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Abstract: This paper contemplates the H∞ control of discrete-time delayed 
systems together with actuator saturation, parametric uncertainties and 
disturbances. H∞-based state feedback controller is conceived to stabilise  
the closed loop system. Lyapunov Krasovskii functional (LKF), discrete  
Wirtinger-based summation inequality and convex hull approach are combined 
to obtain novel regional stability conditions. The estimated attraction domain is 
maximised using an optimisation method along with linear matrix inequality 
(LMI). A comparative study is shown between the obtained and existing 
findings. The results are found to be less conservative than the prior ones. 
Finally, instances signify efficacy of presented approaches. 
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1 Introduction 

Actuator saturation is the most common inherent nonlinearity of real-time practical 
systems. As a sequel of saturation, a closed loop control system becomes an open loop. 
Thus, the implementation of the system degrades and also causes instability (Jishi et al., 
2013; Ma et al., 2018; Shen et al., 2019). It is not possible in a real-time system to 
provide a very high magnitude/rate of control signal due to safety constraints. Some 
examples of these limitations are flow volume limitation, rate in hydraulic actuators, 
voltage limits in electrical actuators and deflection limits in aircraft actuators 
(Bezzaoucha et al., 2012). Stability persual of the control system coupled with input 
saturation has become vital and till now, it is a very prominent area of research (Flores  
et al., 2013; Jishi et al., 2013; Ma and Chen, 2015; Mahjoub et al., 2014; Negi et al., 
2012; Pal and Negi, 2012, 2018; Pal et al., 2019; Qian et al., 2015; Sun et al., 2019; Xu  
et al., 2012; Yuana et al., 2019). From stabilisation point of view, mainly two approaches 
are used: 
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1 anti-windup compensator, i.e., two step approach- at first, the nominal controller is 
designed and in the next step, the effect of saturation is considered (Negi et al., 2012; 
Pal and Negi, 2012) 

2 direct controller design in which the constraint in input is considered initially (Flores 
et al., 2009, 2012; Sbarbaro et al., 2009). 

In these methods, mostly saturation is represented by a convex hull or sector bounded 
approach. A lot of research is found in literature giving methods to mitigate the effect of 
saturation in process control systems (Pal and Negi, 2012). 

Virtually, the time delay is a ubiquitous phenomenon in almost all real-time systems 
in industries such as information and technology, nuclear reactor, ship stabilisation, 
aircraft stabilisation, hydraulic processes, chemical systems and temperature processes, 
etc. (Ma et al., 2018; Song and Wang, 2013). The most common reasons for a time delay 
are communication between data processing in computer aided automated industries  
or limited speed of information processing/bandwidth, transmission delays, or 
synchronisation delays in a system (Gyurkovics et al., 2017; Han et al., 2016; Jiang and 
Yang, 2016; Kandanvli and Kar, 2008; Lee and Park, 2015; Ma et al., 2018; Negi et al., 
2012; Pal and Negi, 2018; Pal et al., 2019; Park et al., 2011; Qian et al., 2015; 
Ramakrishnan and Ray, 2012; Seuret and Gouaisbaut, 2012a; Stojanovic et al., 2018; Sun 
et al., 2018, 2019; Tadepalli et al., 2017; Xian and Cheng, 2015; Zhang et al., 2018; Zhao 
and Sun, 2016). The delay in the system may deteriorate the execution of the system. 
Therefore, a significant amount of effort has been done to stabilise both linear and 
nonlinear time delayed systems (Chen et al., 2015; Jiang and Yang, 2016; Ramakrishnan 
and Ray, 2012; Zhang et al., 2016; Zhao and Sun, 2016). To stabilise the delayed  
system, two approaches are used, i.e., delay-dependent and delay-independent. The  
delay-dependent approach utilises the information of delay and gives less conservative 
results for a limited range of delay as compared to the delay-independent method. 

The delay in the control system plays a very important and significant role in 
stabilisation. Therefore, the well-known problem delay has been adequately referred to in 
Bensaker et al. (2020) and Gu (2000). 

All systems are liable to uncertainties due to numerous factors like parameter 
variations, component aging, modelling errors. These have an adverse effect on system 
performance. The design of robust control is very effective for stabilising and improving 
the performance of time delayed systems. Now it has become an integral part of the 
control system and popular among researchers. Therefore, a robust controller for delayed 
systems is needed for technology advancement. Zhu and Wang (2018) introduced  
K-filters with time-varying low-gain in the design of output feedback control by 
integrating backstepping framework for a class of stochastic feedforward systems with 
unknown output function and unknown control coefficients. Again Zhu (2019) 
established the input-to-state practically exponential mean-square stability of the 
continuous-time stochastic nonlinear delay system with event triggered feedback control. 
Wang and Zhu (2020) calculated global stability by employing an adaptive control 
scheme, adding-a-power-integrator technique and novel state feedback control law to a 
stochastic nonlinear systems with time-varying delay, parametric uncertainties, stochastic 
inverse dynamics and unknown powers. 

From reviewing the stabilisation of delayed systems, it has been noticed that more 
and more focus is given to obtain less conservative results. In this direction, mainly  
two-fold actions are appearing, i.e.: 
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a modification in Lyapunov Krasovskii functional (LKF) 

b different inequalities such as free matrix-based integral inequality (Chen et al., 
2016), Park’s inequality (Fridman and Shaked, 2002), convex combination method 
(Park et al., 2011; Ramakrishnan and Ray, 2012; Tadepalli et al., 2017), Jensen 
inequality (Chen et al., 2016; Park et al., 2011; Seuret and Gouaisbaut, 2012b), 
Wirtinger inequality (Lee and Park, 2015; Seuret and Gouaisbaut, 2012a, 2012b; 
Seuret et al., 2015; Tadepalli and Kandanvli, 2017), for bounding the cross-product 
in solving the difference of LKF to obtain linear matrix inequality (LMI)-based 
stability conditions. 

