

International Journal of Business Intelligence and Data
Mining

ISSN online: 1743-8195 - ISSN print: 1743-8187
https://www.inderscience.com/ijbidm

Approaches to parallelise Eclat algorithm and analysing its
performance for K length prefix-based equivalence classes

C.G. Anupama, C. Lakshmi

DOI: 10.1504/IJBIDM.2022.10043400

Article History:
Received: 26 August 2021
Accepted: 26 October 2021
Published online: 30 November 2022

Powered by TCPDF (www.tcpdf.org)

Copyright © 2023 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijbidm
https://dx.doi.org/10.1504/IJBIDM.2022.10043400
http://www.tcpdf.org

 34 Int. J. Business Intelligence and Data Mining, Vol. 22, Nos. 1/2, 2023

 Copyright © 2023 Inderscience Enterprises Ltd.

Approaches to parallelise Eclat algorithm and
analysing its performance for K length prefix-based
equivalence classes

C.G. Anupama* and C. Lakshmi
Department of Computational Intelligence,
School of Computing,
SRM Institute of Science and Technology,
SRM Nagar, Kattankulathur 603203, Kanchipuram, Chennai, TN, India
Email: anupamag@srmist.edu.in
Email: lakshmic@srmist.edu.in
*Corresponding author

Abstract: Frequent item set mining (FIM), is one of the prevalent,
well-known methods of data mining and is a topic of interest for researchers in
the field of decision making. With the establishment of the period of big data
where the data is continuously generated from multidimensional sources with
enormous volume, and variety in an almost unrevealed way, transforming this
data into valuable knowledge discovery which can add value to the
organisations to make an efficient decision making poses a challenge in the
present research. This leads to the problem of discovery of the maximum
frequent patterns in vast datasets and to create a more generalised and
interpretable representation of veracity. Targeting the problems stated above,
this paper suggests a parallelisation method suitable for any type of parallel
environment. The implemented algorithm can be run on a single computer with
multi-core processor as well as on a cluster of such machines.

Keywords: item set mining; frequent items; frequent patterns; Eclat; parallel
Eclat; frequent item set mining; FIM.

Reference to this paper should be made as follows: Anupama, C.G. and
Lakshmi, C. (2023) ‘Approaches to parallelise Eclat algorithm and analysing its
performance for K length prefix-based equivalence classes’, Int. J. Business
Intelligence and Data Mining, Vol. 22, Nos. 1/2, pp.34–48.

Biographical notes: C.G. Anupama holds a Postgraduate in Software
Engineering and currently pursuing her PhD in Computer Science and
Engineering. She is currently working as an Assistant Professor in the
Department of Computational Intelligence, School of Computing, SRMIST,
Tamil Nadu, India with 10+ years of experience and 1+ year industry
experience on software automation testing. Her research interest includes data
mining, big data, software engineering, software testing, artificial intelligence
and machine learning.

C. Lakshmi holds a PhD in Computer Science and Engineering from the SRM
University and a Professor in Department of Computational Intelligence,
School of Computing, SRM Institute of Science and Technology. Her main
area of research interest includes pattern recognition, image processing,
machine learning and web services. She is a life time member of the Indian

 Approaches to parallelise Eclat algorithm and analysing its performance 35

Society for Technical Education (ISTE), International Association of Computer
Science and Information Technology, Singapore and International Association
of Engineers – IAENG, Hong Kong. She has published several papers in
well-known peer-reviewed journals.

