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Abstract: Class imbalance is a known problem that exists in real-world 
applications, which consists of disparity in the existence of sample counts of 
different classes that results in biased performance. The class imbalance issue 
has been catered by many sampling techniques which may either fall into an 
oversampling approach that solves issues to a greater extent or under sampling. 
MAHAKIL is a diversity-based oversampling approach influenced by the 
theory of inheritance, in which minority samples are synthesised in view of 
balancing the class using Mahalanobis distance measure. In this study the 
performance of MAHAKIL algorithm has been tested using various ensemble 
classifiers which are proved to be effective due to its multi hypothesis learning 
approach and better performance. The results of the experiment conducted on 
20 imbalanced software defect prediction datasets using six different ensemble 
approaches showcase XGBoost provides better performance and reduced false 
alarm rate compared to other models. 

Keywords: class imbalance; software fault prediction; synthetic samples; over 
sampling techniques; MAHAKIL; false alarm rate; evolutionary algorithm; 
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1 Introduction 

Predictive analytics is a type of data analytics aimed at prediction of future events or 
unknown events given with current data or historical data using machine learning models. 
Software defect prediction (SDP) is kind of predictive analytics (Rathore and Kumar, 
2019; Song et al., 2011) which primarily focus on the likelihood prediction of faulty 
modules among the given set of components based on the underlying characteristics of a 
software modules (Wang and Yao, 2013; Menzies et al., 2007). SDP models use various 
quantitative metrics calculated across the software modules as an input towards 
predicting the defective ones. As stated by Pareto principle 80% of the defects is due to 
20% of the problem, if we can predict those 20 predict of the component then we cater 
the efforts of testing towards those components which in turn minimise the cost and 
efforts required for testing activity. Software metrics has high correlation towards the 
quality of the software component (Shatnawi and Li, 2008; Shatnawi et al., 2006). 
Various studies have been carried out to understand the relationship between the software 
metrics (Kitchenham, 2010; Hall et al., 2012) and defects in which metrics proposed by 
Chidamber and Kemerer’s object oriented (CK OO) (Li and Henry, 1996; Tang et al., 
1999; Chidamber et al., 1998), McCabe, Halstead, static code, process, code change, 
representative process, and other metrics were analysed towards its impact in identify the 
defective modules. Studies concluded that object oriented, and process metrics have high 
probability in identifying the fault prone modules. Performance of the SDP is hindered 
due to the imbalance nature of the fault prediction dataset. Class imbalance is classical 
machine problem that exists in many real-world applications such as rare disease 
prediction, fraudulent transaction identification, Spam detection, intrusion detection, 
anomaly detection and so on (Joshi et al., 2001; Nazir, 2009; Bikku et al., 2019). Due to 
intrinsic nature of the software component the defect prediction dataset also falls into the 
imbalance category where only few faulty instances available compared to the number of 
non-faulty instances (Kubat and Matwin, 1997; Laurikkala, 2011; Arun and Lakshmi, 
2020). Machine learning models assume the class of data are equally balance in case of 
inequality the result will be biased towards majority class i.e., non-defective ones. 
Because of the imbalance nature of SDP dataset (NASA Data Repository, 
http://mdp.ivv.nasa.gov; PROMISE Data Repository http://openscience.us/repo/; 
Software Defect Datasets, https://ieee-dataport.org/), the conventional machine learning 
models are biased towards the majority classes which results in higher false alarm rate. 
Ensemble techniques attempt to improve the performance of prediction model by 
combining several base classifier models to provide an optimum prediction model. 
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2 Related works 

SDP models aims to predict the fault prone components of software module using their 
underlying characteristics (Rathore and Kumar, 2019; Song et al., 2011). Prediction 
model is trained using those properties of the software components which contain the 
fault information of those components too. Early detection of faulty components helps 
the quality assurance teams to streamline their efforts which in turn minimise the cost, 
time and effort of testing activities there by enhance the quality of software. 

Figure 1 depict the generalised software fault prediction process which comprises of 
three major components are: metrics dataset, performance model and evaluation 
(Kitchenham, 2010; Li and Henry, 1993). Software fault dataset is constructed by 
collecting information related to faults from various sources such as repositories, change 
logs, bug tracking module and so on (Tang et al., 1999). Once the fault information 
extracted the values for various software metrics on component level, process, project 
level is extracted. Collected data is given to pre-processing module to handle data 
inconsistency and other issues related to data. Prep-processed data is partitioned into 
training and testing set and provided to the prediction model. The prediction model is 
mode of statistical and machine learning techniques which understand the characteristics 
from the training model and perform prediction on the testing data. Finally, the 
performance of the prediction model is evaluated using various statistical measures. 

