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Abstract: Frequent item set mining (FIM), is one of the prevalent,  
well-known methods of data mining and is a topic of interest for researchers in 
the field of decision making. With the establishment of the period of big data 
where the data is continuously generated from multidimensional sources with 
enormous volume, and variety in an almost unrevealed way, transforming this 
data into valuable knowledge discovery which can add value to the 
organisations to make an efficient decision making poses a challenge in the 
present research. This leads to the problem of discovery of the maximum 
frequent patterns in vast datasets and to create a more generalised and 
interpretable representation of veracity. Targeting the problems stated above, 
this paper suggests a parallelisation method suitable for any type of parallel 
environment. The implemented algorithm can be run on a single computer with 
multi-core processor as well as on a cluster of such machines. 

Keywords: item set mining; frequent items; frequent patterns; Eclat; parallel 
Eclat; frequent item set mining; FIM. 
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1 Introduction 

In the transformation process converting the raw data into considerable and substantial 
information to make the raw data useful, the vital element is the pattern. Though the 
method was initially developed to discover the interesting patterns for market basket 
analysis, later was extended to the tasks of discovering the regularities, interesting 
correlations, frequent pattern, hidden patterns, useful and understandable patterns 
between the variables of various other applications. Transforming raw data into 
knowledge is a process that becomes particularly significant for the organisations that 
make every effort to understand the behaviour of their customers. The transformation 
process assist the organisation to build a resilient economic benefit over their peers by 
proposing an improved and an exclusive personalised experience to the customers, which 
can both lead to retaining the customer-base and increased profit. The pattern denotes any 
type of consistency and uniformity, thus considered to be an earnest descriptor of crucial 
and vital properties of the data (Han et al., 2016; Robu et al., 2019). Many frequent item 
set algorithms have been recommended since the first approach was coined at the 
beginning of the 1990s (Agrawal et al., 1993). In the first approach, a level wise breadth 
first search (BFS) methodology was used to produce candidate item sets whose frequent 
count was calculated by scanning the dataset numerous times which is one for each size 
of the candidate item sets. The algorithms such as FP-growth (Han et al., 2000) and Eclat 
(Zaki, 2020), were later put forth which was based on the depth-first search (DFS) 
method where input dataset is represented based on the prefix-tree-based memory 
similarly known as vertical rearrangement of the dataset to work on a given transaction 
dataset. To date, many effective algorithms are available in the literature for resolving 
issues pertained to increased time complexity, memory requirements and search space 
pruning, related to frequent item sets. In many instances, the algorithms are appropriate 
enough for facing the complications (Aggarwal and Han, 2014) Nevertheless, as a 
concern related to large volumes of information that has to be analysed in the era of big 
data, traditional tactics have laid the practicalities aimed at innovative methodologies 
built on parallel programming environments bearing in mind both shared and distributed 
memory (Moens et al., 2013). To improve the performance and to handle parallel 
programming environment, several techniques for improvising the performance of 
parallel processing for partitioning the database is described in this paper. Measurements 
on performance on the different parallelised algorithms furthermore allowed us to find 
some bottlenecks and limitations, which can be circumvented in incorporating the new 
methods to resolve the same problem. 
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2 Related work 

In general, the algorithms for FIM can be categorised into three main classifications that 
is pattern growth, join and tree-based (Aggarwal et al., 2014). While the join-based 
algorithms employ the bottom-up approach to find frequent items in a given dataset and 
raise them into larger item sets satisfying the minimum threshold value set by the user, 
set-enumeration concepts are incorporated by tree-based algorithms to solve the problems 
of frequent item set generation through building a lexicographic tree that mine the item 
sets either using the breadth-first or depth-first. The divide-and-conquer method to 
partition the databases and then developing them into extended ones in the databases is 
instrumented in the pattern growth algorithms (Robu et al., 2019). 