1 Introduction

In the transformation process converting the raw data into considerable and substantial
information to make the raw data useful, the vital element is the pattern. Though the
method was initially developed to discover the interesting patterns for market basket
analysis, later was extended to the tasks of discovering the regularities, interesting
correlations, frequent pattern, hidden patterns, useful and understandable patterns
between the variables of various other applications. Transforming raw data into
knowledge is a process that becomes particularly significant for the organisations that
make every effort to understand the behaviour of their customers. The transformation
process assist the organisation to build a resilient economic benefit over their peers by
proposing an improved and an exclusive personalised experience to the customers, which
can both lead to retaining the customer-base and increased profit. The pattern denotes any
type of consistency and uniformity, thus considered to be an earnest descriptor of crucial
and vital properties of the data (Han et al., 2016; Robu et al., 2019). Many frequent item
set algorithms have been recommended since the first approach was coined at the
beginning of the 1990s (Agrawal et al., 1993). In the first approach, a level wise breadth
first search (BFS) methodology was used to produce candidate item sets whose frequent
count was calculated by scanning the dataset numerous times which is one for each size
of the candidate item sets. The algorithms such as FP-growth (Han et al., 2000) and Eclat
(Zaki, 2020), were later put forth which was based on the depth-first search (DFS)
method where input dataset is represented based on the prefix-tree-based memory
similarly known as vertical rearrangement of the dataset to work on a given transaction
dataset. To date, many effective algorithms are available in the literature for resolving
issues pertained to increased time complexity, memory requirements and search space
pruning, related to frequent item sets. In many instances, the algorithms are appropriate
enough for facing the complications (Aggarwal and Han, 2014) Nevertheless, as a
concern related to large volumes of information that has to be analysed in the era of big
data, traditional tactics have laid the practicalities aimed at innovative methodologies
built on parallel programming environments bearing in mind both shared and distributed
memory (Moens et al., 2013). To improve the performance and to handle parallel
programming environment, several techniques for improvising the performance of
parallel processing for partitioning the database is described in this paper. Measurements
on performance on the different parallelised algorithms furthermore allowed us to find
some bottlenecks and limitations, which can be circumvented in incorporating the new
methods to resolve the same problem.

 36 C.G. Anupama and C. Lakshmi

2 Related work

In general, the algorithms for FIM can be categorised into three main classifications that
is pattern growth, join and tree-based (Aggarwal et al., 2014). While the join-based
algorithms employ the bottom-up approach to find frequent items in a given dataset and
raise them into larger item sets satisfying the minimum threshold value set by the user,
set-enumeration concepts are incorporated by tree-based algorithms to solve the problems
of frequent item set generation through building a lexicographic tree that mine the item
sets either using the breadth-first or depth-first. The divide-and-conquer method to
partition the databases and then developing them into extended ones in the databases is
instrumented in the pattern growth algorithms (Robu et al., 2019).

While apriori, frequent pattern growth and Eclat have been the popular categories
used in frequent item set mining (FIM) algorithms they also suffer from certain
shortcomings. The apriori algorithm a join-based method uses horizontal data structure
for storage and generates a large number of candidate item sets, thus resulting in multiple
scans to the transactional database leading to high cost, memory usage and increased
runtime. FP tree being a pattern growth algorithm though reduces the running time by
constructing the FP tree and scanning the database only twice it becomes more
cumbersome, difficult to build, expensive and difficult to fit in the shared memory when
the database is large (Liao, 2015; Vijayarani and Sharmila, 2017). On the contrary Eclat,
the tree-based algorithm key features uses a vertical database format associating each
item set with a list a transactions where it appears, enumerates simple tied list
intersections thus reducing the scans to the database to only once. Further using a lattice
approach to decompose the search space into sub lattices and use prefix-based partition
method enables processing to be performed independently in the main memory (Zaki,
2020). As quantity of the data remains to surge, Eclat also has problems such as time
consuming intersection calculation, wider search space, frequent joining operations,
larger memory utilisation, and with lowered mining efficiency in the process of mining
frequent item sets (Zhang and Pei, 2016). With the data increasing in bulks in the fields
of marketing as well in the fields of marketing, demand to maintain and improve the
execution time, processing power, higher availability greater flexibility, and hence
applications where task can be performed concurrently, share resources and able to
synchronise the parallel data mining algorithms is suitable, however the issues related to
structuring the tasks and preserving their sequence has always be an challenge (Moattar
and Taharozi, 2018). This has attracted the researches to target parallel approaches to
solve the problem of the era of big data. Among the different algorithms available apriori
and Eclat has always proved to have a larger potential to apply the parallelisation
schemes and hence become a major research interest among the practitioners.

