
 
International Journal of Business Intelligence and Data
Mining
 
ISSN online: 1743-8195 - ISSN print: 1743-8187
https://www.inderscience.com/ijbidm

 
Forecasting with information extracted from the residuals of
ARIMA in financial time series using continuous wavelet
transform
 
Heng Yew Lee, Woan Lin Beh, Kong Hoong Lem
 
DOI: 10.1504/IJBIDM.2022.10045646
 
Article History:
Received: 15 October 2021
Accepted: 13 December 2021
Published online: 30 November 2022

Powered by TCPDF (www.tcpdf.org)

Copyright © 2023 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijbidm
https://dx.doi.org/10.1504/IJBIDM.2022.10045646
http://www.tcpdf.org


   

  

   

   
 

   

   

 

   

   70 Int. J. Business Intelligence and Data Mining, Vol. 22, Nos. 1/2, 2023    
 

   Copyright © 2023 Inderscience Enterprises Ltd. 
 
 

   

   
 

   

   

 

   

       
 

Forecasting with information extracted from the 
residuals of ARIMA in financial time series using 
continuous wavelet transform 

Heng Yew Lee* 
Faculty of Information and Communication Technology, 
Universiti Tunku Andul Rahman, 
Jalan Universiti, Bandar Barat, 
31900 Kampar, Perak, Malaysia 
Email: leehy@utar.edu.my 
*Corresponding author 

Woan Lin Beh and Kong Hoong Lem 
Faculty of Science, 
Universiti Tunku Andul Rahman  
Jalan Universiti, Bandar Barat, 
31900 Kampar, Perak, Malaysia 
Email: behwl@utar.edu.my 
Email: lemkh@utar.edu.my 

Abstract: Time series of financial or economic data are often considered to 
have certain trends and patterns. It is believed that the study of historical 
patterns helps in the forecasting into the future. ARIMA model is one of the 
popular models for the task. However, long-term forecasting with ARIMA 
often appears as a straight line. This is due to ARIMA’s dependency on 
previous values and its tendency to omit the outliers that lie outside of the 
captured general trend. This paper sought to capture useful outlier information 
from the residual of ARIMA modelling by using continuous wavelet transform 
(CWT). The CWT captured information was then added to the ARIMA 
forecasted values to form non-homogenous long-term forecasting. The results 
were encouraging. It was also found that choices of certain CWT related 
parameters have positive or negative effect to the forecasting outcomes. 
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1 Introduction 

Mathematically, time series is a series of time-indexed data points that occur in 
successive order over certain period of time. Some financial market data do form time 
series. Given by the microstructure of the financial market, financial time series are often 
influenced by multiple factors. Although some of these factors are systematics and show 
seasonal or cyclical patterns, the interplay among them made these pseudo-periodic 
patterns difficult to detect. On top of that, one of the common features of financial time 
series is high frequency of individual values, this results in high volatility that usually 
changes through time. Conventional statistical time series analysis methods have inherent 
limitations as they often are confined to time-domain. 

One of the popular statistical time series analysis tools is autoregressive integrated 
moving average (ARIMA) modelling. ARIMA is a form of regression analysis that 
examine the differences between values in the time series. With the assumption that the 
future will resemble the past, future direction of time series is thus predicted. This 
approach may work well for forecasting of a few points but often produces homogenous 
forecasting values in long-term forecasting. The limitation of ARIMA forecasting is 
further magnified in some financial time series that exhibit frequent market turbulence. In 
time-domain analysis, the sudden spikes and dips are generally treated as outliers and be 
smoothen out in the analysis process. There is therefore a need to perform analysis in 
frequency domain in order to recover additional information that can be used to 
compliment information captured in time domain. 

With its unique ability to toggle signal, which is indeed time series, between time 
domain and frequency domain, Fourier transforms is able to reveal the set of frequencies 
hidden in any signal. Dominant frequencies with predetermined criteria can thus be 
identified. However, Fourier transform has a major restriction that it transforms signals 
into series of sinusoidal waves that continue until infinitive. This works well with signals 
that have unchanged frequency components that last throughout the time frame being 
analysed. However, financial time series often have different statistical properties at 
different time frames of the time series. This may translate to varying frequency contents 
along the time axis. In addition, changes in values are often transient in nature. 
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These properties have prohibited the applications of conventional Fourier transform 
in the analysis of financial time series. In financial time series analysis, it is often 
important to identify the exact point of time when noise occurs or when changes in 
characteristics occur; this may signify of a sudden change in the frequency contents of 
time series. 

Fourier transform’s inability to pinpoint the exact time when a particular frequency 
component exists is a major hindrance for its practical use in typically transient and  
non-stationary financial time series. The preferred frequency analysing method obviously 
must be able to provide both time and frequency information simultaneously. 

Wavelet transform, particularly continuous wavelet transform (CWT) that provides 
higher resolution of time series information comes into picture. Through continuous 
scaling and shifting, as well as scales to frequencies mapping, CWT has the ability to 
approximate all significant sinusoid components of time series at any point of time. By 
performing CWT to the residual of ARIMA modelling, additional information in the 
form of the sum of all significant sinusoid components can be obtained. This paper seeks 
to improve on the long-term forecasting performance of ARIMA by aggregating 
ARIMA’s homogenous forecasting points with the wave-liked additional information 
captured by CWT from the residual of ARIMA modelling. The forecasting performance 
of ARIMA and Hybrid ARIMA+CWT will be evaluated using mean absolute percentage 
error (MAPE). 

The paper is structured as follow: Section 1 provides some basic background,  
Section 2 introduces theoretical framework and discusses some related works, Section 3 
elaborates the research methods used in this paper and discloses the data being analysed, 
Section 4 presents and discusses the simulation results, and lastly Section 5 concludes 
and proposes possible extension of the research works. 

2 Literature and related works 

Accurate prediction of financial market direction always raises interest of researchers and 
statisticians as it serves as an early recommendation system for investors. Many market 
prediction studies require some macroeconomic data which takes some effort to obtain. 
Prediction methods based purely on price data have thus been extensively researched and 
did show promising results. 

Wang (2014) reported accurate prediction of the movements of individual 
constituents in the Korean Composite Stock Price Index and Hang Seng Index. Some 
approaches use various techniques trying to look for repeated sub-sequences which are 
very similar to each other in a long time series (Truong and Anh, 2019). Constantino et 
al. (2021) proposed an associative classification model based on three technical indicators 
and claimed an 88.77% accuracy in the forecasting of stock market trends based on 
analysis of ten stocks and 12-year time series. 

More sophisticated techniques in the realm of fuzzy logic and artificial intelligence 
have also been studied. Artificial neural network (ANN) that was trained with the 
historical data has been shown to be effective in the prediction of the future values of 
various stock prices (Yadav et al., 2021). Fuzzy time series (FTS) forecasting methods 
(Sridevi et al., 2021) have been studied and claimed to perform much better in terms of 
precision than other existing models. 
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Among the forecasting techniques, ARIMA remains one of the most widely used 
models due to its simplicity and its ability to generalise for non-stationary series. 
However, ARIMA tends to omit outliers as the process smoothen the value fluctuation in 
the time series. This may have caused the elimination of some useful information. This 
paper seeks to recover additional valid information by analysing the residual of ARIMA 
modelling in the frequency domain. 

2.1 Time-frequency analysis of financial data 

Various adaptations on traditional Fourier transform have been proposed to overcome the 
limitations of Fourier transform. Works from Haar (1910), Gabor (1946) and Levy and 
Morlet (1984, 1985, 1986) eventually leaded to the development of modern-day wavelet 
transform. 

The precursor of wavelet transform is short-time Fourier transform (STFT), which is 
indeed a windowed Fourier transform. STFT tries to overcome the limitations of Fourier 
transform by segmenting time series into ‘windows” to perform analysis separately. 
However, STFT lacks flexibility as the windows size is fixed throughout the analysis. 
Wavelet transform takes STFT one step further by introducing ‘scale’ that serves as a 
mediator to frequency. Unlike the fixed windows in STFT, wavelet transform performs 
multiple pass to the time series being analysed using various scales. With these scales, it 
becomes possible to identify the approximate frequency that occurs in approximate time 
of the time series. 

Fourier transform decomposes signals into the complex exponential basis functions 
which is made up of infinite length of sines and cosines waves, and thus losing all time 
localisation information. The source function in wavelet transform is called mother 
wavelet, which can be any time-limited oscillatory function that is continuous in both 
time and frequency. From this mother wavelet, daughter wavelets, which are nothing 
more than scaled and shifted mother wavelet are formed. Wavelet transform decomposes 
signals into series of daughter wavelets which are time-localised, and thus preserves both 
time and frequency localisation information. 

