

International Journal of Business Intelligence and Data
Mining

ISSN online: 1743-8195 - ISSN print: 1743-8187
https://www.inderscience.com/ijbidm

Performance evaluation of oversampling algorithm: MAHAKIL
using ensemble classifiers

C. Arun, C. Lakshmi

DOI: 10.1504/IJBIDM.2022.10043149

Article History:
Received: 26 August 2021
Accepted: 17 September 2021
Published online: 30 November 2022

Powered by TCPDF (www.tcpdf.org)

Copyright © 2023 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijbidm
https://dx.doi.org/10.1504/IJBIDM.2022.10043149
http://www.tcpdf.org

 Int. J. Business Intelligence and Data Mining, Vol. 22, Nos. 1/2, 2023 1

 Copyright © 2023 Inderscience Enterprises Ltd.

Performance evaluation of oversampling algorithm:
MAHAKIL using ensemble classifiers

C. Arun*
Department of Computational Intelligence,
School of Computing, SRMIST,
Chennai, Tamil Nadu, India
Email: arunc@srmist.edu.in
*Corresponding author

C. Lakshmi
School of Computing,
SRM Institute of Science and Technology, India
Email: lakshmic@srmist.edu.in

Abstract: Class imbalance is a known problem that exists in real-world
applications, which consists of disparity in the existence of sample counts of
different classes that results in biased performance. The class imbalance issue
has been catered by many sampling techniques which may either fall into an
oversampling approach that solves issues to a greater extent or under sampling.
MAHAKIL is a diversity-based oversampling approach influenced by the
theory of inheritance, in which minority samples are synthesised in view of
balancing the class using Mahalanobis distance measure. In this study the
performance of MAHAKIL algorithm has been tested using various ensemble
classifiers which are proved to be effective due to its multi hypothesis learning
approach and better performance. The results of the experiment conducted on
20 imbalanced software defect prediction datasets using six different ensemble
approaches showcase XGBoost provides better performance and reduced false
alarm rate compared to other models.

Keywords: class imbalance; software fault prediction; synthetic samples; over
sampling techniques; MAHAKIL; false alarm rate; evolutionary algorithm;
ensemble; inheritance.

Reference to this paper should be made as follows: Arun, C. and Lakshmi, C.
(2023) ‘Performance evaluation of oversampling algorithm: MAHAKIL using
ensemble classifiers’, Int. J. Business Intelligence and Data Mining, Vol. 22,
Nos. 1/2, pp.1–15.

Biographical notes: C. Arun received his BTech in Information Technology
and ME in Software Engineering and currently pursuing his PhD. He is
currently working as an Assistant Professor in SRM Institute of Science and
Technology, India having more than ten years of experience and one year
industry experience. His research interest includes software testing, software
architecture, quality analysis, and machine learning.

C. Lakshmi holds a PhD in Computer Science and Engineering from SRM
University and is a Professor in the Department of Computational Intelligence,
School of Computing, SRM Institute of Science and Technology. Her main
area of research interest includes pattern recognition, image processing,

 2 C. Arun and C. Lakshmi

machine learning and web services. She is a Life Time member of the Indian
Society for Technical Education (ISTE), International Association of Computer
Science and Information Technology, Singapore and International Association
of Engineers-IAENG, Hong Kong. She has published several papers in
well-known peer-reviewed journals.

