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Abstract: Most of industrial processes are nonlinear. Model predictive
control (MPC) using an explicit nonlinear model can achieve satisfactory
performance, however, it will bring a high computational burden. Although
linear MPC is widely used in practice, a linear model cannot deal with the
highly nonlinear system dynamic that is well overall in a wide operating
region. In this study, an error trigger rule evoking a re-modelling algorithm
to re-linearise the known nonlinear analytical model has been proposed for
closed-loop nonlinear systems with input constraints. The error-triggering
can be conducted by an error quantiser that quantifies model error and the
re-linearisation program is triggered when the accumulated error exceeds
the set threshold. The stability of the process is maintained by using the
Lyapunov-based MPC. The effectiveness of the proposed control algorithm is
validated by a chemical process simulation.
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1 Introduction

Model predictive control (MPC) has become a significant control strategy with the
highest potential because it can deal with multi-input and multi-output constrained
systems (Mayne et al., 2000; Mayne, 2014). At each sampling time step, a constrained
optimisation problem utilising an explicit system prediction model is solved online to
reckon the optimal control sequence. Most of the practical industrial processes are
nonlinear and nonlinear MPC (NMPC) can treat the nonlinear dynamic and constraints
directly and explicitly. However, linear MPC is still more widely used in practice than
NMPC. This is because that NMPC may meet some difficulties in applications, such as

a computation complexity
b the nonconvex properties of the optimisation problem

¢ stability and robustness (Rahideh and Shaheed, 2011).

Hence the applications of NMPC techniques are still limited in practical situations
(Camacho and Alba, 2013).

A precise explicit system model using for prediction in MPC plays an important role
in achieving the desirable performance (Zhang and Shi, 2020). Generally, a single linear
model cannot deal with the highly nonlinear system dynamic well overall operating
regions, unless the process is limited to work in the neighborhood of the target operating
point. Hence, it is not enough for MPC to use only one linear model to obtain satisfying
performance in the whole operating region of a nonlinear process. With the development
of nonlinear modelling methods, there are increasingly many mature techniques for
modelling a nonlinear system. It includes analytical approaches Gustafsson (1984);
Fjeld et al. (1974), experimental modelling methods [e.g., Wiener model (Li and Li,
2016), Hammerstein model (Huo et al., 2008), and Volterra model (Doyle et al., 2002)],
and artificial intelligence-based technique (Ostafew et al., 2016; Wang et al., 2015;
Boulkaibet et al., 2017) (e.g., neural networks and Gaussian process). Owing to the
simplicity and maturity of the linear model-based control strategies (Gu and Gupta,
2008), in some case, the global nonlinear model can be approximated by several local
linear models (Banerjee et al., 1997), including multiple-model modelling methods (Gu
and Gupta, 2008; Wang et al., 2007; Dougherty and Cooper, 2003) and/or adaptive
linear modelling (Zhang and Shi, 2020; Fukushima et al., 2007). For multiple-model
modelling methods, several subregions are segmented offline from the entire operating
region of the nonlinear system. Each subregion is approximated by a local linear
model. In light of the current operating point, the subregion and the corresponding local
linear model are determined to achieve the prediction. However, how to decide the
local model numbers is still required to address. More local models lead to a better
nonlinear approximation, but it may increase the computational complexity (Dougherty
and Cooper, 2003). In the adaptive linear modelling methods, the updating of the linear
model depends on the linearisation of the nonlinear analytical model or the system
observations like using recursive formulations to update the linear model parameters
at each sample time (Zhang and Shi, 2020; Fukushima et al., 2007). It is noted that
the recursive estimation scheme requires the data to contain sufficient (Dougherty and
Cooper, 2003). Further, it may lead to expensive computational costs and frequent
changes to the control due to updating the linear model at each sampling instance, which
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are undesirable in practice. Some studies utilise an offset-free framework to reduce the
effect of disturbances and handle modelling errors, especially for linear modelling. In the
context of state-space linear systems, one usual approach is augmenting the system with
additional disturbance states and a disturbance observer employed to obtain disturbance
estimates (Maeder et al., 2009; Pratap and Purwar, 2019; Son et al., 2010, 2021; Huang
et al., 2020), the selection of disturbance model and parameters will directly affect the
control performance. An alternative approach is based on a velocity form linear model
in which the extended state is composed by the state increments and the output error,
while the manipulated variable is the control increment (Betti et al., 2013; Pannocchia
et al., 2015).