2.2 Variance of wavelet transform 

Wavelet transform involves comparison of time series being analysed with various 
daughter wavelets. There are generally two forms of implementation, CWT and discrete 
wavelet transform (DWT). Fundamental differences between CWT and DWT are that, in 
CWT the scaling and shifting are done in continuous steps, whereas in DWT the scaling 
and shifting are done in discrete steps. However, in computerised implementation of 
CWT, continuous scaling and shifting is impossible; CWT has to be adapted to use more 
finely discretised scales and shifting steps, compared to DWT. 

2.3 Scale to frequency conversion in CWT 

Mathematically, wavelet transform is expressed as 

,( , ) ( ) ( ) dtu sW u s f t ψ t
∞

−∞
= ⋅   
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where W (u, s) is the wavelet coefficients, which is a function of scales, s and positions, 
u; f(t) is the time series being analysed and ψu, s (t) is the wavelet functions. Wavelet 
coefficients W (u, s) are the sum over all time of the time series, f(t) multiplied by scaled, 
shifted versions of wavelet functions, ψu, s (t) (Chan and Bates, 1996). In fact, W (u, s) 
indicates the similarity between f(t) and ψu, s (t). 

In computerised implementation of wavelet transform, W (u, s) is a matrix of s × u 
dimension. Value of coefficient W (u, s) in row s and column u, indicates the similarity 
between a daughter wavelet ψu, s (t) of scale s and the signal f(t) at position u; larger value 
signifies closer matching. By looking into this W (u, s) matrix, the dominant wavelet 
function of scale s at position u of the time series can be determined. As long as the 
wavelet function is known, the dominant sinusoid frequency may be ‘estimated’. Unlike 
Fourier transform that produces precise sinusoid functions, wavelet transform can only 
provide information of the wavelet functions that do not have a precise sinusoid 
frequency. Hence the sinusoid frequency can only be estimated, instead of calculated 
precisely. 

Scale of wavelet function is inversely proportional to frequency. There is no precise 
relationship between scale and frequency, therefore, the scale to frequency conversion 
can only be done in general sense. This is due to firstly Heisenberg’s uncertainty 
principle and secondly the irregular shape of wavelet functions that do not have dominant 
sinusoid component to allow a meaningful definition or calculation of centre frequency 
(Aguiar-Conraria and Soares, 2013). 

According to Lilly and Olhede (2009), there is more than one valid interpretation in 
the assignment of scale to frequency. In most cases, the mapping between scale and 
frequency is merely an interpretation, there is no universal and precise mapping. Lilly 
and Olhede (2009) discussed about the notion of wavelet frequency ωs, which could be 
represented by the wavelet’s central frequency, ωc, at which the maximum of the 
wavelet’s Fourier transform magnitude, ˆ ( )ψ ω  occurs. ωs may be obtained with the 
formula ωs = ωc / s after adjustment with the scale. This is one of the elementary and the 
most intuitive methods to define the frequency. 

2.4 Generalised morse wavelet 

For the purpose of analysis in this paper, generalised morse wavelet (GMW), which is a 
particularly important family of analytic wavelets has been chosen. GMW offers better 
time localisation and frequency localisation and is more flexible due to its complex value 
in time domain and positive side only spectra (Conraria and Soares, 2014). 

Lilly and Olhede (2012) reported the application of GMW with vanishing support on 
negative frequencies provided the basis for a powerful analysis of oscillatory signals. In 
Zerouali’s work (2014) and another two recent papers (Munia and Aviyente, 2020; 
Nakhnikian et al., 2016), GMW has been used to extract the amplitude and phase 
components from signals. 

CWT implementation with GMW is a good combination for time-frequency analysis 
of financial time series with time-varying amplitude and frequency characteristic. The 
wavelet coefficients in complex values provide both magnitude and phase information, 
which is useful for analysing localised discontinuities in the time series. 
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2.5 ARIMA model and hybrid ARIMA+CWT 

Since 1970, ARIMA model has been widely used to perform modelling and prediction 
for time series data due to its robustness and ease of implementation. ARIMA is one of 
the more popular statistical models used in forecasting. However, there is a prerequisite 
that the time series must be stationary to yield reliable results. For financial time series, 
which is often non-stationary, differencing has to be performed to make the time series 
stationary. 

Non-seasonal ARIMA takes the form ARIMA (p, d, q) where p is the order of the 
auto regression (AR), d is the order of the differencing that make the series stationery and 
q is the order of the moving average (MA). 

In general, a typical ARIMA model can be expressed mathematically as: 

1 1 1 1... ...t t t p t p t q t qY ω Y Y e e− − − −= + + + + + +α α β β  

where ω is a constant representing the mean of the stochastic time series, α is the 
coefficient of the AR parameter, β is the coefficient of the MA parameter, Yt is the 
predicted value of time series at time t, Yt-i is the value of the time series at time (t –i) and 
et–j is the error in the predicted value of the time series as compared to actual time series 
at time (t – j). In actual implementation, ARIMA modelling is an iterative process in 
order to obtain the best fit parameters (Hillmer and Wei, 1991). 

In order to get a parsimonious model, the order of the ARIMA model shall be kept 
small. However, depending upon the stochastic nature of time series, which is typical in 
financial market, there is a possibility that the model order may be large. The hybrid 
application of wavelets and ARIMA in forecasting the non-stationary time series is 
expected to be able to overcome the large order issue in ARIMA and enhance the 
accuracy of the prediction. 

2.6 Related works 

There have been interest in the application of CWT in financial time series analysis. 
Adjepong et al. (2019) has adopted CWT and wavelet coherence approach to explore  
co-movement and directional inter-linkage properties among internationally traded 
financial asset markets. 

In the study of time-frequency dynamic co-movement, CWT approach has been used 
successfully to identify the co-variations over time and across frequencies between the 
gold and oil prices with BRICS stock markets (Mensi et al., 2018). In another work 
(Uddin et al., 2016), CWT has been applied successfully to illustrate the changes of 
correlation and the lead–lag structure between variables over timescales. In has been 
reported that wavelet-based estimators significantly improved the modelling and 
forecasting of exchange rate volatility in time-frequency domain (Barunik et al., 2016). 

In order to overcome the limitations of ARIMA, hybrid wavelet-ARIMA models 
were widely used for forecasting in past research. Results were often better than pure 
ARIMA only approach. A hybrid wavelet ARIMA approach that make use of Haar 
wavelet has been proven to be more accurate in the analysis of the correlation of Ghana’s 
stocks returns in both time and frequency domain (Eghan, 2019). The authors inferred 
that Haar-ARIMA approach would produce better forecasting performance compared to 
ARIMA model. Not only with ARIMA, but wavelet approach has also been found to 
work well with generalised auto regressive conditional Heteroskedasticity (GARCH), 
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another popular statistical model for time series analysis. Wavelet-GARCH transform 
was found to provide more accurate results than GARCH model alone in the modelling of 
multivariate ENSO index (Ahasan et al., 2019). 

Quite a number of research suggested that wavelet transform fits well with ARIMA 
when the two techniques were combined to form hybrid approaches. Dela Cruz (2019) 
proposed a Hybrid model of forecasting by using a time series data that was  
pre-transformed using Daubechies Filter with DWT. Salazar et al. (2018) claimed to 
obtain better forecasting results by applying the wavelet transform using the Haar 
cumulated wavelet function to the original time series prior to ARIMA modelling.  
Al-Wadi and Al-Slaihat (2019) managed to improve the forecasting accuracy by applying 
ARIMA modelling to time series that has been smoothened by wavelet transform. 

Existing works that integrated wavelet transform and ARIMA modelling techniques 
generally utilised wavelet transform to de-noise the time series before modelling it with 
ARIMA. This process not only smoothen the time series but will also eliminate some 
valid information inadvertently. The ability of CWT to capture the frequency components 
at any one point of the time series has not been fully utilised. On top of that, there is a 
lack of studies on the residuals of ARIMA modelling. This paper attempts to investigate 
the residuals of ARIMA modelling by using CWT to analyse and to pick up useful 
information manifested as sinusoid frequency components from the residuals. 

3 Methods and data 

In this paper, two types of forecasting have been performed to test the information 
capturing capability of CWT from the residuals of ARIMA. First, in-sample forecasting 
was performed to examine the CWT captured information and the associative optimum 
parameters, follow by out-of-sample forecasting to further confirm the validity of the 
CWT captured information. 

A number of financial time series from equity, commodity and currency exchange 
market were carefully selected to put into test. With the assumption that the process of 
ARIMA modelling may have left some useful information in its residuals, this paper tried 
to extract this information from the ARIMA residuals by applying CWT with GMW. The 
extracted information was expected to be able to complement ARIMA model to provide 
better forecasting outcomes. 

The first step is to test the hybrid ARIMA+CWT concept via in-sample forecasting 
on the training data. First of all, ARIMA model with the best fit parameters was applied 
to the training data of selected financial time series. CWT was then applied to the 
residuals of the ARIMA process, attempting to capture additional information in terms of 
sinusoid waves with magnitudes, frequencies and phases. The captured information was 
then added back to the ARIMA fitted values obtained earlier. Both of the ARIMA fitting 
and ARIMA+CWT values were then compared to the actual time series value. If the 
ARIMA+CWT values yield smaller error, it is assumed that the CWT process has 
successfully captured valid information from the ARIMA residuals. 