1 Introduction

Predictive analytics is a type of data analytics aimed at prediction of future events or
unknown events given with current data or historical data using machine learning models.
Software defect prediction (SDP) is kind of predictive analytics (Rathore and Kumar,
2019; Song et al., 2011) which primarily focus on the likelihood prediction of faulty
modules among the given set of components based on the underlying characteristics of a
software modules (Wang and Yao, 2013; Menzies et al., 2007). SDP models use various
quantitative metrics calculated across the software modules as an input towards
predicting the defective ones. As stated by Pareto principle 80% of the defects is due to
20% of the problem, if we can predict those 20 predict of the component then we cater
the efforts of testing towards those components which in turn minimise the cost and
efforts required for testing activity. Software metrics has high correlation towards the
quality of the software component (Shatnawi and Li, 2008; Shatnawi et al., 2006).
Various studies have been carried out to understand the relationship between the software
metrics (Kitchenham, 2010; Hall et al., 2012) and defects in which metrics proposed by
Chidamber and Kemerer’s object oriented (CK OO) (Li and Henry, 1996; Tang et al.,
1999; Chidamber et al., 1998), McCabe, Halstead, static code, process, code change,
representative process, and other metrics were analysed towards its impact in identify the
defective modules. Studies concluded that object oriented, and process metrics have high
probability in identifying the fault prone modules. Performance of the SDP is hindered
due to the imbalance nature of the fault prediction dataset. Class imbalance is classical
machine problem that exists in many real-world applications such as rare disease
prediction, fraudulent transaction identification, Spam detection, intrusion detection,
anomaly detection and so on (Joshi et al., 2001; Nazir, 2009; Bikku et al., 2019). Due to
intrinsic nature of the software component the defect prediction dataset also falls into the
imbalance category where only few faulty instances available compared to the number of
non-faulty instances (Kubat and Matwin, 1997; Laurikkala, 2011; Arun and Lakshmi,
2020). Machine learning models assume the class of data are equally balance in case of
inequality the result will be biased towards majority class i.e., non-defective ones.
Because of the imbalance nature of SDP dataset (NASA Data Repository,
http://mdp.ivv.nasa.gov; PROMISE Data Repository http://openscience.us/repo/;
Software Defect Datasets, https://ieee-dataport.org/), the conventional machine learning
models are biased towards the majority classes which results in higher false alarm rate.
Ensemble techniques attempt to improve the performance of prediction model by
combining several base classifier models to provide an optimum prediction model.

 Performance evaluation of oversampling algorithm 3

2 Related works

SDP models aims to predict the fault prone components of software module using their
underlying characteristics (Rathore and Kumar, 2019; Song et al., 2011). Prediction
model is trained using those properties of the software components which contain the
fault information of those components too. Early detection of faulty components helps
the quality assurance teams to streamline their efforts which in turn minimise the cost,
time and effort of testing activities there by enhance the quality of software.

Figure 1 depict the generalised software fault prediction process which comprises of
three major components are: metrics dataset, performance model and evaluation
(Kitchenham, 2010; Li and Henry, 1993). Software fault dataset is constructed by
collecting information related to faults from various sources such as repositories, change
logs, bug tracking module and so on (Tang et al., 1999). Once the fault information
extracted the values for various software metrics on component level, process, project
level is extracted. Collected data is given to pre-processing module to handle data
inconsistency and other issues related to data. Prep-processed data is partitioned into
training and testing set and provided to the prediction model. The prediction model is
mode of statistical and machine learning techniques which understand the characteristics
from the training model and perform prediction on the testing data. Finally, the
performance of the prediction model is evaluated using various statistical measures.

Figure 1 Generic software prediction process (see online version for colours)

Performance of the prediction model depends on the quality and quantity of the dataset.
Performance of the SDP is hindered by the class imbalance issue which exists in the SDP
dataset (Provost, 2000). Generally, the number of faulty components in the software
component is very minimal compare to the non-faulty one which creates an imbalance in
the dataset. Hence the outcome of the prediction model biased towards the non-faulty
components, even though the prediction model provides higher accuracy the class level
accuracy with respect the faulty components is low which proved to be ineffective
prediction model (Nazir, 2019). Henceforth numerous techniques have been proposed to
counter the class imbalance issue. Class imbalance issues have been sorted out by
proposing many techniques which are mainly classified into three categories:
sampling-based, algorithmic-based and hybrid approach (Rathore and Kumar, 2019).