While apriori, frequent pattern growth and Eclat have been the popular categories 
used in frequent item set mining (FIM) algorithms they also suffer from certain 
shortcomings. The apriori algorithm a join-based method uses horizontal data structure 
for storage and generates a large number of candidate item sets, thus resulting in multiple 
scans to the transactional database leading to high cost, memory usage and increased 
runtime. FP tree being a pattern growth algorithm though reduces the running time by 
constructing the FP tree and scanning the database only twice it becomes more 
cumbersome, difficult to build, expensive and difficult to fit in the shared memory when 
the database is large (Liao, 2015; Vijayarani and Sharmila, 2017). On the contrary Eclat, 
the tree-based algorithm key features uses a vertical database format associating each 
item set with a list a transactions where it appears, enumerates simple tied list 
intersections thus reducing the scans to the database to only once. Further using a lattice 
approach to decompose the search space into sub lattices and use prefix-based partition 
method enables processing to be performed independently in the main memory (Zaki, 
2020). As quantity of the data remains to surge, Eclat also has problems such as time 
consuming intersection calculation, wider search space, frequent joining operations, 
larger memory utilisation, and with lowered mining efficiency in the process of mining 
frequent item sets (Zhang and Pei, 2016). With the data increasing in bulks in the fields 
of marketing as well in the fields of marketing, demand to maintain and improve the 
execution time, processing power, higher availability greater flexibility, and hence 
applications where task can be performed concurrently, share resources and able to 
synchronise the parallel data mining algorithms is suitable, however the issues related to 
structuring the tasks and preserving their sequence has always be an challenge (Moattar 
and Taharozi, 2018). This has attracted the researches to target parallel approaches to 
solve the problem of the era of big data. Among the different algorithms available apriori 
and Eclat has always proved to have a larger potential to apply the parallelisation 
schemes and hence become a major research interest among the practitioners. 

The very first simple solution to parallelise the FIM algorithm was to incorporate 
multithread architectures. Though the support count was easy to be computed by 
distributing the data among the nodes (processors), memory requirements placed a 
concern that had to be solved (Moens et al., 2013). The apriori algorithm was first and 
foremost implemented on the multithread architecture (Zaki et al., 1997) where new level 
candidate sets were calculated by dividing the original dataset into various segments 
before analysing, later a different parallel version which could dynamically incorporate 
new item sets was coined, since nodes can calculate the support of potential frequent item 
sets, as they get further results from the other nodes, and make adjustments (Cheung  
et al., 1998). Later multiple local frequent pattern tree algorithms (parallel FP-growth) 
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was proposed which distributed the work among the processors unbiasedly (Zaïane et al., 
2001). While GPUs were gaining interest, several novel GPU-based approaches were put 
forth, which had an advantage of speed and optical cost comparing with traditional 
parallel systems. In the year 2010, apriori-based GPU-FIM was proposed (Zhou et al., 
2010) later which was extended to FP growth (Teodoro et al., 2010) as it outperformed 
the apriori like approaches (Han et al., 2016). Lastly, GPUs were employed to speed up 
the calculation of support count in FIM which always gave higher performance (Cano  
et al., 2013) irrespective of the amount of data records which overcame the complications 
of most time consuming phases (Ventura and Luna, 2016). 

Nevertheless, multithread solutions suffer from memory requirements due to shared 
memory and hence are not scalable enough to apply to big FIM. Thus, distributed 
computing solutions have also been looked into where parallel programming 
architectures of both distributed memory and shared computing approaches the FIM 
applications for distributed systems are surveyed on. The MapReduce framework (Dean 
and Ghemawat, 2008) and Spark-based framework (Feng and Pan, 2019) was extensively 
incorporated by many researchers, eases the programming method for distributed data 
processing. In the later advancements, the MapReduce framework was presented to 
process data in parallel as small portions in distributed clusters (Dean and Ghemawat, 
2008). The first FIM proposed was a version of the FP-growth algorithm, called PFP (Li 
et al., 2008), targeted on the distributed machines. Later many initial adaptations on 
single pass counting, fixed passes combined counting, dynamic passes counting of apriori 
on framework of MapReduce (Lin et al., 2012), but in 2008 truly efficient MapReduce 
algorithms for DistECLAT and BigFIM based on ECLAT algorithm and the in 
combination with apriori was coined (Moens et al., 2013). Progressively novel 
MapReduce methods for FIM were to cope up with the problems related to 
communication overhead, workload skewness and the intermediate data (Luna et al., 
2018; Chon and Kim, 2018). However all these MapReduce, Spark frameworks 
suggestions appears to be new, it is significant to note that the important enhancements 
carried out are resultant from the architecture novelty than being breakthroughs in terms 
related to algorithm. The author suggested a Spark Parallel Eclat (SPEclat), a parallel 
Eclat algorithm based on Spark framework (Feng and Pan, 2019) which enhanced the 
data storage techniques to reduce the size of candidate sets. The data was grouped 
bestowing to the prefix that is used to split into different computing nodes to search space 
for compressed data. Though the method successfully partitions the data into multiple 
clusters in view of improving the processing, it can be further optimised by considering 
load on each individual cluster while partitioning computing nodes thereby reducing the 
data skew. RDD Eclat the different approaches to parallelise Eclat algorithm for Spark 
RDD framework was designed with various variants and different datasets was presented 
but was limited to 1 length-based prefixed method and improvements based on load 
balancing and better heuristics for equivalent class clustering was looked into (Singh  
et al., 2020). Looking at the diverse platforms, the interest of the researchers has focused 
on developing parallel algorithms targeting the data mining programming models. The 
current focus aims at parallelising the Eclat algorithms by applying various optimisation 
methods at different stages. Numerous parallel implementations of the Eclat algorithm 
have been developed for both shared memory and message-passing programming models 
(Chee et al., 2018; Zhang and Pei, 2016; Zaki et al., 1997; Cheung et al., 1998; Zaïane  
et al., 2001; Zhou et al., 2010; Dean and Ghemawat, 2008; Feng and Pan, 2019; Li et al., 
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2008; Lin et al., 2012; Luna et al., 2018; Chon and Kim, 2018; Singh et al., 2020; 
Subbulakshmi and Deisy, 2018; Bhuvaneswari and Muneeswaran, 2021; Sjarif et al., 
2021). The article is organised as follows: firstly, the preliminaries of FIM and the Eclat 
algorithm is presented. Next, our approach to parallelise bottom up Eclat algorithm using 
the python library is discussed. Then, some enhancements and conclusions on using the 
various heuristics are considered. The last part contains the result of our experiments and 
discussions. 