Upon successful validation of the CWT-captured sinusoid information in in-sample 
forecasting, the captured information will then be used in out-of-sample forecasting, with 
the assumption that the captured sinusoid information will extend beyond the training 
time series used in in-sample forecasting. First, ARIMA model is used to obtain 20 
forecasting points beyond the initial training time series. The CWT-captured sinusoid(s) 
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will then be extended from training time series and added to the 20 ARIMA out-of-
sample forecasting points to obtain hybrid ARIMA+CWT out-of-sample forecasting. 
MAPE of both ARIMA forecasting and the hybrid ARIMA+CWT forecasting were 
calculated by comparing to the 20 points actual data used as test data. Lastly, 
comparisons were made between the accuracy of ARIMA forecast and hybrid 
ARIMA+CWT forecast. 

The two forecasting approaches, ARIMA and hybrid ARIMA+CWT will be applied 
to four sets of selected financial time series. Each set comprises of two equivalent time 
series ended at different point of time (refer to Section 3.3, data). This setup was designed 
to test the capabilities of the proposed forecasting strategies under different scenarios. 

3.1 ARIMA 

The following iterative process have been applied in the ARIMA modelling of the 
selected financial time series in this paper: 

1 Model identification in order to make the time series stationary. Differencing was 
performed on the time series and checked by unit-root test. Following the naming 
convention of ARIMA (p, d, q), the order of differencing was named as d. The order 
of p and q were estimated by analysing the autocorrelation function (ACF) and the 
partial autocorrelation function (PACF). 

2 Model estimation using maximum likelihood. The model with lowest Akaike’s 
information criterion (AIC) and Bayesian information criterion (BIC) was selected. 

3 Diagnostic checking was performed to ensure that the selected ARIMA models 
fulfilled the stationary and invertibility conditions. The white noise property of the 
residuals in the model has been examined to ensure that the errors were normally 
distributed. The ACF and PACF plots of the residuals have been checked. Normality 
of the residuals was checked by using the normal quantile-quantile plot (Q-Q plot). 
Residuals were ensured to approximate white noise by checking on the Ljung-Box 
statistics. 

Finally, the fined tuned ARIMA model that satisfied all the required conditions were used 
to perform in-sample as well as out-of-sample forecast. 

3.2 Hybrid ARIMA+CWT 

All the works in this paper has been carried out using GMWs and the scale-frequency 
interpretation method explained in the last paragraph of Section 2.3. 

For in-sample forecasting, the hybrid ARIMA+CWT approach was formulated via 
the following steps: 

1 ARIMA model fitting with best-fit parameters was performed on the training time 
series. 

2 CWT with GMW was applied on the residuals of ARIMA to identify sinusoid 
components at each time point of the residuals. Amplitudes, frequencies, and phases 
information of these components were saved for subsequent processing. 
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3 The dominant sinusoid wave with the highest amplitude at each time point will be 
captured and used as a benchmark. For the remaining identified sinusoid waves at 
the same time point, only those with amplitudes exceeds k% [refer to Figure 5(a) for 
illustration] of the benchmark sinusoid’s amplitude were deemed significant and 
captured, while those below were discarded. 

4 Captured sinusoid components at every time point were then summed up  
point-by-point to the ARIMA fitted model in step 1) to establish in-simple forecast 
of hybrid ARIMA+CWT. 

5 Performance of the hybrid ARIMA+CWT forecasts with different parameter (k%) 
were then be evaluated using MAPE. Comparisons were made between in-sample 
forecasting performance of hybrid ARIMA+CWT and ARIMA model (refer to 
Tables 2A, 2B, 2C and 2D). 

The CWT captured sinusoid components at every time point of the ARIMA residuals 
from the training time series were saved for later use in out-of-sample forecasting. In  
out-of-sample forecasting, the hybrid ARIMA+CWT approach was formulated via the 
following steps: 

1 ARIMA forecast of 20 points was obtained based on the ARIMA fitting model 
obtained from the training time series. 

2 The CWT captured sinusoid components resulted from the earlier in-sample 
forecasting were extended beyond the training time series with additional 20 
forecasting points. Three parameters have been used to dictate whether to consider a 
particular captured sinusoid component in the out-of-sample forecasting, and to 
determine the length to extend the chosen sinusoid. 

• The frequency rejection parameter (k%) that determine the amplitude of 
identified sinusoid to be considered as significant (refer to step 3 of in-sample 
forecasting). 

• The back tracking points (BTP) (Refer to Figure 5B for illustration) that dictate 
the number of data points to trace back from the last point of the training time 
series in order to scan for dominant sinusoid components. 

• The sinusoid probability parameter (j%) (Refer to Figures 5C-1 to 5C-2 for 
illustration) which is the probability threshold that determine the length to 
extend the chosen sinusoid. 0% means the sinusoid will definitely be extended 
for the 20 points forecasting, 100% means the sinusoid component will only be 
extended if its probability of continuation to particular forecasting point is 
100%, 50% means the sinusoid component will only be extended if its 
probability of continuation to particular forecasting point is 50% and above. The 
probability was calculated based on the historical length records of the particular 
sinusoid in training time series. 

• The k% parameter takes values 0%, 50%, 80% and 100%. The BTP parameter 
takes values 20, 50, 100, 200 and 300. Whereas the j% takes values 0%, 30%, 
50%, 80% and 100%. 
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• Combining the three parameters of k%, BTP and j%, there were 100 
combinations. Hence, 100 ARIMA+CWT simulations have been performed for 
each of the eight time series (Refer Section 3.3 Data). 

3 The selected sinusoid components that fulfilled the k%, BTP and j% conditioning 
parameters were then summed up point-by-point to the ARIMA forecast in step 1) to 
establish out-of-sample forecasting of hybrid ARIMA+CWT. 

4 Performance of the hybrid ARIMA+CWT forecasts with parameters k%, BTP and 
j% were then be evaluated using MAPE. Comparison was made between  
out-of-sample forecasting performance of hybrid ARIMA+CWT and ARIMA model. 

The entire methodology process flow described in section 3.2 has been summarised in 
Figure 6. 

3.3 Data 

Four financial time series were examined in this paper: 

• Daily trading prices (in ringgit) of Malaysia's gold bullion coin (KEmas) 

• BitCoin-USD Daily Exchange Rate (BCoin) 

• Daily price of Brent Oil Futures (Brent) 

• Daily index of S&P500 Index (S&P500) 

Two-time frames (hereafter 2021-February and 2021-October) were derived from each of 
the time series stated above: 

• KEmas from 18/07/2001 to 19/02/2021 (4939 data points) 

• KEmas from 18/07/2001 to 01/10/2021 (5083 data points) 

• BCoin from 17/09/2014 to 19/02/2021 (2330 data points) 

• BCoin from 17/09/2014 to 02/10/2021 (2570 data points) 

• Brent from 27/06/1988 to 19/02/2021 (8330 data points) 

• Brent from 27/06/1988 to 01/10/2021 (8494 data points) 

• S&P500 from 30/12/1927 to 19/02/2021 (23392 data points) 

• S&P500 from 30/12/1927 to 01/10/2021 (23551 data points) 

The KEmas data was obtained from Bank Negara website (Bnm.gov.my, 2021), the 
BCoin data was obtained from Yahoo Finance (Finance.yahoo.com, 2021), the Brent data 
was obtained from Investing.com (Investing.com, 2021), whereas the S&P500 data was 
obtained from Yahoo Finance (Finance.yahoo.com, 2021). 

The last 20 data points of all the above time series were reserved and used as 
benchmark for out-of-sample forecasting. The rest of the earlier data points were used as 
training data for both in-sample and out-of-sample forecasting. 
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3.4 Model Performance Evaluation 

Evaluation criteria of forecast accuracy used in this paper was MAPE. 

1

1 n
i i

ii

A FMAPE
n A=

−=   

where Fi are forecasted values, Ai are actual values and n is number of points. 

4 Results and discussion 

The time-domain plots of all the financial time series analysed in this paper were shown 
from Figure 1A to Figure 4B. Each figure shows the training time series, ARIMA fitted 
values and its residuals. 

Visual inspection into the training time series obviously shows that KEmas, BCoin, 
Brent and S&P500 exhibit very diverse time domain characteristics. In addition, the 
statistical characteristics at different time frames of each time series change significantly. 
Table 1A and Table 1B show the descriptive statistics of KEmas, BCoin, Brent and 
S&P500 of two different time frames respectively. It can be observed that all-time series 
are nonstationary therefore differencing is needed. 