Sampling-based approach works on the data level which tries to create a balance
between the classes using two major techniques namely over sampling and under
sampling. Over sampling approach balance the dataset by synthesising the minority
samples using various statistical methods or by averaging the two nearest data points of

 4 C. Arun and C. Lakshmi

minority class. Oversampling approaches such as ROS (Rathore and Kumar, 2019),
SMOTE (Chawla et al., 2002), B-SMOTE (Han et al., 2005), ADASYN (He et al., 2008),
and variations of SMOTE (Barua et al., 2014). ROS approach tries to balance the dataset
by randomly replicating the samples of minority class till the desired level of balance
reach because of duplication it suffers from the overfitting issue. SMOTE (Chawla et al.,
2002) synthesis the minority samples by identifying the nearest neighbour of a minority
sample and drawing a line between them and pick points along the lines. B-SMOTE (Han
et al., 2005) synthesis samples using the minority samples which lies on the boundary and
are difficult to classify.

Under sampling techniques on the other create desired balance in the dataset by
removing samples from the majority class iteratively. The sample are removed either
randomly or the sample which is either noisy or safe to discard are identified and
eliminated. Oversampling results in overfitting on the other hand undersampling suffers
from loss of information. Kubat and Matwin proposed an undersampling techniques by
combining Tomek link and CNN (Vergin Raja Sarobin et al., 2021; Reghukumar et al.,
2021) approach to identify samples to be discarded. Laurikkala proposed an
undersampling which computes three nearest neighbour for each sample, and discard the
sample if three neighbours are minority and sample consider is from majority class.

Algorithm-based approach creates the balance between the class by modifying the
learner’s algorithm instead of altering data. Algorithmic level approach based on
techniques such as decision tree, SVM, Bayesian have been proposed to alleviate the
bias. SVM method modifies the kernel function by increasing the cost of misclassifies are
entities which are difficult to classify. Finally, hybrid approach which combines both data
and algorithmic level to counter the imbalance issues. Hybrid technique such as boosting,
bagging, SMOTE+Tomek (Rathore and Kumar, 2019), SOME+ENN (Rathore and
Kumar, 2019) alleviate the imbalance issue by either stacking multiple learners or
combing the performance average of multiple parallel runs or combing the oversampling
and undersampling techniques.

The primary oversampling approaches such as ROS, RUS were able to generate a
required number of samples, but fails to perform better when predicting the faulty
components. Random oversampling approach generates synthetic sample by duplicating
the existing minority sample, due to which algorithm suffers in over generalisation
problem while predicting the faulty ones. Similarly, the random undersampling algorithm
balance the dataset by eliminating some of the samples from minority class which results
in loss of information which leads to overfitting while performing the prediction process.
In this study, we attempt to analyse the performance of MAHAKIL algorithm with
different oversampling approaches, since this algorithm generate diverse sample which
helps in alleviating the class imbalance issue also reduce the possibility of
over-generalisation and over fitting.

3 Material and method

20 benchmark SDP datasets (NASA Data Repository, http://mdp.ivv.nasa.gov;
PROMISE Data Repository http://openscience.us/repo/; Software Defect Datasets,
https://ieee-dataport.org/) obtained from various repositories such as promise, NASA, and
IEEE Dataport Repositories have been used to construct the experiment which suffers
from the class imbalance issue largely. Imbalance ratio of the dataset varies from 6

 Performance evaluation of oversampling algorithm 5

percentile to 27 percentage. The quality of a software component is measure with respect
to various characteristics by using different class of metrics such as code metrics, process
metrics, project metrics, change code metrics, CK metrics and so on. There were about 84
different such kind metrics are in use in the software development. Based on the studies
conducted by Chidamber et al. (1998), Li and Henry (1993), Ohlsson et al. (1998), Tang
et al (1999), Glasberg et al. (1999), Shatnawi et al. (2006), Kpodjedo et al. (2009),
Radjenovic et al. (2013), Rathore and Gupta (2012), its observed CK and OO (Tang
et al., 1999) are highly aligned towards fault prediction efficiency. Hence those metrics
are primarily considered for the fault prediction model.