Recently, there have been a number of studies on saving communication and
computation resources by introducing triggering mechanisms (Yu et al., 2016),
a strategy was proposed for triggering to precompute an input trajectory over
a prediction horizon (Ellis and Christofides, 2015), a forecast-trigger MPC with
sensor-controller communication constraints was developed (Xue and El-Farra, 2018),
a robust event-triggered MPC scheme was designed to reduce the frequency of solving
linear matrix inequality problems (Hu et al., 2021). To focus on the model mismatch
problem, the triggering mechanisms are introduced to update the machine-learning-based
predictive model (Wu et al., 2019). It has been noted that as the prediction error
generated by the current linear model is within a certain range, the model still can
be used at the next moment until the error exceeds a pre-defined threshold. The
error-triggered algorithm designed in this study is to handle the model mismatch caused
by the linearisation. A trigger rule will evoke the re-modelling algorithm to re-linearise
the known nonlinear analytical model at the current operative point. By using this
philosophy, the model updating frequency and computational cost will be reduced.

Lyapunov-based MPC (LMPC) utilises an additional Lyapunov function that can
enforce the closed-loop stability (Mayne et al., 2000), in some recent results, a
Lyapunov-based adaptive MPC was employed for unconstrained nonlinear systems
with parametric uncertainties (Zhu and Xia, 2016), meanwhile, The Lyapunov-based
design was adopted to ensure good control performance of some data-driven MPC
(Kheradmandi and Mhaskar, 2018; Narasingam and Kwon, 2019). Therefore, an LMPC
scheme has been designed in this study due to its ability to explicitly characterising
the stability region and reducing complexity optimisation. Note that most existing MPC
algorithms have no prior closed-loop stability regions and have higher computational
cost (Witsenhausen, 1968; Scokaer and Mayne, 1998; de la Pena and Christofides, 2008)
by comparing with LMPC. In this paper, a moving horizon error quantiser is derived
initially, it ensures the model accuracy and avoids linearisation at each sample step.
By comprehensively considering the computational burden, model accuracy, and control
performance, a novel LMPC in light of the mentioned trigger rule-based linearised
method have been proposed for a class of strongly nonlinear process.

The LMPC using an online triggered linearised model can reduce the model update
frequency compared to the conventional adaptive linear MPC method and maintain
model accuracy within a reasonable range. The computation burden is greatly reduced
compared with the nonlinear LMPC. Meanwhile, compared with the traditional LMPC
using only one linear model, it possesses a better control performance.

The remainder of the paper is organised as follows: a class of nonlinear process
with input constraints is considered and the auxiliary control is introduced briefly in
Section 2. In Section 3, the trigger rule to update the linear model is proposed for the
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novel LMPC which will be described detailly in Section 4. In Section 5, the execution
and flowchart of the algorithm are given in details. In Section 6, a strongly nonlinear
chemical process simulation is demonstrated to validate the proposed approach. In final
Section 7, some conclusions are drawn.

1.1 Notations

The notation |-| denotes Euclidean norm of a vector and ||-|| means the matrix norm.
Has||é : =27 Qx indicates the weighted norm, where () is a positive definite symmetric
matrix and the transpose of the vector z is denoted z”. The standard Lie derivative
defined by L;V(z) : :a‘g—gf)f(a:). A function a(-) : [0,a) — [0,00) is refered to class
K if it is continuous, strictly increasing and satisfies «(0) = 0. The notation §2,. denotes
the set Q, := {x € R™: V(x) <r} where V is a sufficiently smooth scalar function
and r > 0, and the notation S(A) refers to the family of piecewise constant functions
with period A.

2 Problem formulation

The continuous-time nonlinear process with input constraints is given in the following
description:

(t) = F(x(t), u(t), w(t)) (1
uel, 2)

where F(z(t), u(t), w(t)) = f(z(t)) + g(z(t))u + h(z(t))w, z(t) € R™ denotes the
state vector, u(t) € R™ denotes the vector of control input, w(t) € R™ denotes the
vector of disturbance, x(ty) = x¢. Control inputs are restricted in a nonempty convex
set U :={u € R™: |u| < u"™ u™°"™ > (0}. The vector function F'(x(t), u(t), w(t))
is locally Lipschitz and the origin is an equilibrium point of the unforced nominal
system F'(z(t), w(t)), that is, F'(0,0) = 0.