According to the outcomes from unit root tests, all the selected financial time series 
became stationary after first differencing. Observations to AIC and BIC and other 
diagnostic checking procedures led to the best fit ARIMA parameters which are listed as 
follow: 

• ARIMA (2,1,2) for both KEmas time frames 

• ARIMA (2,1,0) for both BCoin time frames 

• ARIMA (0,1,0) for both Brent time frames 

• ARIMA (0,1,2) for both S&P500 time frames. 

Figure 1A to Figure 4B shows the plotting of ARIMA fitted values which were labelled 
as ‘ARIMA Fitted Values’. Note that from Figure 1A to Figure 4B, all of the ARIMA 
fitted values almost overlapped with the training time series under the plotting scales 
used. Hence the two-plotting labelled by the legends ‘ARIMA fitted values’ and ‘training 
time series’ are hardly distinguishable visually in all the figures. 

Comparison of in-sample forecasting performance between ARIMA and  
ARIMA+CWT models are shown from Table 2A to Table 2D. For all tested time series, 
the ARIMA+CWT model gave lower MAPE under all the frequency rejection parameter 
(k%). The improvement of the in-sample forecasting performance clearly indicates that 
the extra information extracted by CWT from the ARIMA residuals from all the training 
time series contain valid information. 

Table 3A to Table 5H shows the 5 points to 20 points out-of-sample forecasting 
summary results for KEmas, BCoin, Brent and S&P500 time series at various sinusoid 
components capturing parameters (k%, j%, and BTP) respectively. Figures in the tables 
indicate the percentages of all the parameters’ combinations that yield better forecasting 
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results compared to the ARIMA model, when applied to the hybrid ARIMA+CWT 
models. 

Table 3A, 4A, 5A and Table 3B, 4B, 5B are forecasting performance for KEmas 
2021-Feb and KEmas 2021-October respectively. Table 3C, 4C, 5C and Table 3D, 4D, 
5D are forecasting performance for BCoin 2021-February and BCoin 2021-October. 
Table 3E, 4E, 5E and Table 3F, 4F, 5F are forecasting performance for Brent  
2021-February and Brent 2021-October. Table 3G, 4G, 5G and Table 3H, 4H, 5H are 
forecasting performance for S&P500 2021-February and S&P500 2021-October. 

Figure 1 (a) KEmas 18/07/2001 to 19/02/2021 (Total 4,939 data points), (b) KEmas 18/07/2001 
to 01/10/2021 (Total 5,083 data points) (see online version for colours) 

 
(a) 

 
(b) 
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Figure 2 (a) BCoin from 17/9/2014 to 19/02/2021 (Total 2330 data points), (b) BCoin from 
17/9/2014 to 02/10/2021 (2570 data points) (see online version for colours) 

 
(a) 

 
(b) 
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Figure 3 (a) Brent from 27/06/1988 to 19/02/2021 (Total 8330 data points), (b) Brent from 
27/06/1988 to 01/10/2021 (Total 8494 data points) (see online version for colours) 

 
(a) 

 
(b) 

Figure 4 (a) S&P500 from 30/12/1927 to 19/02/2021 (Total 23392 data points), (b) S&P500 
from 30/12/1927 to 01/10/2021 (Total 23551 data points) (see online version  
for colours) 

 
(a) 
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Figure 4 (a) S&P500 from 30/12/1927 to 19/02/2021 (Total 23392 data points), (b) S&P500 
from 30/12/1927 to 01/10/2021 (Total 23551 data points) (see online version  
for colours) (continued) 

 
(b) 

Table 1A Statistical characteristics of selected financial time series 

Statistic KEmas 18/07/2001 
to 19/02/2021 

BCoin 17/09/2014 
to 19/02/2021 

Brent 27/06/1988 
to 19/02/2021 

S&P500 30/12/1927 
to 19/02/2021 

Mean 3,945.39 5,375.66 48.05 496.47 
Standard 
deviation 

1,894.35 6,029.08 32.52 746.18 

Kurtosis –0.79 7.70 –0.50 3.11 
Skewness 0.18 2.20 0.81 1.88 
Min 1,069.00 178.10 9.64 4.40 
Max 9,188.00 40,797.61 146.08 3,934.83 
Count 4,939 2,330 8,330 23,392 

Table 1B Statistical characteristics of selected financial time series 

Statistic 
KEmas 

18/07/2001 to 
01/10/2021 

BCoin 
17/09/2014 to 

02/10/2021 

Brent 
27/06/1988 to 

01/10/2021 

S&P500 
30/12/1927 to 

01/10/2021 
Mean 4,062.35 9,172.58 48.48 521.65 
Standard deviation 1,979.26 13,422.70 32.36 804.09 
Kurtosis –0.81 4.45 –0.53 4.41 
Skewness 0.20 2.27 0.77 2.08 
Min 1,069.00 178.10 9.64 4.40 
Max 9,188.00 63,503.46 146.08 4,536.95 
Count 5,083 2,570 8,494 23,551 
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Table 2A In-sample forecasting MAPE of KEmas training time series 

MAPE of KEmas time series 
Modelling function Frequency rejection 

parameter (k%) 18/07/2001 to 
19/02/2021 

18/07/2001 to 
01/10/2021 

ARIMA (2, 1, 2) + CWT 0% 0.4176 0.4156 
ARIMA (2, 1, 2) + CWT 50% 0.4954 0.4938 
ARIMA (2, 1, 2) + CWT 80% 0.5803 0.5818 
ARIMA (2, 1, 2) + CWT 100% 0.6263 0.6230 
ARIMA (2, 1, 2) - 0.4176 0.7561 

Table 2B In-sample forecasting MAPE of BCoin training time series 

MAPE of KEmas time series 
Modelling function Frequency rejection 

parameter (k%) 17/9/2014 to 
19/02/2021 

17/09/2014 to 
02/10/2021 

ARIMA (2, 1, 0) + CWT 0% 1.7658 1.7592 
ARIMA (2, 1, 0) + CWT 50% 2.1602 2.1976 
ARIMA (2, 1, 0) + CWT 80% 2.1370 2.1810 
ARIMA (2, 1, 0) + CWT 100% 2.2438 2.2917 
ARIMA (2, 1, 0) - 2.4989 2.5634 

Table 2C In-sample forecasting MAPE of brent training time series 

MAPE of KEmas time series 
Modelling function Frequency rejection 

parameter (k%) 27/06/1988 to 
19/02/2021 

27/06/1988 to 
01/10/2021 

ARIMA (0, 1, 0) + CWT 0% 0.8302 0.8284 
ARIMA (0, 1, 0) + CWT 50% 1.0091 1.0068 
ARIMA (0, 1, 0) + CWT 80% 1.1663 1.1648 
ARIMA (0, 1, 0) + CWT 100% 1.2566 1.2547 
ARIMA (0, 1, 0) - 1.5680 1.5656 

Table 2D In-sample forecasting MAPE of S&P500 training time series 

MAPE of KEmas time series 
Modelling function Frequency rejection 

parameter (k%) 30/12/1927 to 
19/02/2021 

30/12/1927 to 
01/10/2021 

ARIMA (0, 1, 2) + CWT 0% 0.4057 0.4019 
ARIMA (0, 1, 2) + CWT 50% 0.5183 0.5414 
ARIMA (0, 1, 2) + CWT 80% 0.6058 0.6209 
ARIMA (0, 1, 2) + CWT 100% 0.6500 0.6600 
ARIMA (0, 1, 2) - 0.7624 0.7613 

Referring to Table 3, Table 4, and Table 5 series, the total at the bottom of each table 
sums up the performance percentages by number of forecasting points (5 points,  
10 points, 15 points and 20 points). Each total is the overall forecasting performance of 
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ARIMA+CWT for 5 points, 10 points, 15 points and 20 points. It can be observed that 
these total figures of the same times series of same time frame matched each other 
(barring some rounding errors) when different parameters were varied for testing. For 
example, totals in Table 3A matches with totals in Table 4A and Table 5A, whereas totals 
in Table 3B matches with totals in Table 4B and Table 5B. This validates the results of 
the simulations. 
Table 3A Out-of-sample forecasting KEmas (5 Points to 20 Points) percentages of 

ARIMA+CWT parameters to outperform ARIMA (2, 1, 2) breakdown by frequency 
rejection (k%) 

Kemas 18/07/2001 to 19/02/2021 
Modelling function 

Frequency 
rejection 

parameter (k%) 5 10 15 20 Average% 

ARIMA (2, 1, 2) + CWT 0% 19.74% 5.26% 17.11% 14.47% 14.15% 
ARIMA (2, 1, 2) + CWT 50% 6.58% 5.26% 7.89% 14.47% 8.55% 
ARIMA (2, 1, 2) + CWT 80% 3.95% 0.00% 0.00% 0.00% 0.99% 
ARIMA (2, 1, 2) + CWT 100% 2.63% 2.63% 3.95% 1.32% 2.63% 
Total% 32.90% 13.15% 28.95% 30.26%  