Figure 1 Generic software prediction process (see online version for colours) 

 

Performance of the prediction model depends on the quality and quantity of the dataset. 
Performance of the SDP is hindered by the class imbalance issue which exists in the SDP 
dataset (Provost, 2000). Generally, the number of faulty components in the software 
component is very minimal compare to the non-faulty one which creates an imbalance in 
the dataset. Hence the outcome of the prediction model biased towards the non-faulty 
components, even though the prediction model provides higher accuracy the class level 
accuracy with respect the faulty components is low which proved to be ineffective 
prediction model (Nazir, 2019). Henceforth numerous techniques have been proposed to 
counter the class imbalance issue. Class imbalance issues have been sorted out by 
proposing many techniques which are mainly classified into three categories:  
sampling-based, algorithmic-based and hybrid approach (Rathore and Kumar, 2019). 

Sampling-based approach works on the data level which tries to create a balance 
between the classes using two major techniques namely over sampling and under 
sampling. Over sampling approach balance the dataset by synthesising the minority 
samples using various statistical methods or by averaging the two nearest data points of 
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minority class. Oversampling approaches such as ROS (Rathore and Kumar, 2019), 
SMOTE (Chawla et al., 2002), B-SMOTE (Han et al., 2005), ADASYN (He et al., 2008), 
and variations of SMOTE (Barua et al., 2014). ROS approach tries to balance the dataset 
by randomly replicating the samples of minority class till the desired level of balance 
reach because of duplication it suffers from the overfitting issue. SMOTE (Chawla et al., 
2002) synthesis the minority samples by identifying the nearest neighbour of a minority 
sample and drawing a line between them and pick points along the lines. B-SMOTE (Han 
et al., 2005) synthesis samples using the minority samples which lies on the boundary and 
are difficult to classify. 

Under sampling techniques on the other create desired balance in the dataset by 
removing samples from the majority class iteratively. The sample are removed either 
randomly or the sample which is either noisy or safe to discard are identified and 
eliminated. Oversampling results in overfitting on the other hand undersampling suffers 
from loss of information. Kubat and Matwin proposed an undersampling techniques by 
combining Tomek link and CNN (Vergin Raja Sarobin et al., 2021; Reghukumar et al., 
2021) approach to identify samples to be discarded. Laurikkala proposed an 
undersampling which computes three nearest neighbour for each sample, and discard the 
sample if three neighbours are minority and sample consider is from majority class. 

Algorithm-based approach creates the balance between the class by modifying the 
learner’s algorithm instead of altering data. Algorithmic level approach based on 
techniques such as decision tree, SVM, Bayesian have been proposed to alleviate the 
bias. SVM method modifies the kernel function by increasing the cost of misclassifies are 
entities which are difficult to classify. Finally, hybrid approach which combines both data 
and algorithmic level to counter the imbalance issues. Hybrid technique such as boosting, 
bagging, SMOTE+Tomek (Rathore and Kumar, 2019), SOME+ENN (Rathore and 
Kumar, 2019) alleviate the imbalance issue by either stacking multiple learners or 
combing the performance average of multiple parallel runs or combing the oversampling 
and undersampling techniques. 

The primary oversampling approaches such as ROS, RUS were able to generate a 
required number of samples, but fails to perform better when predicting the faulty 
components. Random oversampling approach generates synthetic sample by duplicating 
the existing minority sample, due to which algorithm suffers in over generalisation 
problem while predicting the faulty ones. Similarly, the random undersampling algorithm 
balance the dataset by eliminating some of the samples from minority class which results 
in loss of information which leads to overfitting while performing the prediction process. 
In this study, we attempt to analyse the performance of MAHAKIL algorithm with 
different oversampling approaches, since this algorithm generate diverse sample which 
helps in alleviating the class imbalance issue also reduce the possibility of  
over-generalisation and over fitting. 