The very first simple solution to parallelise the FIM algorithm was to incorporate
multithread architectures. Though the support count was easy to be computed by
distributing the data among the nodes (processors), memory requirements placed a
concern that had to be solved (Moens et al., 2013). The apriori algorithm was first and
foremost implemented on the multithread architecture (Zaki et al., 1997) where new level
candidate sets were calculated by dividing the original dataset into various segments
before analysing, later a different parallel version which could dynamically incorporate
new item sets was coined, since nodes can calculate the support of potential frequent item
sets, as they get further results from the other nodes, and make adjustments (Cheung
et al., 1998). Later multiple local frequent pattern tree algorithms (parallel FP-growth)

 Approaches to parallelise Eclat algorithm and analysing its performance 37

was proposed which distributed the work among the processors unbiasedly (Zaïane et al.,
2001). While GPUs were gaining interest, several novel GPU-based approaches were put
forth, which had an advantage of speed and optical cost comparing with traditional
parallel systems. In the year 2010, apriori-based GPU-FIM was proposed (Zhou et al.,
2010) later which was extended to FP growth (Teodoro et al., 2010) as it outperformed
the apriori like approaches (Han et al., 2016). Lastly, GPUs were employed to speed up
the calculation of support count in FIM which always gave higher performance (Cano
et al., 2013) irrespective of the amount of data records which overcame the complications
of most time consuming phases (Ventura and Luna, 2016).

Nevertheless, multithread solutions suffer from memory requirements due to shared
memory and hence are not scalable enough to apply to big FIM. Thus, distributed
computing solutions have also been looked into where parallel programming
architectures of both distributed memory and shared computing approaches the FIM
applications for distributed systems are surveyed on. The MapReduce framework (Dean
and Ghemawat, 2008) and Spark-based framework (Feng and Pan, 2019) was extensively
incorporated by many researchers, eases the programming method for distributed data
processing. In the later advancements, the MapReduce framework was presented to
process data in parallel as small portions in distributed clusters (Dean and Ghemawat,
2008). The first FIM proposed was a version of the FP-growth algorithm, called PFP (Li
et al., 2008), targeted on the distributed machines. Later many initial adaptations on
single pass counting, fixed passes combined counting, dynamic passes counting of apriori
on framework of MapReduce (Lin et al., 2012), but in 2008 truly efficient MapReduce
algorithms for DistECLAT and BigFIM based on ECLAT algorithm and the in
combination with apriori was coined (Moens et al., 2013). Progressively novel
MapReduce methods for FIM were to cope up with the problems related to
communication overhead, workload skewness and the intermediate data (Luna et al.,
2018; Chon and Kim, 2018). However all these MapReduce, Spark frameworks
suggestions appears to be new, it is significant to note that the important enhancements
carried out are resultant from the architecture novelty than being breakthroughs in terms
related to algorithm. The author suggested a Spark Parallel Eclat (SPEclat), a parallel
Eclat algorithm based on Spark framework (Feng and Pan, 2019) which enhanced the
data storage techniques to reduce the size of candidate sets. The data was grouped
bestowing to the prefix that is used to split into different computing nodes to search space
for compressed data. Though the method successfully partitions the data into multiple
clusters in view of improving the processing, it can be further optimised by considering
load on each individual cluster while partitioning computing nodes thereby reducing the
data skew. RDD Eclat the different approaches to parallelise Eclat algorithm for Spark
RDD framework was designed with various variants and different datasets was presented
but was limited to 1 length-based prefixed method and improvements based on load
balancing and better heuristics for equivalent class clustering was looked into (Singh
et al., 2020). Looking at the diverse platforms, the interest of the researchers has focused
on developing parallel algorithms targeting the data mining programming models. The
current focus aims at parallelising the Eclat algorithms by applying various optimisation
methods at different stages. Numerous parallel implementations of the Eclat algorithm
have been developed for both shared memory and message-passing programming models
(Chee et al., 2018; Zhang and Pei, 2016; Zaki et al., 1997; Cheung et al., 1998; Zaïane
et al., 2001; Zhou et al., 2010; Dean and Ghemawat, 2008; Feng and Pan, 2019; Li et al.,