Jensen’s inequality was introduced in Gu (2000) to bound quadratic integral terms of 
state. It was reconsidered in Shao (2008) to bound tightly quadratic integral terms of first 
order state derivative and obtained lesser conservative sequel. A new sequence of single 
summation inequalities was proposed by Chen et al. (2016) which introduces few free 
matrices including free-matrix-based, Jensen’s and Wirtinger summation inequalities. 
Further, this concept has been extended to solve multiple-summation-inequality 
(Gyurkovics, 2017; Nam et al., 2015). Thus, in one framework almost all the summation 
inequalities are embraced. This technique can be widely applied to systems like sampled 
data and networked control systems. Presently, the comparison between Jensen’s 
inequality and Wirtinger inequality is increasing to reduce the conservatism in their 
findings (Kammler, 2007; Kandanvli and Kar, 2008; Seuret et al., 2015; Shen et al., 
2019; Zhang et al., 2017). A new version of summation Wirtinger inequality is derived 
for the stability of the discrete delayed system in Seuret et al. (2015) by LMI optimising 
setup. In Zhang et al. (2018), an augmented LKF is considered in which all the 
information regarding delay like upper and lower bounds, derivative of upper  
bound, marginal and exact delayed states, current states are taken into account. The 
extended reciprocal convex and Wirtinger-based inequality are utilised to solve the  
delay-dependent discrete-time neural networks (Meng et al., 2010; Stojanovic et al., 
2018; Sun et al., 2018). Further, different approaches are developing along with 
Wirtinger’s inequality for obtaining less conservative results (Lee and Park, 2015; Seuret 
and Gouaisbaut, 2012a, 2012b; Xian and Cheng, 2015). Anti-windup compensator is 
designed for a delta operated system making use of small gain theorem, input output 
approach, Wirtinger inequality and actuator saturation to obtain stability of the system by 
Rachid et al. (2019). Solgi et al. (2020) proposed a non-monotonic LKF to deal with 
stability of linear discrete time delay system. Bouazizi (2021) designed a linear parameter 
varying observer combined with LKF and LMI dialation techniques with Wirtinger 
inequality. 

The environmental noise and gradual changing parameters (Kwon et al., 2011), make 
it difficult to get an accurate mathematical model. Therefore uncertainties are 
unavoidable and they will affect the system performance and stability. To mitigate their 
effect on the system, the various robust controller has been designed and studied (Bejaoui 
et al., 2019; Bensaker et al., 2020; Flores et al., 2009; Kwon et al., 2011; Lee and Park, 
2015; Li et al., 2019; Liu, 2019; Ma and Chen, 2015; Ma et al., 2018; Pal et al., 2017; 
Ramakrishnan and Ray, 2012; Zhao et al., 2019). The problem can be analysed either in 
the time domain using Lyapunov stability theory or the frequency domain using the 
decomposition of matrices. The problem of robust stability in delayed systems has been 
discussed by many researchers; see Kandanvli and Kar (2008), Kwon et al. (2011), Lee 
and Park (2015), Ma et al. (2018), Ma and Chen (2015), Ramakrishnan and Ray (2012), 
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Sun et al. (2018), Tadepalli et al. (2017), Xu et al. (2012), and some of the work also 
included with actuator saturation. 

Dong et al. (2019) analysed robust stability and synthesised H∞ controller for state 
feedback uncertain switched systems with nonlinear disturbances. Haghighi and 
Tavassoli (2020) discussed network control systems with random induced delays in 
forward as well as feedback channels and modelled as Markov chains. Robust control for 
output feedback has been developed. Viegas et al. (2020) discussed the design and 
optimisation of a distributed controller for discrete-time systems. Dong and He (2019) 
designed the robust H∞ controller with time delays and uncertainties for conic-type 
discrete-time nonlinear systems. Lefebvre et al. (2020) investigated optimal robust 
problems subjected to dynamical uncertainty using polynomial approximation theory. 
Venkatesh et al. (2021) designed a controller for stabilisation state-delayed systems using 
reciprocal convex and Wirtinger’s inequality. Wu et al. (2020) discussed robust stability 
for uncertain systems using delay partitioning, reciprocal convex and quadruple-integral 
terms. Chang et al. (2021) employed a delay partitioning approach to analyse fractional 
disturbances employing H∞ application. Sun et al. (2021) considered Takagi-Sugeno 
fuzzy systems comprising of disturbance, uncertainty and faults. They realised a robust 
reliable H infinity control to attain stability of the system. Pratap and Sharma (2021) 
designed a robust controller for linearised twin rotor control system (TRCS) with 
parametric uncertainty using quantitative feedback theory (QFT) to mitigate the effect of 
various other nonlinearities. Ding et al. (2021) discussed intermittent estimator-based 
mixed passive and H∞ control for high speed train with multiple noise using semi-Markov 
switching mode to accelerate convergence time. Ding and Zhu (2021a) addressed mean 
square exponential stability of T-S fuzzy flexible spacecraft with input saturation, random 
occurrence parameter uncertainties and stochastic faults using fuzzy intermittent control 
for switching system stability and again in 2021 also designed an observer for extended 
dissipative anti-disturbance control delayed switched singular semi-Markovian jump 
systems with multiple disturbance. 

Seuret et al. (2015) have developed Wirtinger inequality for stabilisation of discrete 
time-varying delayed systems. It is less conservative than Jensen’s inequality. They have 
combined it with reciprocal convex to obtain less conservative and reduced ciphering 
inequalities than the regular LKF approach with Jensen inequality. But they have not 
included any nonlinearity and also considered the autonomous system. Pal et al. (2017) 
have designed a H∞-based output feedback controller with saturation and disturbance but 
they have not taken into account uncertainty and Wirtinger inequality. Pal and Negi 
(2018) have solved the problem using triple LKF but not used Wirtinger inequality. Thus, 
the region of stabilisation is less. Pal et al. (2019) have employed Wirtinger inequality but 
have not considered any nonlinearity. There already exist results that employed 
Wirtinger-based inequality and the convex hull embedding saturation in Chen et al. 
(2019) but without external disturbance, instead used polytopic approach. Moreover, 
delay bound is lesser than the proposed work. 

In this paper a novel H∞ controller has been established using state feedback 
controller, u(ϑ) = Kx(ϑ), convex hull, Wirtinger inequality and reciprocal convexity to 
stabilise a discrete time-varying delay system including external disturbance as well as 
uncertainty subjected to actuator saturation. It is followed by realising the attraction 
domain of the plant. The benefactions of this manuscript are summed up as follows: 
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1 The discrete time varying delayed systems are considered with parametric norm 
bounded uncertainty, bounded disturbance and saturation nonlinearity to calculate 
asymptotic stability of the system. 

2 This work is an extension of the results of Seuret et al. (2015) and Pal et al. (2019), 
of a discretised delayed system with uncertainties, extraneous interference and 
saturation. 

3 To upgrade the robustness of the system a novel H∞-based state feedback controller 
u(ϑ) = Kx(ϑ) is derived by using an augmented LKF, Wirtinger inequality and 
reciprocal convex inequality besides convex hull method. To the finest of our 
knowingness, no work has been done using a combination of these techniques 
together with the aforesaid nonlinearities thus deriving the improved and new less 
conservative stability conditions. 

4 The superiority of this work lies in the fact that the closed loop system with H∞ 
controller results in higher delay bound, the disturbance attenuation level has 
reduced to a large extent, LMI-based stability conditions are proposed which are less 
conservative than the existing ones. The state control trajectories and control effort 
plots show faster stabilisation of the system. Comparative study in Table 1 proves 
that this work is better than the existing ones. 

5 The difference between this paper and other existing papers are that various authors 
have considered nonlinearities like parametric uncertainties, disturbance, actuator 
saturation with different techniques such as Wirtinger inequality, triple LKF, 
polytopic approach, delay partitioning in 1D and 2D. But none has considered the 
combination of all these nonlinearities with Wirtinger inequality. This novel work, 
for the first time has taken into account all these nonlinearities with Wirtinger 
inequality. 