Assumption 1: For a nonlinear stabilisable system (1), there is a Lyapunov-based
controller that makes the nominal system (w(t) = 0) asymptotically stable in the open
neighborhood of the origin.

In light of converse Lyapunov theorems (Christofides and El-Farra, 2005; Lin et al.,
1996), Assumption 1 indicates that there exists a continuously differentiable Lyapunov
scalar function V' : R™ — R, for the closed-loop system of equation (1) under u(t) =
ur,(z(t)) satisfying the following inequalities:

o ([al) < V() < ) Ga
W) i ),0) <~ G3b)
252 < el 6o
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where (), =1,2,3,4 are functions of class K. Q, C D is the stable region of the
closed-loop system under the Lyapunov-based control, D is an open neighborhood of
the origin for all € D C R™. The candidate control uy,(x) is given in the following
form Lin and Sontag (1991):

~
S

~

N
o

(@) (LgV) (@), |(24V)
9 (L) (@) =0 o

L) BV @)+ ey @)

k) 2
K%wﬂmwﬁ+¢ruwmm%vfmmJ

(4b)

where L,V (z) = [LyV, ..., Lgm V] is a row vector, where g is the i column of g(z),
L3V (z)=L}V(z) + p*V(z), p* > 0. By using a standard Lyapunov argument, a region
where the time-derivative of V' is rendered negatively under the control uy () that can
be characterised as:

o, = {:c € R": L3V (z) < um™ ‘(LgV)T(x)‘} , (5)

According to equation (5), the control satisfies the input constraints. Then the
closed-loop stability can be guaranteed for the system (1) by defining a level set of V,
1e.,

Q, ={z € R*|V(z) < p} (6)

where p >0 is the largest number for which Q, C ®,. When sampling period
A is selected properly and w(t) is bounded, system (1) can be stabilised by the
Lyapunov-based control (Mhaskar et al., 2005).

In the control design, a nonlinear model is derived initially which will be used to
update a serial of linear models at each operational point. Then the linear models will
be used in the following LMPC design.

T = Ai.%‘(t) + Biu(t) + d; @)

4=2 =2 ®)
€T (wi,ui,O) u (ac,-,ui,O)

d; = F(x4,u;,0) — Ay — By, ©

where z; € R” and u; € R™ denote the i operation point used to linearise (1),
A; € R™™ and B; € R™ ™ are constant matrices corresponding to the ™ linearised
model, d; is a modelling error vector generated by Taylor expansion linearisation,
particularly, d; is zero when z; =0 and u; =0 (¢ =1, ..., M).

Assumption 2: There are a set of controllers uri(x), upa(x), ..., uy () designed
by using several linearised models and each controller can stabilise system (1)
asymptotically.
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According to Assumption 2, there is a differentiable Lyapunov function V : R —
R, satisfy (Khalil and Grizzle, 2002):

a1 (|z]) < V(z) < do(|z) (102)
a‘gix)F(x,uLi(x),O) < —Gus(e])yi =1, BT (10b)
v

af) < éu(ll) (10¢)

for all x € Dy; C R™, Dp,; is an open neighborhood of the origin, the functions
a;(-),7 =1,2,4, and as,(-),7 =1, ..., M, are belong to class K. Under control uri(x),
system (1) has the stability region Qs C Dp;,i=1,..., M.

The control objective is to design Lyapunov-based MPC in light of the model
error trigger rule to make a class of strong nonlinear processes to be stable. The
proposed approach will reduce the online calculation burden compared with general
nonlinear model predictive and improve control performance compared with general
linear predictive control using a single predictive linear model.

3 Error-based triggering rule for evoking the lineariser

An error-triggering rule is proposed in this section to update the model by running
the lineariser, which can be used in the design and implementation of the LMPC. It
can avoid updating the process model at every sampling period, which may lead to an
incessant adjustment of the control law and expensive computation that are undesirable
in practice. Further, the proposed mechanism reduces the large model mismatch as the
traditional linearisation method which uses a single linear model in the whole operation
region.