 38 C.G. Anupama and C. Lakshmi

2008; Lin et al., 2012; Luna et al., 2018; Chon and Kim, 2018; Singh et al., 2020;
Subbulakshmi and Deisy, 2018; Bhuvaneswari and Muneeswaran, 2021; Sjarif et al.,
2021). The article is organised as follows: firstly, the preliminaries of FIM and the Eclat
algorithm is presented. Next, our approach to parallelise bottom up Eclat algorithm using
the python library is discussed. Then, some enhancements and conclusions on using the
various heuristics are considered. The last part contains the result of our experiments and
discussions.

3 Problem statement and preliminaries

Discovering frequent item sets has always been a crucial problem in data mining research
and database applications. This problem is articulated as follows: specified a transaction
database which is a set of transactions, discover all the frequent item sets where a
frequent item set is one that occurs in at least a user-specified number or percentage of
transactions, which means, its support is no less than the threshold otherwise known as
minimum support. Eclat employs a upright database format, equivalence class clustering
and bottom up lattice traversal which is explained in Figure 1 and the algorithm as
proposed by Zaki (2020) is given in Figure 1 and the pictorial representation of horizontal
transactional database converted to vertical representation in Tables 1 and 2, and
calculating the candidate frequent items-based bottom up lattice-based tree traversal in
Figure 2 and the resultant frequent item sets in Figure 3.
Figure 1 Bottom up Eclat algorithm (see online version for colours)

Algorithm: Eclat Bottom Up Approach
Input: The transaction database (T) consisting of transactions (t1, t2, t3 …. tn) and
corresponding itemsets I where I = (i1, i2, i3 ,… in)
Output: Frequent Itemsets Fi
Convert Horizontal database to Vertical database
Call BottomUP(ECk)
Start Loop

ECk = {Null}
Start Loop

Iij = Ii U Ij
T(Iij) = T(Ii) n T(Ij)
If Condition: | Iij | >= min_sup{

Eck + 1 = Eck + 1 U Iij
LECk = LECk U Aij;

}
End Loop

If Condition: Eck +1! = null
Call BottomUP(ECk+1)

End Loop
Return LECk

Source: Zaki (2020)

FIM is a prevalent technique for deciding enthralling relations between sets of items in
large databases. It forms the foundation of many applications, which perform people
behaviour analysis, market prediction (Sjarif et al., 2021) or biological structures
analysis. Diverse implementation of sequential algorithms has been proposed in view of

 Approaches to parallelise Eclat algorithm and analysing its performance 39

finding the frequent item sets which are both efficient and optimised. Most of them show
some capabilities of parallel processing and should be evaluated while running them on
many computational nodes. Due increase in the volume of data which has to processed by
mining algorithm has impose a greater challenge in parallelisation of those
implementation towards optimising the performance across multiple computation units.
Though variety of frameworks like Hadoop, Spark, MapReduces ease the parallel process
there is always a need for a parallelisation methods suitable for any type of parallel
environment.
Table 1 Transactional dataset

Transaction ID (TID) Items
A 1, 4, 5
B 1, 2, 3
C 2, 3, 5
D 1, 2, 5
E 1, 2, 3, 4, 5
F 3, 4, 5

Table 2 Vertical transition representation

Item sets TID
1 A, B, D, E
2 B, C, D, E
3 B, D, E, F
4 A, E, F
5 A, C, D, E, F

Figure 2 Bottom up tree traversal (see online version for colours)

 40 C.G. Anupama and C. Lakshmi

Figure 3 Frequent item sets

Minimum support = 3 (50%)

Frequent 1

Item set

1, 2, 3, 4, 5

Frequent 2
Item set

(1, 2), (1, 5), (2, 3), (2, 5), (3, 5),
(4, 5)

The approach discussed in the work showcases improvisation in performance towards
parallelising the work across the different computing nodes which can adopted to all
modern environment which supports parallelism by using techniques of default
parallelism and hash partitioning. The implemented algorithm can be run on a single
computer with multi-core processor as well as on a cluster of such machines. After
examining the performance of the proposed methodology in efforts towards parallelised
even though show great improvement, but still possess some challenges and weakness,
which can be compromised by incorporating modern techniques to optimisation and load
balancing approach.

