Number of clusters was chosen to be 3 using the elbow method. The data was 
pre-processed, and after normalisation, standard scaling of data, and performing principal 
component analysis to condense the number of variables, the dataset was tested on the 
three algorithms. Here, the hybrid converges faster compared to the vanilla bat and whale 
algorithms and also performs better clustering overall. In contrast, the BA gets stuck in a 
local minima, and the WOA lags behind the hybrid. 

4.3.2 COVID-19 diagnosis data 

This data will help to identify whether any person has the COVID-19 disease or not, 
based on some predefined standard symptoms. The dataset consists of several variables 
for each entry, such as fever, cough, tiredness, pains, etc. We use 10,000 entries from the 
dataset for our inference purposes. 

Figure 40 shows the graphical comparison of hybrid with the vanilla bat and whale 
algorithm. The number of clusters was chosen to be two due the diagnosis result being 
either having COVID or not having COVID. The data was pre-processed, and after 
normalisation, standard scaling of data and performing principal component analysis to 
condense the number of variables, the dataset was tested on the three algorithms. Here, 
the hybrid converges much faster compared to the vanilla bat and whale algorithms and 
also performs better clustering overall. In contrast, the BA is stuck in a local minima, 
giving poor clustering results, and the whale algorithm, lagging behind the hybrid. 

These two unlabelled datasets tested on support the inference derived from the testing 
performed on the CEC functions and labelled datasets, to prove that the hybrid performs 
a better task by converging faster and providing more accurate results. 
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Figure 32 Moons dataset results (see online version for colours) 

 

Note: No. of clusters: 2. 
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Figure 33 Path-based dataset results (see online version for colours) 

 

Note: No. of clusters: 3. 
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Figure 34 Sonar dataset results (see online version for colours) 

 

Note: No. of clusters: 2. 
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Figure 35 Varied dataset results (see online version for colours) 

 

Note: No. of clusters: 3. 
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Figure 36 Varied-density dataset results (see online version for colours) 

 

Note: No. of clusters: 3. 
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Figure 37 Vertebral II dataset results (see online version for colours) 

 

Note: No. of clusters: 2. 
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Figure 38 Vertebral III dataset results (see online version for colours) 

 

Note: No. of clusters: 3. 
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Figure 39 Credit card dataset results (see online version for colours) 
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Figure 40 COVID-19 diagnosis dataset results (see online version for colours) 
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5 Conclusions 

From the results collected after testing the algorithms on 14 CEC functions, 20 labelled 
datasets, and two unlabelled datasets, we can conclude that the hybrid performs 
comparatively better than the default algorithms, for 90% of the tests, and in quite a few 
cases, better than all other vanilla algorithms. There are a few scenarios where the hybrid 
fails to perform as good or better than the default versions. Most of such cases are due to 
the hybrid imbibing the shortcomings of the default algorithms, hence if either of the 
vanilla bat or whale algorithm perform below par on a dataset, it results in the hybrid not 
performing to the best of its abilities. But more often than not, the hybrid is able to 
converge faster and in times, to a more accurate minimum, when compared to its vanilla 
counterparts. 

The hybrid algorithm is noteworthy for several use cases. Consider an environment 
where the clustering result is to be obtained with budget constraints that allow only a few 
iterations, possibly due to resource limitations. The hybrid can converge to the minima 
faster than the default algorithms, leading to a more accurate result within fewer 
iterations. The hybrid also decreases the probability of fixating on local minima instead 
of the global minima, which is an issue in several existing algorithms. 

The COD affects all clustering algorithms due to its vast number of features. But the 
hybrid tends to perform even better in cases with such high dimensionality. For example, 
in Figure 30 which refers to the ionosphere dataset, which consists of 60 features, it is 
noticed that the bat suffers the COD effect, but the hybrid is able to minimise to the 
global minima, even with such a high number of features. Further testing may be 
necessary to obtain the limit of the number of features after which the hybrid suffers the 
same effects. 
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