An error quantiser reckoning the moving horizon error cumulant e; at time t; is
designed for quantifying the model error:

M
T(tp—;) — x(tr—;y i
eatti) = 3 12 |x)(t _)(| Lexpti=ro (n
=0 k=i
_Jk 0<t <t
M = {Mttk >t]\4t (12)

where M is the number of sampling periods before ¢, that contributes to the prediction
error quantification, M; denotes the maximum calculated number, ¢,;, denotes the
sampling time when calculated number to the maximum from initial time ¢g. x(tx—;)
and Z(ty—;), i =0, ..., M are the past measurements and prediction state of the system
by the proposed model at sampling times in the interval of [t;_nas, tx]. Forgetting
factor exp®~7%) is added, > 0 and v > 0 are parameters which can adjust the size
of the forgetting factor. eq 7 is the threshold. When the quantiser value surpasses
the threshold, i.e., eq(tx) > eqr, it triggers the model update process at the current
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operating point. The selection of eqr should comprehensively consider the number of
moving horizons, weight coefficient in equation (11), and model accuracy requirements.

Remark 1: At the initial time, it cannot know the control input for the linearisation
process to acquire the initial linearised model, so the initial linear model can be acquired
by linearising the normal nonlinear system (1) at the origin or the closest equilibrium
point to the initial point. It may capture the nonlinear dynamic better and contribute to
model-based control design easier.

Remark 2: M, should be chosen appropriately such that the past error information
could be fully utilised, and unnecessary data storage could be avoided. eq 7 should be
determined based on the value of M; in such a way that the linearised frequency is
reasonable to guarantee the model prediction and reduce the model update frequency.

Remark 3: Because of the update of the predictive model, further computation may be
required to get the new control law for some model-based control laws (e.g., on account
of the new model, Sontag-type control law which uses in equation (4) will require to
be re-calculated), so ur; may be updated when the process model is updated.

Remark 4: In terms of the reliability of the linear model, additional state constraints
have been added to forces the state to stay in the neighborhood of the linearised working
point. It can ensure predictive linearisation models available in the neighborhood of the
optimisation problem (Carvalho et al., 2013). Note that additional constraints may shrink
the feasible region and increase the complexity of computation. Since the proposed
triggering method ensures that the accuracy of the predictive linear model used around
the working point is at a reasonable accuracy, it can avoid adding additional state
constraints.

4 LMPC in light of the linear models with the triggering mechanism

The LMPC with the aforementioned model is designed to solve the following issue:

HANA
7= min /t LG (t), ut))dt (132)
st (t) = Aji(t) + Byu(t)+d; (13b)
L(tr) = x(tk) (13c)
u(t) € U,Yt € [tk, tk+nNA) (13d)
OV (w(te))

< W(Am(tk) + Byup(z(ty)) + di) if V(a(ty)) > 8 (13¢)
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V(z(t) <6 Yt e [ty ty + NA) if V(z(ty)) <6 (13f)

where Z(t) € R™ is the predictive state trajectory with the calculated control input
trajectory u(t) € R™, § is a positive real number, and N is the prediction horizon.
Starting with the initial state constrainted condition (13c¢) acquired from the process
state measurement at ¢y, the LMPC utilises the proposed linearised model (13b) with
the i™ linear model (which is updated by the error-triggered law) to predict the state
trajectory. uy;(z) and V(x) are designed for the Lyapunov-based constraints (13) with
the proposed linearised model. The manipulated inputs constraints are characterised by
equation (13d). The stage cost (13a) is formulated as follows:

L(@(t), u(t) = |15 + lult)| % (14)

where @@ € R™*™ and R € R™*™ are positive semi-definite and strictly positive
definite, symmetric matrices. Only the first element w*(ty|tx) of optimal control
sequence u*(t|tx), t € [tk, tk+na) is applied to the plant at each sampling time.

Remark 5: In general, V (e, V =2TPx) is designed by the linearised model at the
target equilibrium for a nonlinear system and the stability region depends on the level
set of the additional Lyapunov function. It is not be required to update V when the
model of equation (13b) is updated if it is a set point tracking problem.