4 Proposed work

RDD Eclat, the different approaches to parallelising Eclat algorithm in the form of
variants were proposed for Spark RDD framework (Singh et al., 2020). In the Eclat
variant the frequent item sets were calculated for a prefix length of 1, by partitioning the
database using default parallelism that is equivalent to the number of computing units and
later the dataset is partitioned using hash partitioner where the number of partitions was
supplied by the user. The key observations were that the results were explored only for
one length prefix-based equivalence classes and hence the proposed work has been based
on discovering the results for k ≥ 2 prefix-based equivalent classes as while applying the
transaction filtering technique. The detailed algorithm is given below where the first step
is to convert the horizontal database to vertical dataset and stored using hashmap data
structure. The transaction filtering is applied before partitioning the database to avoid
duplicate item sets and thus eliminating the duplicates before calculating the frequent
item sets. In default parallelism the partitions are made based on k – 1, where k is the
number of item sets, while this has the disadvantage of non-availability of required
number of partitions and also the load balancing issues, while the hash partition reduces
this overhead as the number of partitions can be set by the user and a hash function is
applied on the values corresponding to the prefix of the equivalence classes which returns
the remainder as the partition ID which significantly reduces the execution time.

//Converting horizontal database to vertical data
Input: the transaction database
Read the input file
Create results set and initialise the counter
For each row in transactions
 Strip and split the items based on the delimiter

 Approaches to parallelise Eclat algorithm and analysing its performance 41

 For each item in row
 Check if item is in the result set
 Add to the transactions
 Else
 Create a new item in result set
 Update the transaction
 End loop
//Frequent item set extraction: default parallelism
Extract the key from the result set
For each item in keys
 Create a process and map item, suffix list, vertical dataset, result
 Update result in file
 Process creation:
 For each suffix in list // suffix of the current item
 Compute the intersection of transaction id, suffix item
 Compare the resultant is greater than or equal to minimum support
 If resultant is not empty && suffix is of length one
 Update the result with intersection set
 Else
 Compare the prefix of two keys (key[:–1] == suff[:–1])
 Compute the new key
 Update the new key & intersection set in result
 End loop
 Repeat for K + 1, K + 2, K + 3 … till null frequent items
End loop
//Frequent item set extraction: hash partitioning
Extract the key from the result set
#create number of partition
hash_bin = [], partition = n
#parse the dataset for each key from the itemset
for each key, value from itemset;
 #using each value of the key compute the hash and assign to the corresponding bin
 for each v in value:
 compute the hash value(h)
 if h not in hash_bin.keys():
 hash_bin[h] = [key]
 else:
 hash_bin[h].append(key)
#for each bin create separate process and compute the frequent itemset and update
for each h in hash_bin:

 42 C.G. Anupama and C. Lakshmi

 Create a process for each bin
 Update result in file
#for each suffix of the current item computes the common transaction and updates the result.
Process creation:
 For each suffix in list // suffix of the current Item
 Compute the intersection of transaction id, suffix item
 Compare the resultant is greater than or equal to minimum support
 If resultant is not empty && suffix is of length one
 Update the result with intersection set
 Else
 Compare the prefix of two keys (key[:–1] == suff[:–1])
 Compute the new key
 Update the new key & intersection set in result
 End loop
 Repeat for K + 1, K + 2, K + 3… till null frequent items
End loop

5 Experimental results

The source code of all the algorithms is written in Python. The different datasets used to
conduct experiments are as follows: BMS_WebView-1 (Fournier-Viger et al., 2016) is a
dataset of KDD CUP 2000 and contains a clickstream data from an e-commerce
application. It has long sequences with more than 20 items which consist of real life
clickstream data of an e-commerce. The total transactions sum up to 59,602, with
497 items and an average transaction width of 2.5. BMS_WebView_2 (Fournier-Viger
et al., 2016) consists of real life clickstream data of an e-commerce with a total
transaction count of 77,512 with 3,340 items and an average transaction width of 5. The
results were also explored for the synthetic dataset (Frequent Itemet Mining Dataset
Repository, http://fimi.ua.ac.be/data) T10I4D100K and T40I10D100K each of 1 lakh
transactions and items counting to 870 of average transaction width 10, 1,000 of average
transaction width 40.