Table 3B Out-of-sample forecasting KEmas (5 Points to 20 Points) percentages of 
ARIMA+CWT parameters to outperform ARIMA (2,1,2) breakdown by frequency 
rejection (k%) 

Kemas 18/07/2001 to 01/10/2021 
Modelling function 

Frequency 
rejection 

parameter (k%) 5 10 15 20 Average% 

ARIMA (2, 1, 2) + CWT 0% 15.63% 18.75% 15.63% 20.31% 17.58% 
ARIMA (2, 1, 2) + CWT 50% 0.00% 3.13% 3.13% 9.38% 3.91% 
ARIMA (2, 1, 2) + CWT 80% 0.00% 4.69% 4.69% 7.81% 4.30% 
ARIMA (2, 1, 2) + CWT 100% 0.00% 0.00% 0.00% 1.56% 0.39% 
Total% 15.63% 26.57% 23.45% 39.06% 15.63% 

Table 3C Out-of-sample forecasting BCoin (5 Points to 20 Points) percentages of 
ARIMA+CWT parameters to outperform ARIMA (2,1,0) breakdown by frequency 
rejection (k%) 

BCoin 17/09/2014 to 19/02/2021 
Modelling function 

Frequency 
rejection 

parameter (k%) 5 10 15 20 Average% 

ARIMA (2, 1, 0) + CWT 0% 7.59% 8.86% 13.92% 12.66% 10.76% 
ARIMA (2, 1, 0) + CWT 50% 6.33% 6.33% 13.92% 13.92% 10.13% 
ARIMA (2,1, 0) + CWT 80% 21.52% 27.85% 30.38% 24.05% 25.95% 
ARIMA (2, 1, 0) + CWT 100% 0.00% 8.86% 2.53% 5.06% 4.11% 
Total% 35.44% 51.90% 60.75% 55.69% 35.44% 
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Table 3D Out-of-sample forecasting BCoin (5 points to 20 points) percentages of 
ARIMA+CWT parameters to outperform ARIMA (2,1,0) breakdown by frequency 
rejection (k%) 

BCoin 17/09/2014 to 02/10/2021 
Modelling function 

Frequency 
rejection 

parameter (k%) 5 10 15 20 Average% 

ARIMA (2, 1, 0) + CWT 0% 9.64% 20.48% 18.07% 20.48% 17.17% 
ARIMA (2, 1, 0) + CWT 50% 8.43% 6.02% 3.61% 4.82% 5.72% 
ARIMA (2, 1, 0) + CWT 80% 19.28% 19.28% 21.69% 21.69% 20.49% 
ARIMA (2, 1, 0) + CWT 100% 21.69% 27.71% 15.66% 13.25% 19.58% 
Total% 59.04% 73.49% 59.03% 60.24%  

Table 3E Out-of-sample forecasting brent (5 points to 20 points) percentages of ARIMA+CWT 
parameters to outperform ARIMA (0,1,0) breakdown by frequency rejection (k%) 

Brent 27/06/1988 to 19/02/2021 
Modelling function 

Frequency 
rejection 

parameter (k%) 5 10 15 20 Average% 

ARIMA (0, 1, 0) + CWT 0% 21.43% 22.86% 25.71% 22.86% 23.22% 
ARIMA (0, 1, 0) + CWT 50% 11.43% 12.86% 10.00% 15.71% 12.50% 
ARIMA (0, 1, 0) + CWT 80% 2.86% 8.57% 2.86% 2.86% 4.29% 
ARIMA (0, 1, 0) + CWT 100% 5.71% 5.71% 8.57% 8.57% 7.14% 
Total% 41.43% 50.00% 47.14% 50.00%  

Table 3F Out-of-sample forecasting brent (5 points to 20 points) percentages of ARIMA+CWT 
parameters to outperform ARIMA (0,1,0) breakdown by frequency rejection (k%) 

Brent 27/06/1988 to 01/10/2021 
Modelling function 

Frequency 
rejection 

parameter (k%) 5 10 15 20 Average% 

ARIMA (0, 1, 0) + CWT 0% 12.50% 1.79% 3.57% 1.79% 4.91% 
ARIMA (0, 1, 0) + CWT 50% 5.36% 3.57% 3.57% 5.36% 4.47% 
ARIMA (0, 1, 0) + CWT 80% 0.00% 0.00% 0.00% 0.00% 0.00% 
ARIMA (0, 1, 0) + CWT 100% 0.00% 0.00% 0.00% 0.00% 0.00% 
Total% 17.86% 5.36% 7.14% 7.15%  

Table 3G Out-of-sample forecasting S&P500 (5 points to 20 points) percentages of 
ARIMA+CWT parameters to outperform ARIMA (0,1,2) breakdown by frequency 
rejection (k%) 

S&P500 30/12/1927 to 19/02/2021 
Modelling function 

Frequency 
rejection 

parameter (k%) 5 10 15 20 Average% 

ARIMA (0, 1, 2) + CWT 0% 2.99% 2.99% 5.97% 19.40% 7.84% 
ARIMA (0, 1, 2) + CWT 50% 4.48% 0.00% 4.48% 14.93% 5.97% 
ARIMA (0, 1, 2) + CWT 80% 5.97% 0.00% 7.46% 13.43% 6.72% 
ARIMA (0, 1, 2) + CWT 100% 10.45% 2.99% 2.99% 5.97% 5.60% 
Total% 23.89% 5.98% 20.90% 53.73%  



   

 

   

   
 

   

   

 

   

   88 H.Y. Lee et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Table 3H Out-of-sample forecasting S&P500 (5 points to 20 points) percentages of 
ARIMA+CWT parameters to outperform ARIMA (0,1,2) breakdown by frequency 
rejection (k%) 

S&P500 30/12/1927 to 01/10/2021 
Modelling function 

Frequency 
rejection 

parameter (k%) 5 10 15 20 Average% 

ARIMA (0, 1, 2) + CWT 0% 24.07% 24.07% 29.63% 33.33% 27.78% 
ARIMA (0, 1, 2) + CWT 50% 3.70% 9.26% 7.41% 1.85% 5.56% 
ARIMA (0, 1, 2) + CWT 80% 9.26% 9.26% 1.85% 3.70% 6.02% 
ARIMA (0, 1, 2) + CWT 100% 0.00% 0.00% 0.00% 0.00% 0.00% 
Total% 37.03% 42.59% 38.89% 38.88% 37.03% 

Figure 5A Illustration of k% frequency rejection parameter (see online version for colours) 

 

Benchmark Frequency with amplitude of 244  

80% of 
244 

195 

50% of 
244 

122 

Frequency 

Amplitude 
Amplitude 

Frequencies selected if k = 50% 

30% of 
244 

73 

 

Notes: Illustrates the peaking sinusoid frequencies at point 3050 of a time series. There 
are 13 identified peaking sinusoid frequencies highlighted in red circles. When the 
parameter k% is set at 50%, only sinusoid frequencies with amplitude 50% and 
above of the benchmark frequency’s amplitude will be selected. 3 sinusoid 
frequencies including the benchmark frequency will be selected. For  
k = 100%, only the benchmark frequency will be selected. For k = 80%, only the 
benchmark frequency will be selected. For k = 30%, 7 sinusoid frequencies 
including the benchmark frequency will be selected. For k = 0%, all sinusoid 
frequencies including the benchmark frequency will be selected. 
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Figure 5B Illustration of BTP (see online version for colours) 
 

Magnitude 

2310 2110 

2010 

BTP=200 

BTP=300 

 

Notes: Illustrates the BTP parameter of a time series with training sequence that contains 
2,310 points. The last point of the training sequence is at data point 2,310. When 
the BTP is set at 200, only the data between point 2,110 and 2,310 will be 
considered to contain sinusoid frequencies that will influence the next 20 
forecasting points beyond data point 2310. Significant sinusoid frequencies 
captured between point 2,110 and 2,310 will be examined with parameters k% and 
j% for their continuation in out-of-sample forecasting. When the BTP is set at 
300, only the data between point 2010 and 2310 will be considered to contain 
sinusoid frequencies that will influence the next 20 forecasting points beyond data 
point 2,310. Significant sinusoid frequencies captured between point 2,010 and 
2,310 will be examined with parameters k% and j% for their continuation in  
out-of-sample forecasting. 

Figure 5C-1 Illustration of j% sinusoid frequency probability (see online version for colours) 

Assuming that a time series as shown below was examined to reveal its significant sinusoid frequencies at
every data points.  

  

Assuming that a number of sinusoid frequencies (including sinusoid X) were discovered at different data
points in the training sequence. 

The observation of sinusoid X is shown in the following table for every detection at different data point
with respective length. 

Data points 
where 
sinusoid X 
was detected 

205 350 564 785 1,035 1,254 1,638 1,884 2,087 2,111 2,239 2,310 

Detected 
sinusoid X 
length 

6 2 3 2 9 2 3 9 7 5 4 1 

• minimum length = 2 

• maximum length = 9 

Based on observation of sinusoid X in the training sequence, probabilities for sinusoid
X to have length ranges from 2 to 9 in the out-of-sample forecasting was calculated and assigned as shown
in the following table. 