6 To maximise the attraction domain, an optimisation procedure is proposed. 

7 Numerical examples prove the effectiveness of the derived conditions and the criteria 
used. Three different types of numerical examples are solved. First has a simple 
plant, second is an unstable system and third is a practical missile control one. The 
state control trajectories and control effort plots show faster stabilisation of the 
system. Comparative study in Table 1 proves that this work is better than the existing 
ones. 

The rest of the paper is structured as follows. The system considered is specified in 
Section 2. In Section 3, the extraction of delay-dependent asymptotically stable terms has 
been done utilising the LMI approach. Numerical instances are illustrated in Section 4 to 
prove the potency and superiority of the obtained results. Conclusions are given in  
Section 5. 

Notations: ℜq×n is the set of q × n real matrices, ℜq denotes set of q × 1 real matrices,  
P > 0 (≥ 0) denotes that P is real symmetric and positive definite (positive semidefinite) 
matrix, 0 is a null matrix or null vector, I is an identity matrix with appropriate 
dimension, max ( )λ A  denotes maximum eigenvalue of any given matrix ,A  symbol ‘*’ 
represents symmetric terms in a symmetric matrix, co{.} denotes convex hull, ||.|| 
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represents the norm of a vector, He(A) = A + AT, diag(Y, Z) symbolises block diagonal 

matrix 2
2

0

0
, ( ) ,

0 i

Y
q q i

Z

∞

=

 
= 

 
  is l2 norm of signal q(i) ∈ l2{(0, ∞)}, if 2 .q < ∞  

2 System description 

Consider a discrete-time system consisting of a time-varying delay, actuator saturation, 
disturbance and uncertainty: 

( ) ( ) ( ) ( )( 1) Δ ( ) Δ ( ) ( ) ( )p p dp dp w px A A x A A x g B w B sat u+ = + + + − + +ϑ ϑ ϑ ϑ ϑ ϑ  (1a) 

( ) ( )py C x=ϑ ϑ  (1b) 

( ) ( ) ( )z zz C x D w= +ϑ ϑ ϑ  (1c) 

( ) ( ), , 1, , 0h hg g= ϒ = − − + ϑ ϑ ϑx  (1d) 

The x(ϑ) ∈ ℜt, u(ϑ) ∈ ℜq, y(ϑ) ∈ ℜp, and z(ϑ) ∈ ℜm, are the state, the input, measured 
output and controlled output vectors, respectively. The external interference is 
represented by w(ϑ) ∈ ℜn. Ap ∈ ℜt×t, Adp ∈ ℜt×t, Bw ∈ ℜt×n, Bp ∈ ℜt×q, Cp ∈ ℜp×t,  
Dz ∈ ℜm×t, are the known constant matrices of proper dimensions. The parametric 
uncertainties in the plant are denoted by ΔAp ∈ ℜt×t and ΔAdp ∈ ℜt×t, initial condition and 
time-varying delay are ϒ(ϑ) and g(ϑ), respectively. 

The time-varying delay g(ϑ) satisfies the following relation: 

( ) ,l hg g g≤ ≤ϑ  (1e) 

where gl is lower and gh is upper delay bound. 
The saturation function for a = 1, 2, …, 2q is defined as follows: 

( )
( )

( ) 0( ) ( )

( )

1 1
1 1

1 1

a

a a a

a

if u
sat u u if u

if u

>
= − ≤ ≤
 − < −

 (1f) 

The state feedback controller is designed as below: 

( ) ( )u Kx=ϑ ϑ  (1g) 

where K is the q × t controller gain. 
The uncertainties in the system can be expressed as 

0 0 0Δ Γ ,pA F L=  (2a) 

1 1 1Δ Γ ,dpA F L=  (2b) 

where Γ t b×∈ℜ ϑϑ  and ,e tL ×∈ℜ ϑϑ  ϑ = 0, 1 are constant known matrices. The unknown 
matrix ( 0,1)b eF ×= ℜ =ϑ ϑϑ ϑ  denotes parametric uncertainty which satisfies 

, 0,1.TF F I≤ =ϑϑ ϑ  (3) 
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A feedback controller is given by u(ϑ) = Kx(ϑ). The stabilised system (1) occurs as 
follows: 

( ) ( ) ( )
( )

( 1) Δ ( ) Δ ( )

( ) ( )
p p dp dp

w p

x A A x A A x g

B w B sat Kx

+ = + + + −

+ +

ϑ ϑ ϑ ϑ
ϑ ϑ

 (4a) 

( ) ( )py C x=ϑ ϑ  (4b) 

( ) ( ) ( ).z zz C x D w= +ϑ ϑ ϑ  (4c) 

Consider K and H∈ℜm×n are the gain matrices. Suppose a set of diagonal matrices D of 
the order of q×q. The number of elements in each matrix is 2q. Its diagonal elements are 0 
or 1. All elements of D are written being Dn, n = 1, 2, … 2q and if Dn ∈ D, then .nD D− ∈  

Φ(P, 1), an ellipsoid, is represented as follows for: 

0 t tP ×< < ℜ  (5) 

ρ(H), a polyhedral set, is defined as follows: 

{ }( ) ( ) : ( ) , 1,2t
bρ H x H x τ b q= ∈ℜ ≤ = ϑ ϑ  (6) 

Hb is the bth row of the matrix H and τ denotes the saturation level. 
When x(ϑ) ∈ ρ(H), using well known Lemma 6 from Pal and Negi (2018) and Hu  

et al. (2002) 

( ) ( )( )
ˆ

1

( ) Θ ( ) .
N

n n n
n

sat Kx D K D H x−

=

= +ϑ ϑ  (7) 

ˆ

1

Θ 1
N

n
n=

=  where ˆ 2qN =  with Θ1 ≥ 0,…., Θn ≥ 0. 

Lemma 1 (Seuret et al., 2015): In a given symmetric positive definite matrix U = ℜn×n, 
the sequence of a discrete-time variable x(ϑ) in [ , 0] ,ng− ∩ → ℜ  where g ≥ 1, the 
inequality is as follows: 

0
0 0

1 11

0
Ξ Ξ1Ω ( ) Ω( ) ,10 3Ξ Ξ

1

T
T

p g

U
p U p g Ug

g=− +

 
    ≥ +          −  

  (8) 

where 

0
0

1

Ω( ) ( ) ( 1),
Ξ (0) ( ),

2Ξ (0) ( ) ( ).
1 p g

p x p x p
x x g

x x g x p
g =−

= − −
= − −

= + − −
+ 
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In some practical systems having time-varying delay, the factor 1
1

g
g

+ 
 − 

 is difficult to 

tackle. Hence, it is removed using Lemma 2. 