3 Problem statement and preliminaries 

Discovering frequent item sets has always been a crucial problem in data mining research 
and database applications. This problem is articulated as follows: specified a transaction 
database which is a set of transactions, discover all the frequent item sets where a 
frequent item set is one that occurs in at least a user-specified number or percentage of 
transactions, which means, its support is no less than the threshold otherwise known as 
minimum support. Eclat employs a upright database format, equivalence class clustering 
and bottom up lattice traversal which is explained in Figure 1 and the algorithm as 
proposed by Zaki (2020) is given in Figure 1 and the pictorial representation of horizontal 
transactional database converted to vertical representation in Tables 1 and 2, and 
calculating the candidate frequent items-based bottom up lattice-based tree traversal in 
Figure 2 and the resultant frequent item sets in Figure 3. 
Figure 1 Bottom up Eclat algorithm (see online version for colours) 

Algorithm: Eclat Bottom Up Approach 
Input: The transaction database (T) consisting of transactions (t1, t2, t3 …. tn) and 
corresponding itemsets I where I = (i1, i2, i3 ,… in) 
Output: Frequent Itemsets Fi 
Convert Horizontal database to Vertical database 
Call BottomUP(ECk) 
Start Loop 

ECk = {Null} 
Start Loop 

Iij = Ii U Ij 
T(Iij) = T(Ii) n T(Ij) 
If Condition: | Iij | >= min_sup{ 

Eck + 1 = Eck + 1 U Iij 
LECk = LECk U Aij; 

} 
End Loop 

If Condition: Eck +1! = null 
Call BottomUP(ECk+1) 

End Loop 
Return LECk 

 

Source: Zaki (2020) 

FIM is a prevalent technique for deciding enthralling relations between sets of items in 
large databases. It forms the foundation of many applications, which perform people 
behaviour analysis, market prediction (Sjarif et al., 2021) or biological structures 
analysis. Diverse implementation of sequential algorithms has been proposed in view of 
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finding the frequent item sets which are both efficient and optimised. Most of them show 
some capabilities of parallel processing and should be evaluated while running them on 
many computational nodes. Due increase in the volume of data which has to processed by 
mining algorithm has impose a greater challenge in parallelisation of those 
implementation towards optimising the performance across multiple computation units. 
Though variety of frameworks like Hadoop, Spark, MapReduces ease the parallel process 
there is always a need for a parallelisation methods suitable for any type of parallel 
environment. 
Table 1 Transactional dataset 

Transaction ID (TID) Items 
A 1, 4, 5 
B 1, 2, 3 
C 2, 3, 5 
D 1, 2, 5 
E 1, 2, 3, 4, 5 
F 3, 4, 5 

Table 2 Vertical transition representation 

Item sets TID 
1 A, B, D, E 
2 B, C, D, E 
3 B, D, E, F 
4 A, E, F 
5 A, C, D, E, F 

Figure 2 Bottom up tree traversal (see online version for colours) 
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Figure 3 Frequent item sets 

Minimum support = 3 (50%) 

Frequent 1 

Item set 

1, 2, 3, 4, 5 

Frequent 2 
Item set 

(1, 2), (1, 5), (2, 3), (2, 5), (3, 5), 
(4, 5) 

 

The approach discussed in the work showcases improvisation in performance towards 
parallelising the work across the different computing nodes which can adopted to all 
modern environment which supports parallelism by using techniques of default 
parallelism and hash partitioning. The implemented algorithm can be run on a single 
computer with multi-core processor as well as on a cluster of such machines. After 
examining the performance of the proposed methodology in efforts towards parallelised 
even though show great improvement, but still possess some challenges and weakness, 
which can be compromised by incorporating modern techniques to optimisation and load 
balancing approach. 