5.1 Processing time with respect to varied support count

Figures 4(a)–4(d) compares the execution time of the proposed algorithms while applying
the partition heuristics of default parallelism and hash partition, in addition to applying
transaction filtering and sorting the frequent sets. On all the datasets mentioned above the
execution time difference between them becomes lesser with increased value of
minimum support, and there is a notable reduction in time with respect to applying the
hash partitioning heuristics for partitioning the equivalent classes.

 Approaches to parallelise Eclat algorithm and analysing its performance 43

Figure 4 (a) Execution time of variants on dataset BMS_WebView_1 (b) Execution time of
variants on dataset BMS_WebView_2 (c) Execution time of variants on dataset
T10I4D100K (d) Execution time of variants on dataset T40I10D100K (see online
version for colours)

(a)

(b)

(c)

 44 C.G. Anupama and C. Lakshmi

Figure 4 (a) Execution time of variants on dataset BMS_WebView_1 (b) Execution time of
variants on dataset BMS_WebView_2 (c) Execution time of variants on dataset
T10I4D100K (d) Execution time of variants on dataset T40I10D100K (see online
version for colours)

(d)

Figure 5 (a) Execution time for k length prefixes where k ≥ 2 on dataset BMS_WebView_1
(b) Execution time for k length prefixes where k ≥ 2 on dataset BMS_WebView_1
(see online version for colours)

(a)

(b)

 Approaches to parallelise Eclat algorithm and analysing its performance 45

5.2 Execution time on k length prefixes where k ≥ 2

The proposed éclat variants are also applied for k ≥ 2 prefix-based equivalence classes
and the results are compared based on the execution time of the algorithm of all variants
which is plotted in Figures 5(a)–5(b) where we can clearly see that the hash partitioned
heuristics continue to perform better compared to other variants of default partition.

5.3 Execution time variations with increase in the number of transactions

The results were also compared for k-length prefixes where k ≥ 2 for different datasets
(Fournier-Viger et al., 2016) and shown in Figure 6 which indicates that by applying the
hash partitioning the execution time can be significantly reduced when implement for
k ≥ 2.

Figure 6 Execution time variations for k ≥ 2 prefix-based equivalence classes (see online version
for colours)

5.4 Discussion

The Eclat algorithm for Spark framework (Singh et al., 2020) is redesigned to suit any
parallel environment which is developed using python by following the heuristics of
default parallelism and hash partitioning. In default parallelism the partitions are made
based on k – 1, where k is the number of item sets, while this has the disadvantage of
non-availability of required number of partitions and also the load balancing issues. By
considering the limitations, the proposed approach partition the dataset using hashing
approaches where the number partitions can be specified by the user which is either
equivalent to computing units or random specified one. Hash partitioning is carried out
by applying the hashing function to all the values corresponding to the prefix of
equivalence which is supplied as the partition ID. The transaction filtering has been
applied for both the heuristics which constantly reduces the execution time as the number
of duplicates that could be generated otherwise is eliminated at every level and shows
good results as it is applied for k ≥ 2 prefix. Further by sorting the infrequent item sets at

 46 C.G. Anupama and C. Lakshmi

every level will make sure that the non-beneficial item sets are eliminated at early stage
and thus contributes to reduced combinations.