5 LMPC implementation with triggering mechanism

My, B, v and eq,r are set off-line initially. The implementation strategy of the LMPC
with proposed trigger schemes is shown in Figure 1. The implementation strategy of
the LMPC with proposed trigger schemes is summarised as Algorithm 1.

Remark 6: Noted that the value of the additional Lyapunov function is reduced under
the Lyapunov-based constraint of equation (13e) over the first sampling period. If the
values of M;, 3, v and eq 1 are selected suitably to make the prediction based on a
reasonably accurate model, the closed loop system will be stable under the stability
constraint (Alanqar et al., 2017).

Remark 7: More recently, Koopman operator has received much attention. The basic
idea is to transform the nonlinear dynamics into a higher dimensional space where its
evolution is approximately bilinear or linear (Narasingam and Kwon, 2019), it can be
easily embedded into the range of mature linear mode-based control design techniques
(Huang et al., 2018; Ma et al., 2019; Narasingam and Kwon, 2020a,b). However, the key
issue is to find an appropriate tradeoff between nonlinearity and higher dimensionality. A
finite-dimensional approximation obtained from data-driven numerical techniques leads
to plant-model mismatch (Son et al., 2010). Incorporating the proposed model update
online triggering mechanism, to get a better approximation of Koopman operator and
update the data-driven model by using the most recent process data, might be a scheme
for reducing model mismatch.
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Algorithm 1 Lyapunov-based MPC with trigger scheme

Step 1 Linearise at the set-point to obtain the first linear model (A; and By).
Given the model, input, and a control Lyapunov function v, design the
Lyapunov-based controller ur,, (x(to)) of equation (4);
Step 2 Receive a state measurement x(¢j) and compute the moving horizon error
metric eq(tg) of equation (11) where the value of is determined by equation (12);
Step 3
if 6d(tk) > eq,T then

| Go to Step 4;

else
| Go to Step 5;

end

Step 4 Given the new model, the constraints on the input, the state measurement
a(tx), and the control Lyapunov function V', design the control uy, (z(t)) and
update the Lyapunov constraint in the optimisation of equation (13e).

Step 5 The process is operated under the LMPC of equation (13) based on the
current linearised model (A; and B;) and the state measurement is used in the
constraints of equations (13¢) and (13e).

Step 6 If meet the simulation termination criteria, the algorithm is stop,
otherwise, repeat Steps 2 to 5.

6 Numerical example

To verify the effectiveness of the control technology, the LMPC with the online triggered
linearised model is adopted to control a First-order irreversible exothermic reaction of
the form A — B taking place in the continuous stirred tank reactor (CSTR). The process
mechanism model is given as follows:

. F
Ca = 57 (Cao = Ca) = koexp(~F/ TR C
. F —-AH -
Tr = 7 (Tao — Tr) + ( )koexpPE/RTR)CA + @ (15)
PaCp ngpV

where the variables used in the above model can be explained in Table 1, and the
corresponding parameter value can be found in Table 2 (Mhaskar et al., 2006).

The control objective is to make the reactor track quickly and accurately to the
set point (C5, T) = (0.57 Kmol/3, 395.3 K), in which the control inputs are Q,
and change in inlet concentration AC 49 = Cyo — Cap, with the constraints |Q,| <
0.0167 KJ/min and |AC 40| < 1 Kmol/m?.

A Lyapunov-based controller of equation (4) with V(x) = 27 Px was constructed,
matrix P can be computed by using the linearised system, where

. i ~ [9.350.41
v=(Ca-CaTr—Tp) P= {0.41 0.02} ’
The parameters in the objective function of equation (14) are selected as Q = I, R =

I. The predictive horizon N is chosen to be 10. The quantiser reckons the relative
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prediction error as stated in equation (11), where the 5 = 0.8 and v = 0.04 are set in the
forgetting factor, M; in equation (12) is chosen to be 50. In the simulation, the explicit
Euler numerical integration method was adopted in which the integration step size is
h = 10~* min. The constrained optimisation problem is solved using the MPCTOOLS
with CasADi solver (Risbeck and Rawlings, 2016; Andersson et al., 2019).