Metrics are the quality indicators which defines the quality of a software component
and the process used (Sutton, 1903; Ohlsson et al., 1998; NASA Data Repository,
http://mdp.ivv.nasa.gov; PROMISE Data Repository http://openscience.us/repo/). Dataset
contains the value for these software metrics which is calculated across class, modules
code metrics (Table 1) of the projects that are written in Java. Table 1 provides the
description of the various static code metrics that represented in the datasets. The bug
represent the status of defects, if it contains the defect the numbers of defect found in the
module is mentioned else zero is mentioned. A summary of the datasets (Table 2),
including the name and its release version, number of modules, number of non-defects,
number of defects and percentage of defective samples.
Table 1 Details of static code metrics

Abbreviation Description
WMC Weighted method per class
DIT Depth of inheritance tree
NOC Number of children
CBO Coupling between objects classes
RFC Response for a class
LCOM Lack of cohesion in methods
CA Afferent coupling
CE Efferent coupling
NPM Number of public methods
LCOM3 Lack of cohesion in methods, differ from LCOM
LOC Lines of code
DAM Data access metrics
MOA Measure of aggregation
MFA Measure of functional abstraction
CAM Cohesion among methods of class
IC Inheritance coupling
CBM Coupling between methods
AMC Average methods complexity
MAX_CC Maximum value of CC methods of Investigate class
AVG_CC Arithmetic mean of the CC value in the Investigate class
DEFECTS Counts of bugs detected in the class

 6 C. Arun and C. Lakshmi

Table 2 Summary of the 20 imbalanced datasets from promise repository

S. no. Dataset # modules # defective # n-defective Defects (%)
1 ant-1.3 125 20 105 0.160
2 ant-1.4 178 40 138 0.225
3 ant-1.5 293 32 261 0.109
4 ant-1.6 351 92 259 0.262
5 arc 234 27 207 0.115
6 camel-1.4 875 145 730 0.166
7 camel-1.6 965 188 777 0.195
8 ivy-1.4 241 16 225 0.066
9 ivy-2.0 352 40 312 0.114
10 jedit-4.0 306 75 231 0.245
11 jedit-4.1 312 79 233 0.253
12 jedit-4.2 367 48 319 0.131
13 log4j-1.0 135 34 101 0.252
14 pbeans2 51 10 41 0.196
15 readktor 176 27 149 0.153
16 Synapse-1.0 157 16 141 0.102
17 systemdata 65 9 56 0.138
18 tomcat 858 77 781 0.090
19 xerces-1.2 440 71 369 0.161
20 xerces-1.3 453 69 384 0.152

Performance of the prediction model have been evaluated using various statistical metrics
such as accuracy, precision, recall, AUC, ROC, FPR, FNR, sensitivity, F-score and false
alarm rate (Rathore and Kumar, 2019). These metrics are calculated based on the values
of confusion matrix which is presented in Table 3. The performance of the conventional
techniques is assessed by accuracy metric, but the SDP doesn’t fit into that because of
class imbalance issue which results in poor fault prediction efficiency. Hence metrics
such as recall, precision, F-score and false alarm rate considered to validate the model.
Recall (pd) is the measure tells the module contained fault is classified correctly. False
alarm rate (pf) is the measure where non-faulty modules are wrongly classified as faulty
one which ultimately over compensate the process of fault prediction (Buckland and Gey,
1994; Joshi et al., 2001). Hence the ideal measure to evaluate the performance are
defined in equations (1), (2), (3) and (4).

()Recall(pd) TP TP FN= + (1)

()Precision TP TP FN= + (2)

()F-score(F1) 2* (Recall Precision) (Recall Precision)= ∗ + (3)

()False alarm(pf) FP TP FN= + (4)

 Performance evaluation of oversampling algorithm 7

Table 3 Confusion matrix

 Predicted positive Predicted negative
Positive TP FN
Negative FP TN

4 Experiment setup

This section discusses the details of experimental setup which includes different
ensemble-based algorithms consider for the study of MAHAKIL performance using
different levels of balancing used to predict the faulty components using source code
metrics.