Sinusoid x 
length 

2 3 4 5 6 7 8 9 

Assigned 
probability 

100.00% 87.50% 75.00% 62.50% 50.00% 37.50% 25.00% 12.50% 
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Figure 5C-2 Illustration of j% sinusoid frequency probability 
In the case where sinusoid X was detected at the last point of the training sequence, its
length position was captured and the probabilities for it to extend into the out-of-sample
forecasting region were calculated. 

Assuming the length position of sinusoid X at last point of the training sequence is 1,
table shows the probabilities for sinusoid X to extend into the 20 out-of-sample forecasting
points with respective j% parameter setting. 

Sinusoid X length position 
from last data point 

Forecasting 
point count 

Assigned 
probability 

j% parameter setting 

0% 30% 50% 80% 100% 

1 -       
2 1 100.00% Y Y Y Y Y 
3 2 87.50% Y Y Y Y - 
4 3 75.00% Y Y Y - - 
5 4 62.50% Y Y Y - - 
6 5 50.00% Y Y Y - - 
7 6 37.50% Y Y - - - 
8 7 25.00% Y - - - - 
9 8 12.50% Y - - - - 
10 9 0.00% Y - - - - 
11 10 0.00% Y - - - - 
12 11 0.00% Y - - - - 
13 12 0.00% Y - - - - 
14 13 0.00% Y - - - - 
15 14 0.00% Y - - - - 
16 15 0.00% Y - - - - 
17 16 0.00% Y - - - - 
18 17 0.00% Y - - - - 
19 18 0.00% Y - - - - 
20 19 0.00% Y - - - - 
21 20 0.00% Y - - - -  

Notes: ‘Y” in the table indicates that sinusoid X was extended into the forecasting point. 
calculation were based on sinusoid x’s amplitude, frequency and phase. 

Figure 5C-3 Illustration of j% sinusoid frequency probability (see online version  
for colours) 

Assuming the length position of sinusoid X at last point of the training sequence is 3, table
shows the probabilities for sinusoid X to extend into the 20 out-of-sample forecasting
points with respective j% Parameter Setting. 

Sinusoid X Length 
Position from 

Last Data Point 

Forecastin
g Point 
Count 

Assigned 
Probability 

j% Parameter Setting 

0% 30% 50% 80% 100% 

3 -       

4 1 75.00% Y Y Y - - 

5 2 62.50% Y Y Y - - 

6 3 50.00% Y Y Y - - 

7 4 37.50% Y Y - - - 

8 5 25.00% Y - - - - 

9 6 12.50% Y - - - - 

10 7 0.00% Y - - - - 

11 8 0.00% Y - - - - 

12 9 0.00% Y - - - - 

13 10 0.00% Y - - - - 

14 11 0.00% Y - - - - 

15 12 0.00% Y - - - - 

16 13 0.00% Y - - - - 

17 14 0.00% Y - - - - 

18 15 0.00% Y - - - - 

19 16 0.00% Y - - - - 

20 17 0.00% Y - - - - 

21 18 0.00% Y - - - - 

22 19 0.00% Y - - - - 

23 20 0.00% Y - - - -  

Note: ‘Y” in the table indicates that sinusoid X was extended into the forecasting point. 
Calculation was based on sinusoid X’s amplitude, frequency and phase. 
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Figure 6 Methodology process flow (see online version for colours) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Time Series of Full Data Set 

Test Data (Last 20 points) 

ARIMA Forecasting Process 
(Out-of-Sample Forecasting) 

ARIMA Forecasting Data 
(Last 20 Points) 

• MAPE Computation of ARIMA 
Forecasting data & Hybrid Forecast by 
Comparing with Test Data 

• Comparing MAPE of ARIMA 
Forecasting & Hybrid Forecasting Data 

Hybrid (ARIMA+CWT) 
Out-of-Sample 

Forecasting Data 

Training Sequence 

Best Fit ARIMA Modelling 
(In-Sample Forecasting) 

CWT Process 

• MAPE Computation of ARIMA Fit data 
& Hybrid Forecast by Comparing with 
Training Data 

• Comparing MAPE of ARIMA Fit & 
Hybrid Forecasting Data 

ARIMA 
Fit Data 

ARIMA 
Residuals 

Sinusoid 
Wave(s) 

Hybrid (ARIMA+CWT) 
In-Sample Forecasting 

Data 

 

Table 4A Out-of-sample forecasting KEmas (5 Points to 20 Points), percentages of 
ARIMA+CWT parameters to outperform ARIMA (2, 1, 2), breakdown by back 
tracking points (BTP) 

Kemas 18/07/2001 to 19/02/2021 
Modelling function Back tracking 

points (BTP) 5 10 15 20 Average% 
ARIMA (2, 1, 2) + CWT 20 5.26% 0.00% 2.63% 2.63% 2.63% 
ARIMA (2, 1, 2) + CWT 50 6.58% 1.32% 3.95% 3.95% 3.95% 
ARIMA (2, 1, 2) + CWT 100 9.21% 3.95% 9.21% 6.58% 7.24% 
ARIMA (2, 1, 2) + CWT 200 6.58% 3.95% 6.58% 7.89% 6.25% 
ARIMA (2, 1, 2) + CWT 300 5.26% 3.95% 6.58% 9.21% 6.25% 
Total% 32.89% 13.17% 28.95% 30.26%  
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Table 4B Out-of-sample forecasting KEmas (5 points to 20 points) percentages of 
ARIMA+CWT parameters to outperform ARIMA (2, 1, 2) breakdown by back 
tracking points (BTP) 

Kemas 18/07/2001 to 01/10/2021 
Modelling function Back tracking 

points (BTP) 5 10 15 20 Average% 
ARIMA (2, 1, 2) + CWT 20 3.13% 7.81% 7.81% 12.50% 7.81% 
ARIMA (2, 1, 2) + CWT 50 1.56% 3.13% 3.13% 4.69% 3.13% 
ARIMA (2, 1, 2) + CWT 100 4.69% 7.81% 6.25% 9.38% 7.03% 
ARIMA (2, 1, 2) + CWT 200 1.56% 4.69% 3.13% 7.81% 4.30% 
ARIMA (2, 1, 2) + CWT 300 4.69% 3.13% 3.13% 4.69% 3.91% 
Total% 15.63% 26.57% 23.45% 39.07%  

Table 4C Out-of-sample forecasting BCoin (5 Points to 20 Points) percentages of 
ARIMA+CWT parameters to outperform ARIMA (2, 1, 0) breakdown by back 
tracking points (BTP) 

BCoin 17/09/2014 to 19/02/2021 
Modelling function Back tracking 

points (BTP) 5 10 15 20 Average% 
ARIMA (2, 1, 0) + CWT 20 6.33% 7.59% 12.66% 8.86% 8.86% 
ARIMA (2, 1, 0) + CWT 50 5.06% 7.59% 11.39% 7.59% 7.91% 
ARIMA (2, 1, 0) + CWT 100 6.33% 10.13% 16.46% 12.66% 11.40% 
ARIMA (2, 1, 0) + CWT 200 10.13% 12.66% 11.39% 13.92% 12.03% 
ARIMA (2, 1, 0) + CWT 300 7.59% 13.92% 8.86% 12.66% 10.76% 

Total% 35.44% 51.89% 60.76% 55.69%  

Table 4D Out-of-sample forecasting BCoin (5 points to 20 points) percentages of 
ARIMA+CWT parameters to outperform ARIMA (2, 1, 0) breakdown by back 
tracking points (BTP) 

BCoin 17/09/2014 to 02/10/2021 
Modelling function Back tracking 

points (BTP) 5 10 15 20 Average% 
ARIMA (2, 1, 0) + CWT 20 12.05% 12.05% 8.43% 9.64% 10.54% 
ARIMA (2, 1, 0) + CWT 50 8.43% 19.28% 14.46% 14.46% 14.16% 
ARIMA (2, 1, 0) + CWT 100 10.84% 15.66% 10.84% 13.25% 12.65% 
ARIMA (2, 1, 0) + CWT 200 13.25% 10.84% 13.25% 12.05% 12.35% 
ARIMA (2, 1, 0) + CWT 300 14.46% 15.66% 12.05% 10.84% 13.25% 
Total%  59.03% 73.49% 59.03% 60.24%  

Table 4E Out-of-sample forecasting brent (5 points to 20 points) percentages of ARIMA+CWT 
parameters to outperform ARIMA (0, 1, 0) breakdown by back tracking points (BTP) 