Lemma 2 (Seuret et al., 2015): In a given symmetric positive definite matrix U = ℜn×n, 
the sequence of a discrete-time variable x(k) in [ , 0] ,ng− ∩ → ℜ  where g ≥ 1, the 
following inequality holds: 

0
0 0

1 11

Ξ 0 Ξ1Ω ( ) Ω( )
Ξ 0 3 Ξ

T
T

p g

U
p U p

Ug=− +

     
≥      

     
  (9) 

where 

0
0

1

Ω( ) ( ) ( 1),
(0) ( ),

2(0) ( ) ( ).
1 p g

p x p x p
g

g p
g =−

= − −
= − −

= + − −
+ 

Ξ

Ξ

x x

x x x

” 

The initial condition for equation (4) is given below: 

( ) ( ), , 1, , 0.h hg g= ϒ = − − + ϑ ϑ ϑx  (10a) 

The attraction domain of origin of equation (4) is as follows: 

( ){ }0ˆ Δ ( ), , 1, , 0 : lim , 0h h kg g x→∞ϒ = − − + ϒ =ϑ ϑ ϑη  (10b) 

Succeeding the nudge of Negi et al. (2012) and Pal and Negi (2018), an estimated domain 
of attraction is given via 

Θ ˆ,E η⊂  

where 

{ }Θ ( ), 0 : max ( ) Θx h xE gΔ ϒ − ≤ ≤ ϒ ≤ϑ ϑ ϑ  (11) 

Employing well known Lemma 6 from Pal and Negi (2018) and Hu et al. (2002), and 
substituting the value of equation (7) in equation (4), it can be written as follows: 

( ) ( )

( ) ( ) ( )

ˆ

1

( 1) Θ ( ) Δ ( ) Δ ( ) ( )

Δ ( ) Δ ( ) ( )

N

n n p dp dp w
n

p dp dp w

x A x A x A A x g B w

A A x A A x g B w
=

+ = + + + − +

= + + + − +

 



ϑ ϑ ϑ ϑ ϑ ϑ

ϑ ϑ ϑ ϑ

 (12a) 

( ) ( )py C x=ϑ ϑ  (12b) 

( ) ( ) ( ),z zz C x D w= +ϑ ϑ ϑ  (12c) 

where 
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ˆ
11 12

21 221

Θ ; ;
N n n

n n n n n
n

A A
A A A

A A=

 
= =  

 


   
   

.n
ij i n j i n jijA A B D K B D H−= + +  

D and H are given from Lemma 6 Pal and Negi (2018) and Hu et al. (2002). 
Assume that the disturbance satisfies ||w(ϑ)||2 ≤ Λ2 where Λ > 0 is a constant. 

3 Main results 

The findings of the manuscript are expressed successively. 

3.1 Discrete-time systems in the ubeity of parametric uncertainty 

Theorem 1: Consider system (12) devoiding external disturbance (i.e., w(ϑ) = 0), for 
given integers gl, gh, j0 and j1 satisfying 0 < gl < gh, j0 > 0, j1 > 0, if there exists symmetric 
matrices 0 < G = diag(G1, G2, G3) ∈ ℜ3t×3t, 0 < Eϑ(ϑ = 1,2) ∈ ℜt×t, 0 < Tϑ(ϑ = 1,2) ∈ ℜt×t, 
0 < Rϑ (ϑ = 1, …, 3) ∈ ℜt×t, controller gain matrix K = ℜq×t, matrix H = ℜq×t, matrices  
Yϑ (ϑ = 1, …, 4) with suitable dimensions fulfilling inequalities (13)–(15) 

1

2

2

0 0
* 0
* *

T
φ T Y

T

 
 = > 
  





 (13) 

1
2

0, 1,2,....
*

T
bG H

b q
τ

 
> = 

 
 (14) 

with 
( ) ( )

1

11 0 0 0 1 1

22 23 24 1 2 2 4

33 1 1 34 36 37

44 3 4 2

1

2 4

2

2 0 0 6 0 0 0 0

* 6 6 2 2 0 0 0 0 0

* * 0

* * * 0 2 2 6

* * * * 12 0 0

* * * * * 12 4

* * * * * * 12

* * * * * * *

* * * * * * *

* * * * * * *

* * * * * * *

* * * * * * *

T

T TT T
l lh

T T T
dp l dp lh d

T T

χ j L L T T A g A I g A I

χ χ χ T T Y Y

χ j L L χ χ χ A g A g A

χ Y Y T

T

T Y

T

+ − − −

+

+

− +

−

− −

−

  

1 1 1 1 0 1

2 2 1 2 0 1

3 3 2 3 0 1

0

1

0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
0,

0 0 0 0 0

2 0 0 Γ Γ

* -2 0 Γ Γ

* * 2 Γ Γ

* * * 0

* * * *

T
p

T T

T T
l l

T T
lh lh

R R G R

R R T R g g

R R T R g g

j I

j I

<

− +

+

− +

−

−

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 (15)

 

where 

11 1 2 1 14χ G G E T= − + + −  (16) 

22 2 3 1 2 1 24 4χ G G E E T T= − + − + − −  
(17a) 

23 2 1 2 3 42χ T Y Y Y Y= − − − − −  (17b)
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24 1 2 3 4χ Y Y Y Y= − + −  (17c) 

33 2 1 2 3 41 2 3 48 T T T Tχ T Y Y Y Y Y Y Y Y= − + + + + − − − −  (18a) 

34 2 1 2 3 42χ T Y Y Y Y= − − + + −  (18b) 

36 2 3 46 2 2T Tχ T Y Y= + +  (18c) 

37 2 2 46 2 2χ T Y Y= − +  (18d) 

44 2 3 24χ T G E= − − −  (19) 

( ) ( ) 1 2 2 2
1 1 1 2 2 2

3 4
,3 , ,3 , , ,t t

lh h l
Y Y

T diag T T T diag T T g g g Y
Y Y

× 
= = = − = ∈ℜ 

 
   

then, equation (12) is asymptotically stable operating controller of gain K. 

Proof: Define 

( ) ( ) ( 1).η p x p x p= − −  (20) 

Following Lyapunov Krasvoskii functional has been considered for stabilisation 

( ) ( )
3

1

( ) ( ) ,n
n

V x V x
=

=ϑ ϑ  (21) 

where 

( )
11 1

1

1

( )

( ) ( ) ( ) ( ) ( ) .

( )

l

l h l

l

h

g
T T T

p g p g p g

g

p g

x

V x x x p x p G x p

x p

− −− −

= − = − = −

− −

= −

 
    =        
 
 
  

  



ϑϑ ϑ

ϑ ϑ ϑ

ϑ

ϑ

ϑ

ϑ ϑ  (22) 

( )
11

2 1 2( ) ( ) ( ) ( ) ( ).
l

l h

g
T T

p g p g

V x x p E x p x p E x p
− −−

= − = −

= + 
ϑϑ

ϑ ϑ

ϑ  (23) 

( )
0

3 1 2
1 1

( ) ( ) ( ) ( ) ( ).
l

l h

g
T T

l lh
p g j i p g j i

V g j j g j j
−

=− + = + =− + = +

= +   
ϑ ϑ

ϑ ϑ

ϑx η T η η T η  (24) 

ξ(ϑ), an augmented vector, is delineated as 

( ) ( ) ( ) 1 2 3( ) ( ) ( ) ( ) ( ) ( ) ,TT T T T T T T
l hξ x x g x g x g h h h = − − − ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ  (25) 

where 

1
1( ) ( ).