4.1 Experiment design

Objective of the work is to provide a comparative study of the ensemble learning model
combined with over sampling approach called MAHAKIL proposed by Ebo Bennin et al
(2017). MAHAKIL was inspired from the theory of inheritance by Walter Sutton and
Theodor Boveri (Sutton, 1903) which synthesis new generation samples by obtaining the
traits from both parents. MAHAKIL introduce synthetic samples using diversity-based
measure called MD. Mahalanobis (1936) proposed the distance metric which computes
the diversity of the sample towards its distribution. The Minority samples are separated
from the majority and the MD is calculated for each minority sample and the dataset is
divided into two bins (c1, c2) based on the distance value. c1 contain the samples with
value less than the midpoint and c2 contain the sample with value greater than midpoint
and the sample in each bin are labelled. The synthetic samples introduced by computing
the average of the samples with same label in each bin. The process repeated till the
required balance attained. Performance of the MAHAKIL oversampling testing is
evaluated using traditional machine learning models such as C4.5, NNET, KNN, SVM
and RF (Ebo Bennin et al., 2017). Its observer that RF and KNN with MAHAKIL
outperform all other models but, still there is room for improvement in terms of false
alarm rate.

4.2 Algorithms

Ensemble techniques are known to provide better accuracy compared to traditional
models, so in this work we attempt to evaluate the performance of MAHAKIL using five
XGBoost, gradient boosting, ada boosting, bagging classifier, and LightGBM classifier
model which is depict in Figure 2. Ensemble classifier is an attempt to improve the
performance of the learning by training the sample with multiple base classifiers and
average the performance across them. For computing the final prediction performance
generally two methods adopted are: bagging and boosting.

Bagging perform classification by dividing the training set into multiple bins and
perform classification on each bin parallelly and compute the average in order to obtain
the final result. Boosting model uses the weak learner models sequentially and tends
increase the cost of weak learner or adjusting the weights of the samples which are

 8 C. Arun and C. Lakshmi

difficult to predict. Also, in some cases stacking applied where the dataset is parallelly
trained using heterogenous models and combine the accuracy of all model to obtain the
final result.

Figure 2 Experimental setup (see online version for colours)

4.2.1 AdaBoost
AdaBoost refers to adaptive boosting ensemble model designed for binary classification
which performs prediction using multiple iteration to create a strong learner. Weak
learner is tweaked in favour of instance which are misclassified or difficult to classify in
previous iteration. In each phase of training, a new weak learner is added to the ensemble,
and a weighting vector is adjusted to emphasis on instances that were misclassified in
previous rounds.

4.2.2 Gradient boosting
Gradient boosting is ensemble model which try to increase the prediction performance of
the model by adding a new predictor in view of correcting the predecessor. Initial
prediction starts with base learner with equal weights and model with false prediction is
identified and prediction is assigned to learner with higher weightage.

4.2.3 XGBoost
XGBoost is a decision tree-based ensemble technique where each regression tree maps an
input sample to one of its leaf’s that contains a continuous score. XGBoost improves the
performance of the prediction by adding loss function to computer difference in
prediction outcome and penalty term by adding weights to misclassified instances. The
process continues iteratively to make final prediction by adding new tress.

 Performance evaluation of oversampling algorithm 9

4.2.4 LightGBM
LightGBM is a boosting model based on tree learning algorithm which grows vertically
i.e., leaf-wife or breadth first approach. In which the leaf with large loss or difficult in
prediction is allowed to grow, hence loss can be lowered.

4.2.5 Bagging classifier
A bagging classifier is an ensemble meta-estimator base model in which random subset
of original dataset is obtained and fir to the base classifier model. The final outcome is
obtained by aggregating the results of base classifier either by voting or averaging
method and arrive at the final outcome.

4.3 Construction of ensemble learner

The dataset obtained from the repositories often contain noisy, incomplete and
inconsistent which is given to the pre-processing model for data cleaning. Cleaned data is
given as input to the oversampling module which balance the dataset by synthesising
minority samples using MAHAKIL approach in multi fold fashion. The balancing
approach has been adopted with three different variations of 30, 40 and 50 percentage,
since the highest level of balancing existing in the original dataset was 26 percentage and
maximum balance to obtain is 50 percentage. Balanced dataset in partitioned into training
and test dataset and training dataset was given as input to the Ensemble learning
framework which learns from the input sample and the model performance is verified by
validating the model using testing dataset. In order to analyse the performance of the
selected ensemble algorithms, precision, F-score, and false alarm rate are used as
evaluation criteria and all experiments were tested using a five-fold cross validation
strategy.