Brent 27/06/1988 to 19/02/2021 
Modelling function Back tracking 

points (BTP) 5 10 15 20 Average% 
ARIMA (0, 1, 0) + CWT 20 7.14% 5.71% 7.14% 7.14% 6.78% 
ARIMA (0, 1, 0) + CWT 50 14.29% 14.29% 12.86% 14.29% 13.93% 
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Table 4E Out-of-sample forecasting brent (5 points to 20 points) percentages of ARIMA+CWT 
parameters to outperform ARIMA (0, 1, 0) breakdown by back tracking points (BTP) 
(continued) 

Brent 27/06/1988 to 19/02/2021 
Modelling function Back tracking 

points (BTP) 5 10 15 20 Average% 
ARIMA (0, 1, 0) + CWT 100 8.57% 7.14% 10.00% 8.57% 8.57% 
ARIMA (0, 1, 0) + CWT 200 5.71% 11.43% 8.57% 10.00% 8.93% 
ARIMA (0, 1, 0) + CWT 300 5.71% 11.43% 8.57% 10.00% 8.93% 
Total%  41.42% 50.00% 47.14% 50.00%  

Table 4F Out-of-sample forecasting brent (5 points to 20 points) percentages of ARIMA+CWT 
parameters to outperform ARIMA (0, 1, 0) breakdown by back tracking points (BTP) 

Brent 27/06/1988 to 01/10/2021 
Modelling function Back tracking 

points (BTP) 5 10 15 20 Average% 
ARIMA (0, 1, 0) + CWT 20 5.36% 0.00% 0.00% 1.79% 1.79% 
ARIMA (0, 1, 0) + CWT 50 5.36% 3.57% 3.57% 3.57% 4.02% 
ARIMA (0, 1, 0) + CWT 100 1.79% 0.00% 0.00% 0.00% 0.45% 
ARIMA (0, 1, 0) + CWT 200 5.36% 1.79% 1.79% 1.79% 2.68% 
ARIMA (0, 1, 0) + CWT 300 0.00% 0.00% 1.79% 0.00% 0.45% 
Total%  17.87% 5.36% 7.15% 7.15%  

Table 4G Out-of-sample forecasting S&P500 (5 points to 20 points) percentages of 
ARIMA+CWT parameters to outperform ARIMA (0, 1, 2) breakdown by back 
tracking points (BTP) 

S&P500 30/12/1927 to 19/02/2021 
Modelling function Back tracking 

points (BTP) 5 10 15 20 Average% 
ARIMA (0, 1, 2) + CWT 20 7.46% 1.49% 0.00% 0.00% 2.24% 
ARIMA (0, 1, 2) + CWT 50 8.96% 2.99% 5.97% 8.96% 6.72% 
ARIMA (0, 1, 2) + CWT 100 4.48% 1.49% 5.97% 8.96% 5.23% 
ARIMA (0, 1, 2) + CWT 200 1.49% 0.00% 2.99% 16.42% 5.23% 
ARIMA (0, 1, 2) + CWT 300 1.49% 0.00% 5.97% 19.40% 6.72% 
Total%  23.88% 5.97% 20.90% 53.74%  

Table 4H Out-of-sample forecasting S&P500 (5 points to 20 points) percentages of 
ARIMA+CWT parameters to outperform ARIMA (0, 1, 2) breakdown by back 
tracking points (BTP) 

S&P500 30/12/1927 to 01/10/2021 
Modelling function Back tracking 

points (BTP) 5 10 15 20 Average% 
ARIMA (0, 1, 2) + CWT 20 5.56% 7.41% 7.41% 9.26% 7.41% 
ARIMA (0, 1, 2) + CWT 50 5.56% 9.26% 12.96% 9.26% 9.26% 
ARIMA (0, 1, 2) + CWT 100 9.26% 11.11% 12.96% 11.11% 11.11% 
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Table 4H Out-of-sample forecasting S&P500 (5 points to 20 points) percentages of 
ARIMA+CWT parameters to outperform ARIMA (0, 1, 2) breakdown by back 
tracking points (BTP) (continued) 

S&P500 30/12/1927 to 01/10/2021 
Modelling function 

Back tracking 
points (BTP) 5 10 15 20 Average% 

ARIMA (0, 1, 2) + CWT 200 9.26% 7.41% 3.70% 9.26% 7.41% 
ARIMA (0, 1, 2) + CWT 300 7.41% 7.41% 1.85% 0.00% 4.17% 
Total%  37.05% 42.60% 38.88% 38.89%  

Table 5A to Table 5H show the forecasting outcome grouped by sinusoid probability 
parameter (j%). Table 5A and 5B are for KEmas time series at two different time frames, 
Table 5C and 5D are for BCoin, Table 5E and 5F are for Brent, and Table 5G and 5H are 
for S&P500. Both Brent 2021-February and 2021-October time series obtained best 
forecasting results with 50% sinusoid probability parameter. Both S&P500  
2021-Februaruy and 2021-October time series obtained best forecasting results with 30% 
sinusoid probability parameter. KEmas and BCoin time series did not show any clear 
pattern. Except for the KEmas 2021-February, better forecasting could be achieved with 
j% lower than 50%. 

Table 4A to Table 4H shows the forecasting outcome grouped by the parameter BTP. 
Table 4A and 4B are for KEmas time series at two different time frames, Table 4C and 
4D are for BCoin, Table 4E and 4F are for Brent, and Table 4G and 4H are for S&P500. 
Data in the tables show that better forecasting performance could be achieved with BTP 
of 100 points or less. Generally, more BTP did not improve forecasting performance in 
all of time series tested. This observation suggested that future data movements of the 
tested time series depend more to the recent historical data points. In addition, different 
BTP values were required to achieve optimum forecasting performance for time frames 
2021-February and 2021-October of the same time series. This is due to the differences in 
volatility of different time frames. 

Looking through the data from Table 3A to Table 5H, out-of-sample forecasting 
comparison can be made among the tested parameters of k%, j% and BTP and across the 
time series of KEmas, BCoin, Brent and S&P500. For comparison among the parameters, 
it can be observed that the k% parameter gave the most consistent results at different time 
frames of the same time series. The best performing k% values are always the same for 
2021-Februaruy and 2021-October. This indicates that the known best performing k% 
parameter in an earlier time frame should be reused in the forecasting of later time 
frames. The same conclusion cannot be made for BTP and j%, as the best performing 
values are not consistent at different time frames. For comparison across time series, 
hybrid ARIMA+CWT has higher chance to outperform ARIMA in the tested BCoin time 
series. The results are consistent for both 2021-Februaruy and 2021-October time frames. 
However, more different time frames should be put into tests to confirm the results 
obtained. 

From the result compilations of hundreds of simulations, hybrid ARIMA+CWT 
approach was able to outperform the ARIMA approach when the appropriate parameters 
were used. The drawback is that an additional CWT process has to be performed on the 
residuals after the ARIMA modelling, which incurs additional penalty in time series 
analysis in terms of processing time. DWT, a discrete version of wavelet transform that 
uses a finite set of wavelets where the resulting wavelet coefficients are only defined at a 
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particular set of scales and locations, may be able to improve the efficiency. However, 
unlike CWT, where the finer discretisation of scales and shifting in its implementation 
yields higher-fidelity analysis of scales and shifting, DWT is sparse because the signal is 
down sampled at each successive DWT scale. The high-fidelity analysis result is essential 
to financial time series analysis as it enables better localisation of transients and better 
characterisation of oscillatory movement in the time series. Taking into consideration of 
the pros and cons of CWT and DWT, CWT is still the preferred choice if detailed 
sinusoid information is to be extracted from every point of the time series. 
Table 5A Out-of-sample forecasting KEmas (5 points to 20 points) percentages of 

ARIMA+CWT parameters to outperform ARIMA (2, 1, 2) breakdown by sinusoid 
probability (j%) 

Kemas 18/07/2001 to 19/02/2021 
Modelling function 

Sinusoid 
probability (j%) 5 10 15 20 Average% 

ARIMA (2, 1, 2) + CWT 0% 2.63% 1.32% 2.63% 3.95% 2.63% 
ARIMA (2, 1, 2) + CWT 30% 6.58% 2.63% 3.95% 3.95% 4.28% 
ARIMA (2, 1, 2) + CWT 50% 6.58% 5.26% 5.26% 5.26% 5.59% 
ARIMA (2, 1, 2) + CWT 80% 10.53% 3.95% 10.53% 10.53% 8.89% 
ARIMA (2, 1, 2) + CWT 100% 6.58% 0.00% 6.58% 6.58% 4.94% 
Total%  32.90% 13.16% 28.95% 30.27%  

Table 5B Out-of-sample forecasting KEmas (5 points to 20 points) percentages of 
ARIMA+CWT parameters to outperform ARIMA (2, 1, 2) breakdown by sinusoid 
probability (j%) 