6 Conclusions and future work

The Eclat algorithm was redesigned for the distributed computing environment using
Python which can be run without any complicated or specialised frameworks. The key
contribution here is developing the hash partitioned algorithm using python for the
distributed environments that can be used to apply for k-length prefixes where k ≥ 2. We
can also note that both the techniques of default parallelism where the equivalent classes
were clustered based on K – 1, where k is the number of item sets and hash partitioning
was applied and also verified with transaction filtering and with and without sorting
infrequent items at every level. The algorithm has performed well and significantly
reduces the execution time. The results were explored for 8 cores and the observation
after analysing the performance has been presented. The performance can further be
improved by either increasing the number of cores as well increasing the number of
partitions specified by the user. The results are explored only for the ecommerce
application and can be explored for other real time applications. The limitations of hash
partitioning to improve the performance and also to generate more balanced distribution
of equivalence classes will be the addressed in the future work.

References
Aggarwal, C.C. and Han, J. (2014) Frequent Pattern Mining, Springer International Publishing,

Basel, Switzerland.
Aggarwal, C.C., Bhuiyan, M.A. and Hasan, M.A. (2014) ‘Frequent pattern mining algorithms:

a survey’, in Aggarwal, C.C. and Han, J. (Eds.): Frequent Pattern Mining, pp.19–64, Springer,
Basel.

Agrawal, R., Imielinski, T. and Swami, A.N. (1993) ‘Mining association rules between sets of
items in large databases’, in Proceedings of the 1993 ACM SIGMOD International Conference
on Management of Data (ICDM ‘93), Washington, DC, pp.207–216.

Bhuvaneswari, M.S. and Muneeswaran, K. (2021) ‘A parallel approach for web session
identification to make recommendations efficient’, International Journal of Business
Intelligence and Data Mining, Vol. 19, No. 2, pp.189–213.

Cano, A., Luna, J.M. and Ventura, S. (2013) ‘High performance evaluation of evolutionary-mined
association rules on GPUs’, The Journal of Supercomputing, Vol. 66, No. 3, pp.1438–1461.

Chee, C.H., Jaafar, J., Aziz, I.A. et al. (2019) ‘Algorithms for frequent itemset mining: a literature
review’, Artif. Intell. Rev., Vol. 52, pp.2603–2621 [online] https://doi.org/10.1007/s10462-
018-9629-z.

Cheung, D.W., Hu, K. and Xia, S. (1998) ‘Asynchronous parallel algorithm for mining association
rules on a shared-memory multi-processors’, in Proceedings of the 10th Annual ACM
Symposium on Parallel Algorithms and Architectures (SPAA ‘98), Puerto Vallarta, Mexico,
pp.279–288.

Chon, K. and Kim, M. (2018) ‘Bigminer: a fast and scalable distributed frequent pattern miner for
big data’, Cluster Computing, Vol. 21, No. 3, pp.1507–1520.

Dean, J. and Ghemawat, S. (2008) ‘MapReduce: simplified data processing on large clusters’,
Communications of the ACM, Vol. 51, No. 1, pp.107–113.

 Approaches to parallelise Eclat algorithm and analysing its performance 47

Feng, X.J. and Pan, X. (2019) ‘Parallel Eclat algorithm based on Spark’, Applied Computer
Research, Vol. 36, pp.18–21.

Fournier-Viger, P., Lin, C.W., Gomariz, A., Gueniche, T., Soltani, A., Deng, Z. and Lam, H.T.
(2016) ‘The SPMF Open-source data mining library version 2’, in 19th European Conference
on Principles of Data Mining and Knowledge Discovery (PKDD 2016) Part III, LNCS 9853,
Springer, pp.36–40.

Frequent Itemet Mining Dataset Repository [online] http://fimi.ua.ac.be/data.
Han, J., Kamber, M. and Pei, J. (2016) Data Mining Concept and Technique, 3rd ed., Morgan

Kaufmann Publishers, imprint of Elsevier, 225 Wyman Street, Waltham, MA 02451, USA.
Han, J., Pei, J. and Yin, Y. (2000) ‘Mining frequent patterns without candidate generation’,

SIGMOD Record, Vol. 29, No. 2, pp.1–12.
Li, H., Wang, Y., Zhang, D., Zhang, M. and Chang, E.Y (2008) ‘Pfp: parallel FP-growth for query

recommendation’, in Proceedings of the 2008 ACM Conference on Recommender Systems
(RecSys ‘08), Lausanne, Switzerland, pp.107–114.