3 Material and method 

20 benchmark SDP datasets (NASA Data Repository, http://mdp.ivv.nasa.gov; 
PROMISE Data Repository http://openscience.us/repo/; Software Defect Datasets, 
https://ieee-dataport.org/) obtained from various repositories such as promise, NASA, and 
IEEE Dataport Repositories have been used to construct the experiment which suffers 
from the class imbalance issue largely. Imbalance ratio of the dataset varies from 6 
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percentile to 27 percentage. The quality of a software component is measure with respect 
to various characteristics by using different class of metrics such as code metrics, process 
metrics, project metrics, change code metrics, CK metrics and so on. There were about 84 
different such kind metrics are in use in the software development. Based on the studies 
conducted by Chidamber et al. (1998), Li and Henry (1993), Ohlsson et al. (1998), Tang 
et al (1999), Glasberg et al. (1999), Shatnawi et al. (2006), Kpodjedo et al. (2009), 
Radjenovic et al. (2013), Rathore and Gupta (2012), its observed CK and OO (Tang  
et al., 1999) are highly aligned towards fault prediction efficiency. Hence those metrics 
are primarily considered for the fault prediction model. 

Metrics are the quality indicators which defines the quality of a software component 
and the process used (Sutton, 1903; Ohlsson et al., 1998; NASA Data Repository, 
http://mdp.ivv.nasa.gov; PROMISE Data Repository http://openscience.us/repo/). Dataset 
contains the value for these software metrics which is calculated across class, modules 
code metrics (Table 1) of the projects that are written in Java. Table 1 provides the 
description of the various static code metrics that represented in the datasets. The bug 
represent the status of defects, if it contains the defect the numbers of defect found in the 
module is mentioned else zero is mentioned. A summary of the datasets (Table 2), 
including the name and its release version, number of modules, number of non-defects, 
number of defects and percentage of defective samples. 
Table 1 Details of static code metrics 

Abbreviation Description 
WMC Weighted method per class 
DIT Depth of inheritance tree 
NOC Number of children 
CBO Coupling between objects classes 
RFC Response for a class 
LCOM Lack of cohesion in methods 
CA Afferent coupling 
CE Efferent coupling 
NPM Number of public methods 
LCOM3 Lack of cohesion in methods, differ from LCOM 
LOC Lines of code 
DAM Data access metrics 
MOA Measure of aggregation 
MFA Measure of functional abstraction 
CAM Cohesion among methods of class 
IC Inheritance coupling 
CBM Coupling between methods 
AMC Average methods complexity 
MAX_CC Maximum value of CC methods of Investigate class 
AVG_CC Arithmetic mean of the CC value in the Investigate class 
DEFECTS Counts of bugs detected in the class 
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Table 2 Summary of the 20 imbalanced datasets from promise repository 

S. no. Dataset # modules # defective # n-defective Defects (%) 
1 ant-1.3 125 20 105 0.160 
2 ant-1.4 178 40 138 0.225 
3 ant-1.5 293 32 261 0.109 
4 ant-1.6 351 92 259 0.262 
5 arc 234 27 207 0.115 
6 camel-1.4 875 145 730 0.166 
7 camel-1.6 965 188 777 0.195 
8 ivy-1.4 241 16 225 0.066 
9 ivy-2.0 352 40 312 0.114 
10 jedit-4.0 306 75 231 0.245 
11 jedit-4.1 312 79 233 0.253 
12 jedit-4.2 367 48 319 0.131 
13 log4j-1.0 135 34 101 0.252 
14 pbeans2 51 10 41 0.196 
15 readktor 176 27 149 0.153 
16 Synapse-1.0 157 16 141 0.102 
17 systemdata 65 9 56 0.138 
18 tomcat 858 77 781 0.090 
19 xerces-1.2 440 71 369 0.161 
20 xerces-1.3 453 69 384 0.152 

Performance of the prediction model have been evaluated using various statistical metrics 
such as accuracy, precision, recall, AUC, ROC, FPR, FNR, sensitivity, F-score and false 
alarm rate (Rathore and Kumar, 2019). These metrics are calculated based on the values 
of confusion matrix which is presented in Table 3. The performance of the conventional 
techniques is assessed by accuracy metric, but the SDP doesn’t fit into that because of 
class imbalance issue which results in poor fault prediction efficiency. Hence metrics 
such as recall, precision, F-score and false alarm rate considered to validate the model. 
Recall (pd) is the measure tells the module contained fault is classified correctly. False 
alarm rate (pf) is the measure where non-faulty modules are wrongly classified as faulty 
one which ultimately over compensate the process of fault prediction (Buckland and Gey, 
1994; Joshi et al., 2001). Hence the ideal measure to evaluate the performance are 
defined in equations (1), (2), (3) and (4). 