Kemas 18/07/2001 to 01/10/2021 
Modelling function 

Sinusoid 
probability (j%) 5 10 15 20 Average% 

ARIMA (2, 1, 2) + CWT 0% 1.56% 1.56% 3.13% 14.06% 5.08% 
ARIMA (2, 1, 2) + CWT 30% 4.69% 10.94% 9.38% 14.06% 9.77% 
ARIMA (2, 1, 2) + CWT 50% 1.56% 6.25% 3.13% 3.13% 3.52% 
ARIMA (2, 1, 2) + CWT 80% 7.81% 7.81% 7.81% 7.81% 7.81% 
ARIMA (2, 1, 2) + CWT 100% 0.00% 0.00% 0.00% 0.00% 0.00% 
Total%  15.62% 26.56% 23.45% 39.06%  

Table 5C Out-of-sample forecasting BCoin (5 points to 20 points) percentages of 
ARIMA+CWT parameters to outperform ARIMA (2, 1, 0) breakdown by sinusoid 
probability (j%) 

BCoin 17/09/2014 to 19/02/2021 
Modelling function 

Sinusoid 
probability (j%) 5 10 15 20 Average% 

ARIMA (2, 1, 0) + CWT 0% 6.33% 11.39% 13.92% 10.13% 10.44% 
ARIMA (2, 1, 0) + CWT 30% 8.86% 12.66% 16.46% 15.19% 13.29% 
ARIMA (2, 1, 0) + CWT 50% 3.80% 11.39% 15.19% 12.66% 10.76% 
ARIMA (2, 1, 0) + CWT 80% 10.13% 10.13% 7.59% 10.13% 9.50% 
ARIMA (2, 1, 0) + CWT 100% 6.33% 6.33% 7.59% 7.59% 6.96% 
Total%  35.45% 51.90% 60.75% 55.70%  
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Table 5D Out-of-sample forecasting BCoin (5 points to 20 points) percentages of 
ARIMA+CWT parameters to outperform ARIMA (2, 1, 0) breakdown by sinusoid 
probability (j%) 

BCoin 17/09/2014 to 02/10/2021 
Modelling function 

Sinusoid 
probability (j%) 5 10 15 20 Average% 

ARIMA (2, 1, 0) + CWT 0% 13.25% 18.07% 15.66% 16.87% 15.96% 
ARIMA (2, 1, 0) + CWT 30% 14.46% 13.25% 13.25% 13.25% 13.55% 
ARIMA (2, 1, 0) + CWT 50% 13.25% 14.46% 14.46% 14.46% 14.16% 
ARIMA (2, 1, 0) + CWT 80% 10.84% 15.66% 9.64% 9.64% 11.45% 
ARIMA (2, 1, 0) + CWT 100% 7.23% 12.05% 6.02% 6.02% 7.83% 
Total%  59.03% 73.49% 59.03% 60.24%  

Table 5E Out-Of-sample forecasting brent (5 points to 20 points) percentages of ARIMA+CWT 
parameters to outperform ARIMA (0, 1, 0) breakdown by sinusoid probability (j%) 

Brent 27/06/1988 to 19/02/2021 
Modelling function 

Sinusoid 
probability (j%) 5 10 15 20 Average% 

ARIMA (0, 1, 0) + CWT 0% 5.71% 2.86% 1.43% 4.29% 3.57% 
ARIMA (0, 1, 0) + CWT 30% 8.57% 15.71% 17.14% 17.14% 14.64% 
ARIMA (2, 1, 0) + CWT 50% 17.14% 21.43% 18.57% 18.57% 18.93% 
ARIMA (0, 1, 0) + CWT 80% 2.86% 2.86% 2.86% 2.86% 2.86% 
ARIMA (0, 1, 0) + CWT 100% 7.14% 7.14% 7.14% 7.14% 7.14% 
Total%  41.42% 50.00% 47.14% 50.00%  

Table 5F Out-of-sample forecasting brent (5 points to 20 points) percentages of ARIMA+CWT 
parameters to outperform ARIMA (0, 1, 0) breakdown by sinusoid probability (j%) 

Brent 27/06/1988 to 01/10/2021 
Modelling function 

Sinusoid 
probability (j%) 5 10 15 20 Average% 

ARIMA (0, 1, 0) + CWT 0% 0.00% 0.00% 1.79% 0.00% 0.45% 
ARIMA (0, 1, 0) + CWT 30% 3.57% 1.79% 1.79% 1.79% 2.24% 
ARIMA (2, 1, 0) + CWT 50% 7.14% 1.79% 1.79% 3.57% 3.57% 
ARIMA (0, 1, 0) + CWT 80% 7.14% 0.00% 0.00% 0.00% 1.79% 
ARIMA (0, 1, 0) + CWT 100% 0.00% 1.79% 1.79% 1.79% 1.34% 
Total%  17.85% 5.37% 7.16% 7.15%  

Table 5G Out-of-sample forecasting S&P500 (5 points to 20 points) percentages of 
ARIMA+CWT parameters to outperform ARIMA (0, 1, 2) breakdown by sinusoid 
probability (j%) 

S&P500 30/12/1927 to 19/02/2021 
Modelling function 

Sinusoid 
probability (j%) 5 10 15 20 Average% 

ARIMA (0, 1, 2) + CWT 0% 13.43% 0.00% 4.48% 13.43% 7.84% 
ARIMA (0, 1, 2) + CWT 30% 8.96% 4.48% 10.45% 16.42% 10.08% 
ARIMA (2, 1, 2) + CWT 50% 1.49% 1.49% 1.49% 8.96% 3.36% 
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Table 5G Out-of-sample forecasting S&P500 (5 points to 20 points) percentages of 
ARIMA+CWT parameters to outperform ARIMA (0, 1, 2) breakdown by sinusoid 
probability (j%) (continued) 

S&P500 30/12/1927 to 19/02/2021 
Modelling function 

Sinusoid 
probability (j%) 5 10 15 20 Average% 

ARIMA (0, 1, 2) + CWT 80% 0.00% 0.00% 1.49% 11.94% 3.36% 
ARIMA (0, 1, 2) + CWT 100% 0.00% 0.00% 2.99% 2.99% 1.50% 
Total%  23.88% 5.97% 20.90% 53.74%  

Table 5H Out-of-sample forecasting S&P500 (5 points to 20 points) percentages of 
ARIMA+CWT parameters to outperform ARIMA (0, 1, 2) breakdown by sinusoid 
probability (j%) 

S&P500 30/12/1927 to 01/10/2021 
Modelling function 

Sinusoid 
probability (j%) 5 10 15 20 Average% 

ARIMA (0, 1, 2) + CWT 0% 12.96% 12.96% 7.41% 9.26% 10.65% 
ARIMA (0, 1, 2) + CWT 30% 12.96% 16.67% 12.96% 9.26% 12.96% 
ARIMA (0, 1, 2) + CWT 50% 9.26% 11.11% 9.26% 9.26% 9.72% 
ARIMA (0, 1, 2) + CWT 80% 1.85% 1.85% 3.70% 5.56% 3.24% 
ARIMA (0, 1, 2) + CWT 100% 0.00% 0.00% 5.56% 5.56% 2.78% 
Total%  37.03% 42.59% 38.89% 38.90%  

Table 6 Out-of-sample forecasting (5 points to 20 points) percentages for ARIMA+CWT 
parameters that outperform ARIMA for 5 points forecasting to continue to 10 points, 
15 points and 20 points forecasting 

Continuity percentages 
Time series – time frames 

5 10 15 20 
KEmas – 2021-February - 36.00% 72.00% 56.00% 
KEmas – 2021-October - 90.00% 90.00% 90.00% 
BCoin – 2021-February - 100.00% 89.29% 89.29% 
BCoin – 2021-October - 83.67% 61.22% 65.31% 
Brent – 2021-February - 93.10% 86.21% 89.66% 
Brent – 2021- October - 20.00% 20.00% 30.00% 
S&P500 – 2021-February - 18.75% 31.25% 50.00% 
S&P500 – 2021-October - 90.00% 65.00% 70.00% 

5 Conclusions 

In-sample forecasting was performed on KEmas, BCoin, Brent and S&P500 time series. 
From the results obtained, CWT managed to extract additional useful information from 
the ARIMA residuals of fitted time series of KEmas, BCoin, Brent and S&P500 
respectively. 

For out-of-sample forecasting, the outcome from the hybrid ARIMA+CWT approach 
is encouraging. It is obvious that the hybrid ARIMA + CWT approach managed to 
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outperform the ARIMA model when the appropriate combinations of parameters were 
used. For certain time series, the superior shorter time frame forecasting performance 
may even be projected to longer time frame forecasting under the same combination of 
parameters. 

Conclusively, the findings in this paper pave the way for new research extensions. 
Firstly, the hybrid ARIMA + CWT approach shows great potential in performing out-of-
sample forecasting. Secondly, more detail investigation is needed to identify the 
parameters that produce optimum and more consistent forecasting results. Lastly, this 
paper makes full use of the concept of CWT scale-frequency mapping, the magnitude of 
success is affected by the accuracy of the chosen mapping method, which is highly 
dependent on the choice of wavelet function and its frequency characteristics. Further 
investigation could be carried out using other wavelet functions. 
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