Liao, Y. (2015) Research and Improvement of Association Rules Mining Based on Directed
Graphs, Southeast University.

Lin, M-Y., Lee, P.Y. and Hsueh, S-C. (2012) ‘Apriori-based frequent item set mining algorithms
on MapReduce’, in Proceedings of the 6th International Conference on Ubiquitous
Information Management and Communication (ICUIMC ‘12), Kuala Lumpur, Malaysia,
pp.1–8.

Luna, J.M., Padillo, F., Pechenizkiy, M. and Ventura, S. (2018) ‘Apriori versions based on
MapReduce for mining frequent patterns on big data’, IEEE Transactions on Cybernetics,
Vol. 48, No. 10, pp.2851–2865.

Moattar, M.H. and Taharozi, M. (2018) ‘Parallel processing for data mining and data analysis
applications’, Journal of Engineering and Applied Sciences, Vol. 13, No. 5, pp.1228–1234.

Moens, S., Aksehirli, E. and Goethals, B. (2013) ‘Frequent item set mining for big data’,
in Proceedings of the 2013 IEEE International Conference on Big Data, Santa Clara, CA,
pp.111–118.

Robu, V. and Duarte dos Santos, V. (2019) ‘Mining frequent patterns in data using apriori and
Eclat: a comparison of the algorithm performance and association rule generation’,
6th International Conference on Systems and Informatics, IEEE.

Singh, P., Singh, S., Mishra, P.K. and Garg, R. (2020) ‘RDD-Eclat: approaches to parallelize
Eclat algorithm on Spark RDD framework’, Lecture Notes on Data Engineering and
Communications Technologies book series (LNDECT), January, Vol. 44.

Sjarif, N.N.A., Azmi, N.F.M., Yuhaniz, S.S. and Wong, D.H-T. (2021) ‘A review of market basket
analysis on business intelligence and data mining’, International Journal of Business
Intelligence and Data Mining, Vol. 18, No. 3, pp.383–394.

Subbulakshmi, B. and Deisy, C. 2018) ‘An improved incremental algorithm for mining weighted
class-association rules’, International Journal of Business Intelligence and Data Mining,
Vol. 13, Nos. 1/2/3, pp.291–308.

Teodoro, G., Mariano, N., Meira Jr., W. and Ferreira, R. (2010) ‘Tree projection-based frequent
item set mining on multicore CPUs and GPUs’, in Proceedings of the 22nd International
Symposium on Computer Architecture and High Performance Computing, pp.47–54.

Ventura, S. and Luna, J.M. (2016) Pattern Mining with Evolutionary Algorithms, Springer
International Publishing, Basel, Switzerland.

Vijayarani, S. and Sharmila, S. (2017) ‘Comparative analysis of association rule mining
algorithms’, International Conference on Inventive Computation Technologies, IEEE, pp.1–6.

Zaïane, O.R., El-Hajj, M. and Lu, P. (2001) ‘Fast parallel association rule mining without
candidacy generation’, in Proceedings of the 2001 IEEE International Conference on Data
Mining (ICDM ‘01), San Jose, CA, pp.665–668.

 48 C.G. Anupama and C. Lakshmi

Zaki, M.J. (2020) ‘Scalable algorithms for association mining’, IEEE Transactions on Knowledge
and Data Engineering, June, Vol. 12, No. 3, pp.372–390.

Zaki, M.J., Parthasarathy, S., Ogihara, M. and Li, W. (1997) ‘Parallel algorithms for discovery of
association rules’, Data Mining and Knowledge Discovery, Vol. 1, No. 4, pp.343–373.

Zhang, C. and Pei, L. (2016) ‘Research and application of improved Eclat algorithm based on
MapReduce’, Journal of Beijing Jiaotong University: Natural Science Edition, Vol. 40, No. 3,
pp.1–6.

Zhou, J., Yu, K. and Wu, B. (2010) ‘Parallel frequent patterns mining algorithm on GPU’,
in Proceedings of the 2010 IEEE International Conference on Systems, Man and Cybernetics,
Istanbul, Turkey, pp.435–440.