( )Recall(pd) TP TP FN= +  (1) 

( )Precision TP TP FN= +  (2) 

( )F-score(F1) 2* (Recall Precision) (Recall Precision)= ∗ +  (3) 

( )False alarm(pf) FP TP FN= +  (4) 
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Table 3 Confusion matrix 

 Predicted positive Predicted negative 
Positive TP FN 
Negative FP TN 

4 Experiment setup 

This section discusses the details of experimental setup which includes different 
ensemble-based algorithms consider for the study of MAHAKIL performance using 
different levels of balancing used to predict the faulty components using source code 
metrics. 

4.1 Experiment design 

Objective of the work is to provide a comparative study of the ensemble learning model 
combined with over sampling approach called MAHAKIL proposed by Ebo Bennin et al 
(2017). MAHAKIL was inspired from the theory of inheritance by Walter Sutton and 
Theodor Boveri (Sutton, 1903) which synthesis new generation samples by obtaining the 
traits from both parents. MAHAKIL introduce synthetic samples using diversity-based 
measure called MD. Mahalanobis (1936) proposed the distance metric which computes 
the diversity of the sample towards its distribution. The Minority samples are separated 
from the majority and the MD is calculated for each minority sample and the dataset is 
divided into two bins (c1, c2) based on the distance value. c1 contain the samples with 
value less than the midpoint and c2 contain the sample with value greater than midpoint 
and the sample in each bin are labelled. The synthetic samples introduced by computing 
the average of the samples with same label in each bin. The process repeated till the 
required balance attained. Performance of the MAHAKIL oversampling testing is 
evaluated using traditional machine learning models such as C4.5, NNET, KNN, SVM 
and RF (Ebo Bennin et al., 2017). Its observer that RF and KNN with MAHAKIL 
outperform all other models but, still there is room for improvement in terms of false 
alarm rate. 

4.2 Algorithms 

Ensemble techniques are known to provide better accuracy compared to traditional 
models, so in this work we attempt to evaluate the performance of MAHAKIL using five 
XGBoost, gradient boosting, ada boosting, bagging classifier, and LightGBM classifier 
model which is depict in Figure 2. Ensemble classifier is an attempt to improve the 
performance of the learning by training the sample with multiple base classifiers and 
average the performance across them. For computing the final prediction performance 
generally two methods adopted are: bagging and boosting. 

Bagging perform classification by dividing the training set into multiple bins and 
perform classification on each bin parallelly and compute the average in order to obtain 
the final result. Boosting model uses the weak learner models sequentially and tends 
increase the cost of weak learner or adjusting the weights of the samples which are 
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difficult to predict. Also, in some cases stacking applied where the dataset is parallelly 
trained using heterogenous models and combine the accuracy of all model to obtain the 
final result. 

Figure 2 Experimental setup (see online version for colours) 

 

4.2.1 AdaBoost 
AdaBoost refers to adaptive boosting ensemble model designed for binary classification 
which performs prediction using multiple iteration to create a strong learner. Weak 
learner is tweaked in favour of instance which are misclassified or difficult to classify in 
previous iteration. In each phase of training, a new weak learner is added to the ensemble, 
and a weighting vector is adjusted to emphasis on instances that were misclassified in 
previous rounds. 

4.2.2 Gradient boosting 
Gradient boosting is ensemble model which try to increase the prediction performance of 
the model by adding a new predictor in view of correcting the predecessor. Initial 
prediction starts with base learner with equal weights and model with false prediction is 
identified and prediction is assigned to learner with higher weightage. 

4.2.3 XGBoost 
XGBoost is a decision tree-based ensemble technique where each regression tree maps an 
input sample to one of its leaf’s that contains a continuous score. XGBoost improves the 
performance of the prediction by adding loss function to computer difference in 
prediction outcome and penalty term by adding weights to misclassified instances. The 
process continues iteratively to make final prediction by adding new tress. 
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4.2.4 LightGBM 
LightGBM is a boosting model based on tree learning algorithm which grows vertically 
i.e., leaf-wife or breadth first approach. In which the leaf with large loss or difficult in 
prediction is allowed to grow, hence loss can be lowered. 

4.2.5 Bagging classifier 
A bagging classifier is an ensemble meta-estimator base model in which random subset 
of original dataset is obtained and fir to the base classifier model. The final outcome is 
obtained by aggregating the results of base classifier either by voting or averaging 
method and arrive at the final outcome. 