4 Proposed work 

RDD Eclat, the different approaches to parallelising Eclat algorithm in the form of 
variants were proposed for Spark RDD framework (Singh et al., 2020). In the Eclat 
variant the frequent item sets were calculated for a prefix length of 1, by partitioning the 
database using default parallelism that is equivalent to the number of computing units and 
later the dataset is partitioned using hash partitioner where the number of partitions was 
supplied by the user. The key observations were that the results were explored only for 
one length prefix-based equivalence classes and hence the proposed work has been based 
on discovering the results for k ≥ 2 prefix-based equivalent classes as while applying the 
transaction filtering technique. The detailed algorithm is given below where the first step 
is to convert the horizontal database to vertical dataset and stored using hashmap data 
structure. The transaction filtering is applied before partitioning the database to avoid 
duplicate item sets and thus eliminating the duplicates before calculating the frequent 
item sets. In default parallelism the partitions are made based on k – 1, where k is the 
number of item sets, while this has the disadvantage of non-availability of required 
number of partitions and also the load balancing issues, while the hash partition reduces 
this overhead as the number of partitions can be set by the user and a hash function is 
applied on the values corresponding to the prefix of the equivalence classes which returns 
the remainder as the partition ID which significantly reduces the execution time. 

//Converting horizontal database to vertical data 
Input: the transaction database 
Read the input file 
Create results set and initialise the counter 
For each row in transactions 
 Strip and split the items based on the delimiter 
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 For each item in row 
  Check if item is in the result set 
   Add to the transactions 
  Else 
 Create a new item in result set 
 Update the transaction 
 End loop 
//Frequent item set extraction: default parallelism 
Extract the key from the result set 
For each item in keys 
 Create a process and map item, suffix list, vertical dataset, result 
 Update result in file 
 Process creation: 
 For each suffix in list // suffix of the current item 
 Compute the intersection of transaction id, suffix item 
 Compare the resultant is greater than or equal to minimum support 
 If resultant is not empty && suffix is of length one 
  Update the result with intersection set 
 Else 
  Compare the prefix of two keys (key[:–1] == suff[:–1]) 
   Compute the new key 
   Update the new key & intersection set in result 
 End loop 
 Repeat for K + 1, K + 2, K + 3 … till null frequent items 
End loop 
//Frequent item set extraction: hash partitioning 
Extract the key from the result set 
#create number of partition 
hash_bin = [], partition = n 
#parse the dataset for each key from the itemset 
for each key, value from itemset; 
 #using each value of the key compute the hash and assign to the corresponding bin 
 for each v in value: 
  compute the hash value(h) 
 if h not in hash_bin.keys(): 
  hash_bin[h] = [key] 
 else: 
  hash_bin[h].append(key) 
#for each bin create separate process and compute the frequent itemset and update 
for each h in hash_bin: 
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 Create a process for each bin 
 Update result in file 
#for each suffix of the current item computes the common transaction and updates the result. 
Process creation: 
 For each suffix in list // suffix of the current Item 
  Compute the intersection of transaction id, suffix item 
  Compare the resultant is greater than or equal to minimum support 
  If resultant is not empty && suffix is of length one 
   Update the result with intersection set 
  Else 
   Compare the prefix of two keys (key[:–1] == suff[:–1]) 
    Compute the new key 
    Update the new key & intersection set in result 
  End loop 
  Repeat for K + 1, K + 2, K + 3… till null frequent items 
End loop 

5 Experimental results 

The source code of all the algorithms is written in Python. The different datasets used to 
conduct experiments are as follows: BMS_WebView-1 (Fournier-Viger et al., 2016) is a 
dataset of KDD CUP 2000 and contains a clickstream data from an e-commerce 
application. It has long sequences with more than 20 items which consist of real life 
clickstream data of an e-commerce. The total transactions sum up to 59,602, with  
497 items and an average transaction width of 2.5. BMS_WebView_2 (Fournier-Viger  
et al., 2016) consists of real life clickstream data of an e-commerce with a total 
transaction count of 77,512 with 3,340 items and an average transaction width of 5. The 
results were also explored for the synthetic dataset (Frequent Itemet Mining Dataset 
Repository, http://fimi.ua.ac.be/data) T10I4D100K and T40I10D100K each of 1 lakh 
transactions and items counting to 870 of average transaction width 10, 1,000 of average 
transaction width 40. 