Figure 1 Flowchart of the proposed ETLMPC approach (see online version for colours)

Initialisation and set ¢ = 1, k = 0 ‘

|

Find linear model (4;, B;) using
(25, us), compute ur;(z(tx))

l

—»‘ Update data: x(ty),(tx) ‘
Update eq(tx)
)
no i =1+ 1, update linear model
using (2 (tr—1), u(tr—1))
yes)
Compute ur;(x(ty)) with (4;, B;) (Ai, B;)
Solve the optimisation problem. u* (tetr)
i.e., find U*<[|['/s')’ te [[,k,, [k:+1V'A>
’lf(fk\fk)l
Integrating numerically using
Plant the linear model (A;, B;)
xz(k + l)l
‘ k=k+1 }4—.’2(k'+l)
no k> ky
yes

Case 1 An initial point (Ca, Tr) = (0.44 Kmol/m®, 397 K) near the equilibrium
point

The threshold value of aforementioned error-trigger LMPC (ETLMPC) is chosen as
eq,r = 1.0E-4. From the initial state, the closed-loop trajectories under nonlinear LMPC
(NLMPC), linear LMPC (LLMPC), and ETLMPC as the predictive model are as shown
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in Figure 2. From the closed-loop state trajectory, all three control schemes can achieve
stabilisation of the closed-loop system successfully and track to the setpoint well.
Compare to NLMPC (red solid lines), the input profiles of the aforementioned ETLMPC
(blue dotted lines) are more smooth. The single linear model will be not accurate when
the working point is far from the equilibrium point. As shown in Figures 3 and 4, the
error quantiser is designed to reduce the linearisation frequency and ensure the accuracy
of the prediction model within a certain range, where the moment with amplitude of
1 represents triggered moment while the moment with amplitude of 0 represents an
untriggered moment, and the number of total simulation steps is 300 and it is triggered
71 times all the time.

Table 1 The definitions of process variables

Ca Concentration of the species A
Qo Heat removed from the reactor
ko Pre-exponential constant

AH Enthalpy of the reaction

Po Fluid density

Tr Temperature of the reactor

\% Volume of the reactor

E Activation energy

Cp Heat capacity

Table 2 Process parameters and steady-state values

V=01m

R = 8.314 KJ/KmolK
Cao, = 1.0 Kmol/m?

Tao0, = 310.0 K

Qs = 0.0 KJ/min

AH =-4.78 x 10* KJ/Kmol
ko =72 x 10° min™!

E = 8.314 x 10* KJ/Kmol
¢, = 0.239 KJ/KgK

pe = 1,000.0 Kg/m®

F =100 x 107 m*/min
Trs = 395.33 K

Cas = 0.57 Kmol/m®

Figure 5 shows the computation time required, at each sampling period, to solve the
optimisation problem for the NLMPC, LLMPC, and ETLMPC, respectively. The solver
for ETLMPC converged in less than 0.03 s (Figure 5). The total computation time
required to solve the NLMPC and ETLMPC optimisation problems are 12.06 s and
4.40 s. The total computation time of NLMPC is 174% greater than the ETLMPC. There
is no need to update the model for LLMPC, and the predictive model is a single linear
model, so the total computation time required to solve LLMPC in the simulation was
2.72 s and it is the minimum computation time of three control scheme. But note that
the control performance of the proposed approach is best among these three methods.
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Figure 2 Closed-loop state (top) and input (bottom) profiles under the controller of NLMPC
(red solid lines), under the controller of LLMPC (black dashed lines) and under the
controller of ETLMPC (blue dotted lines) where the initial point is (0.44 Kmol/m?,
397 K) (see online version for colours)
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Figure 3 The trigger time of ETLMPC where the initial point is (0.44 Kmol/m®, 397 K)
(see online version for colours)
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Figure 4 Predictive model errors of LLMPC and NLMPC where the initial point is
(0.44 Kmol/m®, 397 K) (see online version for colours)
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Figure 5 The computation time required to solve the NLMPC (red solid lines), the LLMPC
(black dashed lines) and the ETLMPC (blue dotted lines) where the initial point is
(0.44 Kmol/m®, 397 K) (see online version for colours)
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Case 2 An initial point (Cy, Tr) = (0.22 Kmol/m?, 401 K) is far from the equilibrium
point