1
ll p g

h x p
g = −

=
+ 

ϑ

ϑ

ϑ  (26) 
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2
( )

1( ) ( ).
( ) 1

gl

l p g

h x p
g g

−

= −

=
− + 

ϑ

ϑ ϑ

ϑ
ϑ

 (27) 

( )

3
1( ) ( ).
( ) 1

h

g

h p g

h x p
g g

−

= −

=
− + 

ϑ ϑ

ϑ

ϑ
ϑ

 (28) 

For complete proof kindly refer Appendix A. 

Remark 1: In equation (15) of Theorem 1, the values of Rϑ (ϑ = 1, …, 3) are found using, 
the method adopted in Chen and Fong (2010). The values can be computed iteratively. 

Remark 2: Choice of appropriate LKF is the main difficulty for achieving stability of 
delayed system. Tremendous effort has been put by the researchers to produce less 
conservative results in terms of delay. Moreover, another complexity can be found in the 
process of finding the feasibility in the stabilisation problems analysed by the LKF 
approach. It can be observed that the complication arises in two aspects: 

1 model transformation 

2 bound of some cross-terms to calculate the difference of function above. 

Moreover, reciprocal convexity helps to make calculations simpler though elaborated. 
Hence, it is a trade-off between big size LMI and simplicity. 

The approximate domain of attraction for equation (12) is given by ΨΘ ≤ 1 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( )( ) ( )

max 1 max 2 max 3 max 1

2
Θ max 2 max 1

max 2

Ψ Θ 2 1 .
2 1

l h l l

h l l l

h l h l

λ G g λ G g g λ G g λ E
g g λ E g g λ T
g g g g λ T

 + + − +
 

= + − + + 
 + − + + 

 (29) 

Now, presenting a criterion that includes both an external disturbance and parametric 
uncertainty. 

3.2 Discrete-time system including both external disturbance as well as 
uncertainties 

Corollary 1 is given when an external disturbance is added with uncertainties in  
system (12). 

Corollary 1: Given positive integers gl, gh, β, λ, j0 and j1 satisfying 0 < gl < gh, β > 0,  
λ > 0, j0 > 0, j1 > 0, if there exists symmetric matrices 0 < G = diag(G1, G2, G3) ∈ ℜ3t×3t,  
0 < Eϑ (ϑ = 1, 2) ∈ ℜt×t, 0 < Tϑ (ϑ = 1,2) ∈ ℜt×t, 0 < Rϑ (ϑ = 1, …, 3) ∈ ℜt×t, controller 
gain matrix K = ℜq×t, matrix H = ℜq×t, matrices Yϑ(ϑ = 1, …, 4) with suitable dimensions 
complying with equations (30)–(32). 

1

2

2

0 0
* 0
* *

T
φ T Y

T

 
 = > 
  





 (30) 
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1
2

0, 1, 2,....
*

T
bG H

b q
τ

 
> = 

 
 (31) 

with 
( ) ( )

11 0 0 0 1 1

22 23 24 1 2 2 4

33 1 0 0 34 36 37

44 3 4 2

1

2 4

2

2 0 0 6 0 0 0 0 0

* 6 6 2 2

* * 0

* * * 0 2 2 6

* * * * 12 0 0

* * * * * 12 4

* * * * * * 12

* * * * * * *

* * * * * * *

* * * * * * *

* * * * * * *

* * * * * * *

* * * * * * *

* * * * * * *

T TT T T

l lh z

T

T T

m

χ j L L T T A g A I g A I C

χ χ χ T T Y Y

χ j L L χ χ χ

χ Y Y T

T

T Y

T

χ

+ − − −

+

+

− +

−

− −

−

=

  

2

1

1 0 1

1

1 0 1

1

2 0 1

0

1

0 0 0 0 0 0 0

0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0

* 0 0 0 Γ Γ

* * 0 0 Γ Γ

* * * 0 Γ Γ

* * * * 0 0

* * * * * 0

* * * * * 0

T T T

dp l dp lh dp

T T T T

w l w lh w z

T T

T T

l l

T T

lh lh

A g A g A

λ I B g B g B D

G

T g g

T g g

I

j I

j I

−

−

−

−

−

−

−

−

−

−

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 





 








 (32) 

then via controller, u(ϑ) = Kx(ϑ), system (12) possess a H∞ disturbance attenuation level λ 
for entire initial conditions fulfilling ΨΘ ≤ 1. The asymptotic stability region is specified 
by an ellipsoid. 

( ) { }2 2 2 2Φ ,1 ; 1 .t TP λ x x Px λ β+ = ∈ℜ ≤ +β  (33) 

The attraction domain is estimated as 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( )( ) ( )

max 1 max 2 max 3 max 1

2
Θ max 2 max 1

max 2

Ψ Θ 2 1 ,
2 1

l h l l

h l l l

h l h l

λ G g λ G g g λ G g λ E
g g λ E g g λ T
g g g g λ T

 + + − +
 

= + − + + 
 + − + + 

 (34) 

where 

2 2
1 .

1
τ

λ
=

+ β
 

0 0 0 0Γ̂ 0 0 0 0 0 0 0 0 Γ Γ Γ 0 0 0T T T T
l lhg g=     (35a) 

1 1 1 1Γ̂ 0 0 0 0 0 0 0 0 Γ Γ Γ 0 0 0T T T T
l lhg g=     (35b) 

[ ]0 0ˆ 0 0 0 0 0 0 0 0 0 0 0 0 0L L=  (36a) 

[ ]1 1ˆ 0 0 0 0 0 0 0 0 0 0 0 0 0L L=  (36b) 

and 

( ) 3 3
1 2 30 , , .t tG diag G G G ×< = ∈ℜ  
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For matrices 0 < Rϑ (ϑ = 1, …, 3), we have 
1 1 1

1 1 1 1 2 2 1 2 3 3 2 31 1 22 , 2 , 2 .G R R G R T R R T R T R R T R− − −− ≤ − + − ≤ − + − ≤ − +  (37) 

Proof: When disturbance is present in a system (12), disturbance attenuation can be 
intended in sense of H∞ by considering the following equation (38): 

( ) 2( ) Δ ( ) ( ) ( ) ( ) ( ).T Tv x z z λ w w= + −α ϑ ϑ ϑ ϑ ϑ ϑ  (38) 

For complete proof, please see Appendix B. 