4.3 Construction of ensemble learner 

The dataset obtained from the repositories often contain noisy, incomplete and 
inconsistent which is given to the pre-processing model for data cleaning. Cleaned data is 
given as input to the oversampling module which balance the dataset by synthesising 
minority samples using MAHAKIL approach in multi fold fashion. The balancing 
approach has been adopted with three different variations of 30, 40 and 50 percentage, 
since the highest level of balancing existing in the original dataset was 26 percentage and 
maximum balance to obtain is 50 percentage. Balanced dataset in partitioned into training 
and test dataset and training dataset was given as input to the Ensemble learning 
framework which learns from the input sample and the model performance is verified by 
validating the model using testing dataset. In order to analyse the performance of the 
selected ensemble algorithms, precision, F-score, and false alarm rate are used as 
evaluation criteria and all experiments were tested using a five-fold cross validation 
strategy. 

5 Result and discussion 

Experiment is conducted using MAHAKIL algorithm along with five prominent 
ensemble model to study the performance of MAHAKIL with ensemble model also the 
performance of MAHAKIL algorithm with traditional classifier models such as naive 
Bayesian and decision tree. The major concern with the SDP is false alarm rate due 
which the efforts catered towards QA activities is wasted. Based on the percentage of 
balancing and the variation in the sample count, we have picked five different datasets to 
showcase the performance of MAHAKIL when integrated with ensemble models. All the 
ensemble techniques and MAHAKIL algorithm is implemented using python libraries 
such as scikit-learn, lightgbm, and XGBoost. Table 4 show the precision, f-measure and 
false alarm scores generated from five learners with different level of balancing. 
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Table 4 Precision, F-score and false alarm of five ensemble model with various balancing 
levels 
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Table 4 Precision, F-score and false alarm of five ensemble model with various balancing 
levels (continued) 
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Figure 3 (a) Precision score comparison (b) F1-score measure comparison (c) False alarm rate 
comparison (see online version for colours) 
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From Table 4 its evident the ensemble model performs better with increasing in the level 
of balancing on an average the accuracy of all the ensemble models is greater than 80%, 
since the data is imbalance in nature accuracy measure doesn’t suits the model hence 
precision, f-score and false alarm rate is considered. From the results it’s evident that 
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amount and quality of data plays a major role in defining the performance of the 
prediction model, since the performance increase with increase with amount of balancing 
percentage. Models provides better performance when the dataset balanced at 100% i.e., 
each class contain 50% of entries. 

Performance of ensemble model is better compared with traditional classification 
models. Figures 3(a), 3(b), and 3(c) shows the average performance of ensemble model 
with respect to three different performance measures such as precision, f-score and false 
alarm. The results indicate the XGBoost and bagging classifier provides better 
performance when compare with other ensemble model for SDP dataset. From the 
experimental study its evident that XGBoost performs better compare to other models. 

Since ensemble model is combination of diverse set of learners which tries to 
optimise the performance of predictions. During learning process, the model performs 
high has been preferred over other in subsequent learning process i.e., the method which 
fails to classify the data accurately in the next level data passed on to the model which 
performs better and hence overall accuracy increases. Also, ensemble model employs 
drift and different weighing policies for the data or model which is difficult to classify. 

XGBoost is tree-based model which add more and more tree sequentially when there 
is a residual error or when model perform poor, hence overall accuracy improved thereby 
reducing the overfit. Hence it’s evident from the results that XGBoost algorithm 
outperforms other ensemble and traditional classification models. 

6 Conclusions and future work 

In this paper, a comparative study of MAHAKIL algorithm using different ensemble 
algorithm with three different percentage of balancing level is carried out. All the 
experiments were conducted on 20 different SDP benchmark dataset obtained from 
various repositories which aids in finding the best ensemble model in the case of SDP. 
The performance of the experimental setup was compared and analysed based on 
precision, F1-score and false alarm rate measure. MAHAKIL algorithm with ensemble 
models provides better performance when compared traditional machine learning models. 
The results projected for five different datasets with varied level of balancing from 
minimum to highest level balancing that exists. Even though obtained better performance 
but, still room for improvement in the case of false alarm rate is greater concern. The 
performance of the model can be improved by fine tuning the parameters of learner 
model to getter better results, since model is trained with default settings. In future the 
work can be extended to compare the performance of ensemble model with deep learning 
model in view of reduced false alarm rate. 
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