5 Result and discussion

Experiment is conducted using MAHAKIL algorithm along with five prominent
ensemble model to study the performance of MAHAKIL with ensemble model also the
performance of MAHAKIL algorithm with traditional classifier models such as naive
Bayesian and decision tree. The major concern with the SDP is false alarm rate due
which the efforts catered towards QA activities is wasted. Based on the percentage of
balancing and the variation in the sample count, we have picked five different datasets to
showcase the performance of MAHAKIL when integrated with ensemble models. All the
ensemble techniques and MAHAKIL algorithm is implemented using python libraries
such as scikit-learn, lightgbm, and XGBoost. Table 4 show the precision, f-measure and
false alarm scores generated from five learners with different level of balancing.

 10 C. Arun and C. Lakshmi

Table 4 Precision, F-score and false alarm of five ensemble model with various balancing
levels

%
 b

al
an

ce

30
 %

 b
al

an
ce

40
%

 b
al

an
ce

50
%

 b
al

an
ce

M
ea

su
re

s
Pr

ec
is

io
n

F_
sc

or
e

F_
al

ar
m

Pr
ec

is
io

n
F_

sc
or

e
F_

al
ar

m

Pr

ec
is

io
n

F_
sc

or
e

F_
al

ar
m

N
B

0.
38

9
0.

41
3

0.
10

3

0.
37

9
0.

41
3

0.
08

2

0.
37

2
0.

31
9

0.
09

0
D

T
0.

40
0

0.
44

4
0.

09
8

0.

40
0

0.
44

4
0.

07
8

0.

36
7

0.
37

1
0.

09
8

G
BC

0.

33
0

0.
28

6
0.

09
5

0.

33
3

0.
28

6
0.

09
5

0.

50
0

0.
50

0
0.

09
5

X
G

B
0.

65
0

0.
33

3
0.

04
8

0.

50
0

0.
33

3
0.

04
8

0.

50
0

0.
33

3
0.

04
8

LG
BM

0.

43
2

0.
34

1
0.

00
0

0.

58
7

0.
52

2
0.

07
7

0.

33
3

0.
28

6
0.

09
5

BC

0.
40

0
0.

30
2

0.
08

1

0.
39

0
0.

31
1

0.
07

6

0.
43

3
0.

34
8

0.
07

6

ant-1.3

A
BC

0.

51
2

0.
37

1
0.

04
8

0.

66
7

0.
57

1
0.

04
8

0.

66
7

0.
57

1
0.

04
8

N
B

0.
40

0
0.

20
5

0.
04

1

0.
40

0
0.

20
5

0.
04

1

0.
33

3
0.

11
4

0.
02

7
D

T
0.

14
8

0.
14

3
0.

14
4

0.

16
7

0.
15

4
0.

13
0

0.

26
7

0.
27

1
0.

15
1

G
BC

0.

62
5

0.
27

0
0.

02
1

0.

62
5

0.
27

0
0.

02
1

0.

50
0

0.
25

6
0.

03
4

X
G

B
0.

50
0

0.
12

1
0.

01
4

0.

50
0

0.
12

1
0.

01
4

0.

50
0

0.
12

1
0.

01
4

LG
BM

0.

47
6

0.
40

0
0.

07
5

0.

47
6

0.
40

0
0.

07
5

0.

37
5

0.
34

0
0.

10
3

BC

0.
37

0
0.

23
3

0.
05

8

0.
42

9
0.

27
0

0.
05

3

0.
42

5
0.

28
9

0.
06

0

Camel 1.4

A
BC

0.

41
7

0.
24

4
0.

04
8

0.

41
7

0.
24

4
0.

04
8

0.

40
0

0.
20

5
0.

04
1

N
B

0.
62

5
0.

62
5

0.
04

8

0.
50

0
0.

33
3

0.
03

2

0.
50

0
0.

33
3

0.
03

2
D

T
0.