3.3 Maximisation of attraction basin 

The optimisation approach to find the maximum value of the attraction basin is as 
follows. 

Theorem 2: For the closed loop system (12) and initial condition (10), the capitalised 
attraction basin can be evaluated with subsequent convex optimisation problem. 

Diminish r, with 

( ) ( ) ( )
( )( )

1 2 3 4 5 6

7

2 1
2 1

l h l l h l l l

h l h l

r r g r g g r g r g g r g g r
g g g g r

= + + − + + − + +

+ − + +
 (39) 

subjected to equations (13)–(15) and 

1 1 2 2 3 3 4 1

5 2 6 1 7 2

0, 0, 0, 0,
0, 0, 0

r I G r I G r I G r I E
r I E r I T r I T

− ≥ − ≥ − ≥ − ≥
− ≥ − ≥ − ≥

 (40) 

owns a feasible decipher for the weighting parameters ri > 0, p = 1,2,…7, positive 
definite symmetric matrices G1 ∈ ℜt×t, G2 ∈ ℜt×t, G3 ∈ ℜt×t, E1 ∈ ℜt×t, E2 ∈ ℜt×t,  
T1 ∈ ℜt×t, T2 ∈ ℜt×t, K = ℜq×t, Rϑ (ϑ = 1, 2, 3) ∈ ℜt×t, H ∈ ℜq×t, Y ∈ ℜ2t×2t. 

In this condition, gain matrix K furnishes a capitalised evaluation of attraction basin 
specified by 

max
1Θ ,
ς

=  

where 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )( ) ( )

max 1 max 2 max 3 max 1

max 2 max 1

max 2

2 1
2 1 .

l h l l

h l l l

h l h l

ς λ G g λ G g g λ G g λ E
g g λ E g g λ T

g g g g λ T

= + + − +

+ − + +

+ − + +

 (41) 

Proof: If the constraints in equation (42) hold good, then 

( ) ( ) ( ) ( )
( ) ( )

1 max 1 2 max 2 3 max 3 4 max 1

5 max 2 6 max 1 7 max 2

, , , ,
, ( ), .

r I λ G r I λ G r I λ G r I λ E
r I λ E r I λ T r I λ T

≥ ≥ ≥ ≥
≥ ≥ ≥
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From equation (32), we get ΘΨΘ .
ς

=  The solution of equation (39) along with  

equations (13)–(15) proves a maximised domain of attraction given by Θ. 

4 Examples 

To demonstrate the main result three instances are given in this segment. 

Example 1: Let us consider the systems denoted by equation (12). 

The parameters are: 

[ ]

[ ]

0

0 1

0.8 0 0.015 0.01
, ,

0 0.7 0 0.013
0.65 0.008 0.005

, 1 0 , ,
0.4 0.008091 0.008
0.01 0.3 0.09 0 0.01

, ,Γ ,
0 0.01 0 0.01 0.1

0.01
0.01 0.081 ,Γ ,

0.001

p dp

p p w

z z

A A

B C B

C D

L

L

− −   
= =   −   
   

= = =   −   
− −     

= = =     
     

 
= − − =  

 
[ ] 0.05

1 0 10.01 0.05 , sin( ), 0.01, ( ) 0.05 .F F w e−= − = = = = ϑϑ α ϑ

 

Application of LMI toolkit (Gahinet et al., 1995), the LMIs [equations (27)–(32)] referred 
to in Corollary 1 are discovered to be feasible in favour of delay span 1 ≤ g(ϑ) ≤ 20 and 
the capitalised attraction basin estimated is 0.1606. 

The unknown parameters and gain K that stabilises the unstable system given above 
are obtained as follows: 

0.7;1 ( ) 20λ g= ≤ ≤ϑ  

[ ] 1 2

3 1 2

1

11.9307 2.3488 0.0595 0.0510
0.1030 0.0945 , , ,

2.3488 19.1249 0.0510 0.1221
0.0220 0.0254 0.0595 0.0510 0.0220 0.0254

, , ,
0.0254 0.0627 0.0510 0.1221 0.0254 0.0627

1.3776 0.

K G G

G E E

T

   
= − = =   

   
     

= = =     
     

= 2 1

6 7
2 3

8
4

2585 0.0053 0.0029 0.0416 0.0416 
, , ,

0.2585 1.7889 0.0029 0.0091 0.0434 0.1204
0.8081 0.4075 0.1714 0.5707

10 , 10 ,
0.3212 0.1564 0.8639 -0.0547
0.1594 0.11

10

T Y

Y Y

Y

− −

−

− −     
= =     − −     

−   
= × = ×   −   

−
= × [ ]04

, 0.1023 0.0966
0.1721 0.1137

H 
= − − 

 

It is inferred that the delay limits in Negi et al. (2012), is 1 ≤ g(ϑ) ≤ 5 whereas the delay 
limits in the suggested techniques appear to be 1 ≤ g(ϑ) ≤ 20. 
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Figure 1(a) reflects the state trajectories of equation (12) described for initial state  
x0 = [1 – 0.6]T. The control effort is represented in Figure 1(b). From Figure 1, it can be 
inferred, the unstable system is asymptotically stable influenced by the controller  
u(ϑ) = Kx(ϑ). 

Figure 1 (a) State trajectories (b) Control effort (see online version for colours) 

0 5 10 15 20 25 30 35 40 45 50
-6

-5

-4

-3

-2

-1

0

1

2

ϑ

St
at

es

 

 
ϑ1

ϑ2

 
(a) 

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ϑ

C
on

tro
l e

ffo
rt

 
(b) 

Notes: Through Table 1, it can be seen that the upper limit on the delay bound has risen 
relative to other earlier outcomes (Negi et al., 2012; Qian et al., 2015; Xu et al., 
2012). In contrast to other earlier works, the disturbance has also attenuated 
further. By implementing the state feedback law u(ϑ) = Kx(ϑ), the H∞ performance 
enhancement is shown to minimise the amount of disturbance attenuation level λ. 

The comparison of the outcomes is depicted in Table 1. 
Remarkably, the range of delay has been increased by using the proposed approach in 

comparison with the previous results as well as the domain of attraction has also been 
calculated. Therefore, the region of initial condition for which states are starting from the 
initial condition and after time tending to infinity, the states are reaching the equilibrium 
states, i.e., zero. Exponentially decreasing term of disturbance has been considered in the 
example by w(ϑ) and considering ±10% uncertainty in the system; all the states converge 
to origin for the given initial conditions. 

Although the states in the previous results are also reaching zero and the magnitude of 
control effort is in saturation limit, the main findings of this work can be seen in terms of 
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increasing the delay range also and getting a less conservative result. Next, the domain of 
attraction has also been increased. 
Table 1 Delay bounds 

Method Delay range  
(gl ≤ g(ϑ) ≤ gh) Nonlinearities 

Theorem 2  
(Negi et al., 2012) 

1 ≤ g(ϑ) ≤ 5 With saturation and time varying delay. 