5.1 Processing time with respect to varied support count 

Figures 4(a)–4(d) compares the execution time of the proposed algorithms while applying 
the partition heuristics of default parallelism and hash partition, in addition to applying 
transaction filtering and sorting the frequent sets. On all the datasets mentioned above the 
execution time difference between them becomes lesser with increased value of 
minimum support, and there is a notable reduction in time with respect to applying the 
hash partitioning heuristics for partitioning the equivalent classes. 
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Figure 4 (a) Execution time of variants on dataset BMS_WebView_1 (b) Execution time of 
variants on dataset BMS_WebView_2 (c) Execution time of variants on dataset 
T10I4D100K (d) Execution time of variants on dataset T40I10D100K (see online 
version for colours) 

 
(a) 

 
(b) 

 
(c) 
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Figure 4 (a) Execution time of variants on dataset BMS_WebView_1 (b) Execution time of 
variants on dataset BMS_WebView_2 (c) Execution time of variants on dataset 
T10I4D100K (d) Execution time of variants on dataset T40I10D100K (see online 
version for colours) 

 
(d) 

Figure 5 (a) Execution time for k length prefixes where k ≥ 2 on dataset BMS_WebView_1  
(b) Execution time for k length prefixes where k ≥ 2 on dataset BMS_WebView_1  
(see online version for colours) 

 
(a) 

 
(b) 
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5.2 Execution time on k length prefixes where k ≥ 2 

The proposed éclat variants are also applied for k ≥ 2 prefix-based equivalence classes 
and the results are compared based on the execution time of the algorithm of all variants 
which is plotted in Figures 5(a)–5(b) where we can clearly see that the hash partitioned 
heuristics continue to perform better compared to other variants of default partition. 

5.3 Execution time variations with increase in the number of transactions 

The results were also compared for k-length prefixes where k ≥ 2 for different datasets 
(Fournier-Viger et al., 2016) and shown in Figure 6 which indicates that by applying the 
hash partitioning the execution time can be significantly reduced when implement for  
k ≥ 2. 

Figure 6 Execution time variations for k ≥ 2 prefix-based equivalence classes (see online version 
for colours) 

 

5.4 Discussion 

The Eclat algorithm for Spark framework (Singh et al., 2020) is redesigned to suit any 
parallel environment which is developed using python by following the heuristics of 
default parallelism and hash partitioning. In default parallelism the partitions are made 
based on k – 1, where k is the number of item sets, while this has the disadvantage of 
non-availability of required number of partitions and also the load balancing issues. By 
considering the limitations, the proposed approach partition the dataset using hashing 
approaches where the number partitions can be specified by the user which is either 
equivalent to computing units or random specified one. Hash partitioning is carried out 
by applying the hashing function to all the values corresponding to the prefix of 
equivalence which is supplied as the partition ID. The transaction filtering has been 
applied for both the heuristics which constantly reduces the execution time as the number 
of duplicates that could be generated otherwise is eliminated at every level and shows 
good results as it is applied for k ≥ 2 prefix. Further by sorting the infrequent item sets at 
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every level will make sure that the non-beneficial item sets are eliminated at early stage 
and thus contributes to reduced combinations. 

6 Conclusions and future work 

The Eclat algorithm was redesigned for the distributed computing environment using 
Python which can be run without any complicated or specialised frameworks. The key 
contribution here is developing the hash partitioned algorithm using python for the 
distributed environments that can be used to apply for k-length prefixes where k ≥ 2. We 
can also note that both the techniques of default parallelism where the equivalent classes 
were clustered based on K – 1, where k is the number of item sets and hash partitioning 
was applied and also verified with transaction filtering and with and without sorting 
infrequent items at every level. The algorithm has performed well and significantly 
reduces the execution time. The results were explored for 8 cores and the observation 
after analysing the performance has been presented. The performance can further be 
improved by either increasing the number of cores as well increasing the number of 
partitions specified by the user. The results are explored only for the ecommerce 
application and can be explored for other real time applications. The limitations of hash 
partitioning to improve the performance and also to generate more balanced distribution 
of equivalence classes will be the addressed in the future work. 
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