In this case, the increased linearisation error generated by the single linear model may
lead to the model mismatch. The threshold value of aforementioned ETLMPC is chosen
as eqr = 1E-4. Figure 6 shows the state and input trajectories of the CSTR under the
NLMPC, ETLMPC, and LLMPC throughout the three-min simulation, and starts from
the same initial condition. It is noted that when at some simulation time like 0.68 min,
0.71 min, 0.80 min, etc. the optimisation problem of LLMPC is unsolvable which may
due to the model mismatch, the control law of the previous moment is adopted at the
above simulation time. As shown in Figure 7, even if the working point is far from the
setpoint, ETLMPC can achieve stabilisation of the closed-loop state trajectory and track
to the setpoint better compared to the LLMPC. The number of total simulation steps is

300 and it is triggered 88 times all the time, the trigger-scheme can reduce the model
update frequency effectively
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Figure 6 Closed-loop state (top) and input (bottom) profiles under the controller of NLMPC
(red solid lines), under the controller of LLMPC (black dashed lines) and under the
controller of ETLMPC (blue dotted lines) where the initial point is (0.22 Kmol/m?,
401 K) (see online version for colours)
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Figure 7 The trigger time of ETLMPC where the initial point is (0.22 Kmol/m®, 401 K)
(see online version for colours)
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Tables 3 and 4 show the average computation time needed for solving the optimisation
problems in each step and other performance indexes of the NLMPC, LLMPC and
ETLMPC systems at the initial condition (0.44 Kmol/m?, 397 K) and (0.22 Kmol/m?,
401 K). As can be seen, the average computation time of ETLMPC is a bit longer than
LLMPC, however, both of them are significantly shorter than that of NLMPC. In the
case of MPC with the linear model, the solution of the optimal control problem can be
converted to the solution of a quadratic program which can be solved efficiently, but,
MPC with the nonlinear model has to solve a nonlinear program, which is in general
computationally expensive (Allgower et al., 2004). For assessing the overall trajectory
of the entire transition process, the integral forms of the error including integrated time
and absolute error (ITAE) and integral time square error (ITSE) are used to analyse the
control performance. Jy,.q; describes the stage cost (14) accumulated overall simulation.
It is shown that ETLMPC has a lower value of the three performance index than other
controller schemes.

Table 3 The performance of the three approaches at the initial point (0.44 Kmol/m®, 397 K)

Average computation time ITAE ITSE Jiotal
NLMPC 0.0402 s 124.0147 75.5697 21.5424
LLMPC 0.0091 s 127.2069 76.2715 22.0146
ETLMPC 0.0146 s 117.0217 74.7177 21.3357

Table 4 The performance of the three approaches at the initial point (0.22 Kmol/m®, 401 K)

Average computation time ITAE ITSE Jiotal
NLMPC 0.0491 s 503.5168 1031.8269 256.2012
LLMPC 0.0104 s 592.7555 1,169.1803 292.3252
ETLMPC 0.0165 s 470.4964 991.4939 246.8389

In this section, LMPC control systems using three different models are simulated to
compare their performances at two initial conditions, respectively. The closed-loop state
trajectory illustrating the convergence of the states from the initial conditions (0.44
Kmol/m?, 397 K) under the three control schemes are plotted in Figure 2, but when
initial point (0.22 Kmol/m?, 401 K) is far from the setpoint, LMPC may be unsolvable
at some working points, the closed-loop state trajectory demonstrated the efficacy of the
NLMPC and ETLMPC control are plotted in Figure 6. The error-trigger approach used
in ETLMPC reduce the model update frequency and maintain model accuracy within
a reasonable range. As reported in Tables 3 and 4, the total computation time, and the
transition process performance indexes of the ETLMPC over all the sampling periods
are less than NLMPC with same initial conditions. Through above comparisons, the
effectiveness of the ETLMPC systems can be demonstrated.

7 Conclusions

A Lyapunov-based MPC is initially developed based on a new model updated rule. The
error-triggering rule is evoked by an error quantiser and triggers model re-linearisation
when the accumulated predictive error exceeds a threshold. The chemical process
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simulation demonstrated that the control strategy can stabilise the system and maintain
model accuracy even if the operation point is far from the set point compared to the
LMPC using a linear model, it also can greatly reduce computation time compared to the
nonlinear LMPC. The experiments will be used to demonstrate the proposed approach
in the near future.
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