Theorem 1  
(Xu et al., 2012) 

1.4 ≤ g(ϑ) ≤ 3.8 With saturation, time varying delay and 
interference 

Theorem 1  
(Qian et al., 2015) 

1 ≤ g(ϑ) ≤ 4 With saturation, time varying delay and 
interference with H∞ level λ = 1.3424 

Theorem 2  
(Qian et al., 2015) 

1 ≤ g(ϑ) ≤ 3 With saturation, time varying delay and 
interference with H∞ attenuation level λ = 1.4683 

Corollary 2  
(Pal et al., 2018) 

1 ≤ g(ϑ) ≤ 9 With saturation, time varying delay, external 
interference and uncertainties with H∞ level λ = 1 

Theorem 1  
(Chen et al., 2018) 

1 ≤ g(ϑ) ≤ 5 With saturation, time varying delay and uncertainty 

Theorem 1  
(Chen et al., 2018) 

1 ≤ g(ϑ) ≤ 8 With saturation, time varying delay and uncertainty 
(special case) 

Corollary 1  
(De Souza et al., 2018) 

1 ≤ g(ϑ) ≤ 11 With saturation, time varying delay 

Corollary 1  
(proposed work) 

1 ≤ g(ϑ) ≤ 20 With saturation, time varying delay, external 
interference and uncertainties with H∞ level λ = 0.7 

Example 2: In view of unstable discrete delay systems with guidelines as follows: 

[ ]

[ ]0 0 1

1.27 0 0.015 0.01 0.65
, , , 1 0 ,

0 0.07 0 0.013 0.4
0.008 0.005 0.01 0.3 0.09 0

, , ,
0.008091 0.008 0 0.01 0 0.01
0.01 0.01

Γ , 0.01 0.081 ,Γ
0.1 0.001

p dp p p

w z z

A A B C

B C D

L

− − −     
= = = =     − − −     

−     
= = =     
     
−   

= = − − =  
  
[ ] 0.05

1 0 1

,

0.01 0.05 , sin( ), 0.01, ( ) 0.05 .L F F w e−




= − = = = = ϑϑ α ϑ

 

These parameters can be used to find the system denoted by equation (12). It is noted 
system matrix A has eigenvalues [–1.27, –0.07]. The aforementioned unstable system is 
affected by time-varying delay, actuator saturation, uncertainties together with 
disturbance. Employing Corollary 1, the system becomes stable using the feedback 
controller referred to in equation (4) expressed by u(ϑ) = Kx(ϑ). 

The application of the workbox (Gahinet et al., 1995), to the LMIs  
[equations (27)–(32)] shown in Corollary 1 is considered feasible for the parameters 
described below: 
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[ ] 1 2

3 1 2

1

32.8760 1.7734 0.1588 0.1183
1.9499 0.0708 , , ,

1.7734 7.6445 0.1183 0.1305
0.0822 0.0489 0.1321 0.0969 0.0660 0.0409

, , ,
0.0489 0.0670 0.0969 0.1091 0.0409 0.0569

0.1170 0.

K G G

G E E

T

−   
= − = =   −   
     

= = =     
     

= 2 1

6 5
2 3

8
4

0144 0.0467 0.0164 0.0631 0.0261
, , ,

0.0144 0.1162 0.0164 0.0484 0.0363 0.0560
0.5097 0.5219 0.1107 0.0676

10 , 10 ,
0.3025 0.1169 0.0830 0.0522
0.1664 0.0811

10

T Y

Y Y

Y

− −

−

− −     
= =     − −     

− − −   
= × = ×   −   

− −
= ×

−
[ ], 0.9809 0.1941 , 0.2,1 ( ) 3.

0.1402 0.0633
H λ g 

= = ≤ ≤ − 
ϑ

 

As stated in Example 2, the system’s state trajectories are revealed in Figure 2(a) for 
initial state x0 = [1 – 7]T. Figure 2(b) depicts the control effort. The controller gain K here 
is stabilising the unstable system and is depicted in Table 2 for various delay ranges. 

Figure 2 (a) State trajectories (b) Control effort (see online version for colours) 
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Table 2 Computational result 

Delay range gl ≤ g(ϑ) ≤ gh Controller gain (K) 
1 ≤ g(ϑ) ≤ 2 [1.9628 0.0661]K = −  

1 ≤ g(ϑ) ≤ 3 [1.9499 0.0708]K = −  

1 ≤ g(ϑ) ≤ 4 Infeasible 

To stabilise the unstable system, Example 2 is capable of showing the fruitfulness of the 
suggested controller. The gauge attraction basin is 0.1796. The upper delay limit 
improvement, in the instance, reveals that in LKF, the introduction of Wirtinger 
inequality lowers the conservatism. 

4.1 Implementation of missile control system 

Example 3: (Pal and Negi, 2018; Nise, 2010). The missile control system can be marked 
by equation (15) with the guidelines as follows: 

[ ]

[ ]0 0 1

0.2428 0.6238 0.016 0.012 1
, , ,

1 0 0 0.013 0
0.009 0.006 0.014 0.253

1.31 0.5566 , , ,
0.0079 0.008 0 0.01

0.109 0 0.02 0.0
, Γ , 0.01 0.05 , Γ

0 0.012 0.99

p dp p

p w z

z

A A B

C B C

D L

− − − −     
= = =     −     

−   
= = =   

   
−   

= = = − − =   
   

[ ]1 0 1

0.03

12
,

0.002
0.03 0.06 , [0.6417 0.6586], sin( ), 0.02,

( ) 0.04 .
L
w e−

 
 
 

= − = = = =

= ϑ

ϑ α
ϑ

K F F

 

The control feedback u(ϑ) = Kx(ϑ) is conceived to stabilise the aforementioned missile 
control scheme when using LMI Toolkit, see Gahinet et al. (1995). It is noted that the 
LMI constraints (33)–(35) in Corollary 1 are feasible for the parameters that are unknown 
as below: 

3 1 2

1 2 1

0.0158 0.0003 0.0159 0.0085  0.0158 0.0003
, , ,

0.0003 0.0360 0.0085 0.0644 0.0003 0.0360
0.1173 0.0001 0.0077 0.0001 0.0200 0.0026

, ,
0.0001 0.1278 0.0001 0.0086 0.0025

G E E

T T Y

− − −     
= = =     − − −     

− −   
= = =   
   

[ ]

7 5
2 3

9
4

,
0.0329

0.0644 0.1249 0.0274 0.2233
10 , 10 ,

0.1482 0.2748 0.0018 0.0131
0.4468 0.8672

10 , [0.6417 0.6586], 0.6423 0.6582 ,
0.0272 0.0540

0.2, 1 ( ) 6.

Y Y

Y H

λ g

− −

−

 
 − 

− − −   
= × = ×   − − −   

 
= × = = 

 
= ≤ ≤ϑ
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Figure 3(a) shows state trajectories of the missile control system for the initial state 
0 [0.4 0.6]Tx = −  and Figure 3(b) shows the control effort. It can be inferred that in the 

presence of the aforesaid nonlinearities, all the states converge to origin from any 
arbitrary initial conditions and the conceived controller gain K makes the system stable. 
The upper limit of the delay range has increased to 1 ≤ g(ϑ) ≤ 6 in comparison to Pal and 
Negi (2018) 1 ≤ g(ϑ) ≤ 5. 

Figure 3 (a) State trajectories (b) Control effort (see online version for colours) 
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(b) 

The same problem can be targeted for two-dimensional (2D) discrete time delayed 
systems coupled with of nonlinearities like saturation, etc. 

5 Conclusions 

In this work, a H∞ state feedback controller is designed to obtain a robust stability 
criterion that stabilises and optimises a discrete delayed system together with actuator 
saturation, uncertainty and external disturbance using discrete Wirtinger-based inequality. 
The enhanced delay span is the principal attainment of the proffered technique for the 
system considered with nonlinearities. The presented criterion helps to obtain a larger 
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stability region than the previous criterion. Numerical instances reveal the skill of the 
suggested method. The computed results are less conservative as compared to previous 
methods and show an increase in the upper bound of the stable region. The disadvantage 
of the proposed method is that robust controllers are insensitive to minor system changes. 
Robustness is the sensitivity to the unexplained upshots in the analysis plus design. 
Model transformation and bound of some cross-terms for finding the difference poses 
some complications. It can be seen that by applying these methods, the complexity will 
increase in establishing the stability conditions based on the LMI technique. Several 
assumptions have been taken. Certain matrices, for example matrix G, is considered 
diagonal in Theorem 1. On removal of these assumptions, results will be better. 

The same problem can be done using: 

1 delay partitioning, both uniform and non-uniform (Feng et al., 2015) with simple and 
multiple time varying delays 

2 finite word length (Singh et al., 2021), 

3 polytopic approach (Chen et al., 2019) 

4 control for switching systems, stochastic system and chaotic system 

5 non-monotonic LKF can be used in place of conventional monotonic ones 

6 2D systems. 
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Appendix A 

Proof of Theorem 1 

The forward difference of the Lyapunov functional of the system (12) is given as 
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If there exists a matrix 1 2 2 2

3 4

t tY Y
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 such that equation (13) holds true then, 

applying from Lemma 2 of Pal and Negi (2018) and Park et al. (2011), the following 
relation is obtained: 
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Using equations (A2)–(A6), ΔV(x(ϑ)) [equation (A1)] can be written as: 
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Employing Schur’s complement on equation (A10), we get 



   

 

   

   
 

   

   

 

   

    H∞ stabilisation of uncertain discrete time-delayed system 71    
 

    
 
 

   

   
 

   

   

 

   

       
 

( ) ( ) ( )

( ) ( ) ( )

11 1 1

22 23 24 1 2 2 4

33 34 36 37

44 3 4 2

1
1

2 4

2 0 0 6 0 0 Δ Δ Δ

* 6 6 2 2 0 0 0

* * 0 Δ Δ Δ
* * * 0 2 2 6 0 0 0
* * * * 12 0 0 0 0 0
* * * * * 12 4 0 0 0
* * * * * * 1
* * * * * *

* * * * * *

* * * * * *

T T T
p l p lh p

T T T
dp dp l dp dp lh dp dp

T T

χ T T A A g A A I g A A I

χ χ χ T T Y Y

χ χ χ χ A A g A A g A A
χ Y Y T

T
χ

T Y

− + + − + −

+

+ + +
− +

−
=

− −

−

  

2

1
1

1
1

1
2

.

2 0 0 0

* 0 0

* * 0

* * *

T

G

T

T

−

−

−

−

−

−

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (A13) 

For matrices 0 < Rϑ (ϑ = 1, …, 3), we have 
1 1 1

1 1 1 1 2 2 1 2 3 3 2 31 1 22 , 2 , 2 .G R R G R T R R T R T R R T R− − −− ≤ − + − ≤ − + − ≤ − +  (A14) 

It can be spotted that ΔV(x(ϑ)) < 0 for ξ(ϑ) ≠ 0 together with equations (13)–(14) are 
constraints for asymptotic stability of equation (12). Here, ΔV(x(ϑ)) < 0 is denoted as  
χ1 < 0. 

The compliance of condition mentioned in equation (14) represents that Φ(P1) =  
{x ∈ ℜt; xTP1x ≤ 1} is contained in the polyhedral set ρ(H) as stated in equation (6). It can 
be demonstrated that Φ(P1) = {x ∈ ℜt; xTP1x ≤ 1} is comparable to Boyd et al. (1994). 

2
1 ( )( ) 0, 1,2,..., .T

bbG H H τ b q− > =  (A15) 

Pre and post multiplying equation (A15) by xT and x sequentially, conforms that x ∈ ρ(H) 
for all x ∈ Φ*(G1). LMI [equation (14)] established by practising Schur’s complement on 
equation (A15). 

Taking into account the parametric uncertainties (2a) in system (12), the resultant 
matrix (A13) is written as follows: 

1 0 0 0 0 0 0Γ Γ 0.T T Tχ F L L F+ + <  (A16a) 

On applying Lemma 3 of Pal and Negi (2018), Boyd et al. (1994) and Tadepalli et al. 
(2018), equation (A16a) is similar to 

1
1 0 0 00 0 0Γ Γ 0,T Tχ j j L L−+ + <  (A16b) 

where 

0 0 0 0Γ 0 0 0 0 0 0 0 Γ Γ Γ ,T T T T
l lhg g=     (A17) 

[ ]0 0 0 0 0 0 0 0 0 0 0 .L L=  (A18) 

Employing Schur’s complement, equation (A16b) can be expressed as equation (15). 
Following the steps similar to equations (A16)–(A18), leads to equation (15) by 

considering equation (2b). This verifies Theorem 1. 
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Appendix B 

Verification of Corollary 1 

Equation (A11) will be modified as: 
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T T
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( )2 2 2
88 1 1 2 .T T T

m z z w w w wl lhχ D D B G B B g T g T B λ I= + + + −  (B6) 

Employing Schur’s complement on equation (B2) and following the steps (A16)–(A18), 
the term χm, associated with the difference of Lyapunov function (B1), can be represented 
as equation (32). 

The fulfilment of equation (31) for each initial state satisfying ΨΘ < 1, conform to 
xT(ϑ)Px(ϑ) < 1 + λ2β2. Thus, the trajectories of the system beginning from ΨΘ < 1 will 
persist inside the ellipsoid given by Φ(P, 1 + λ2β2). 

The LMI conditions (30)–(32) is sufficient conditions for equation (12) to be 
asymptotically stable by virtue of controller u(ϑ) = Kx(ϑ) for every initial condition 
gratifying ΨΘ < 1 along with an established H∞ level λ. 