27
3

0.
31

6
0.

09
5

0.

30
0

0.
33

3
0.

06
3

0.

40
0

0.
44

4
0.

09
5

G
BC

0.

62
0

0.
40

0
0.

03
8

0.

50
0

0.
50

0
0.

06
3

0.

50
0

0.
50

0
0.

06
3

X
G

B
0.

66
7

0.
57

1
0.

03
2

1.

00
0

0.
40

0
0.

00
0

0.

45
3

0.
40

0
0.

00
0

LG
BM

0.

25
0

0.
16

7
0.

04
8

0.

45
5

0.
52

6
0.

09
5

0.

45
5

0.
52

6
0.

09
5

BC

0.
64

6
0.

61
0

0.
04

3

0.
67

4
0.

56
2

0.
03

3

0.
67

1
0.

51
2

0.
03

3

Ivy 2.0

A
BC

0.

40
0

0.
44

4
0.

09
5

0.

44
4

0.
47

1
0.

07
9

0.

44
4

0.
47

1
0.

07
9

 Performance evaluation of oversampling algorithm 11

Table 4 Precision, F-score and false alarm of five ensemble model with various balancing
levels (continued)

%
 b

al
an

ce

30
 %

 b
al

an
ce

40
%

 b
al

an
ce

50
%

 b
al

an
ce

M
ea

su
re

s
Pr

ec
is

io
n

F_
sc

or
e

F_
al

ar
m

Pr
ec

is
io

n
F_

sc
or

e
F_

al
ar

m

Pr

ec
is

io
n

F_
sc

or
e

F_
al

ar
m

N
B

0.
33

3
0.

15
4

0.
09

1

0.
21

8
0.

21
4

0.
09

0

0.
31

7
0.

31
1

0.
08

6
D

T
0.

33
3

0.
31

6
0.

07
8

0.

28
6

0.
23

5
0.

07
8

0.

37
5

0.
33

3
0.

07
8

G
BC

0.

20
0

0.
13

3
0.

06
3

0.

33
3

0.
25

0
0.

06
3

0.

33
3

0.
25

0
0.

06
3

X
G

B

0.
71

4
0.

28
6

0.
03

1

0.
33

3
0.

15
4

0.
03

1

0.
33

3
0.

15
4

0.
03

1
LG

B
M

0.

51
6

0.
54

8
0.

37
3

0.

33
3

0.
25

0
0.

06
3

0.

33
3

0.
25

0
0.

06
3

BC

0.
27

8
0.

15
4

0.
04

1

0.
28

0
0.

19
3

0.
04

5

0.
31

9
0.

19
9

0.
05

2

Jedit 4.2

A
BC

0.

61
4

0.
58

8
0.

03
1

0.

50
0

0.
25

0
0.

07
8

0.

50
0

0.
50

0
0.

07
8

N
B

0.
12

5
0.

09
1

0.
09

1

0.
12

5
0.

48
3

0.
09

5

0.
16

7
0.

10
0

0.
06

5
D

T
0.

33
3

0.
34

5
0.

06
5

0.

40
0

0.
31

3
0.

16
9

0.

63
6

0.
56

0
0.

05
2

G
BC

0.

57
1

0.
38

1
0.

03
9

0.

57
1

0.
38

1
0.

03
9

0.

66
7

0.
52

2
0.

03
9

X
G

B

0.
57

1
0.

38
1

0.
03

9

0.
57

1
0.

38
1

0.
03

9

0.
57

1
0.

38
1

0.
03

9
LG

BM

0.
62

5
0.

45
5

0.
03

9

0.
62

5
0.

45
5

0.
03

9

0.
50

0
0.

46
2

0.
07

8
BC

0.

52
3

0.
34

4
0.

04
7

0.

52
0

0.
36

0
0.

04
8

0.

55
4

0.
34

4
0.

04
2

Xerces-1.3

A
BC

0.

42
9

0.
28

6
0.

05
2

0.

42
9

0.
28

6
0.

05
2

0.

33
3

0.
20

0
0.

05
2

 12 C. Arun and C. Lakshmi

Figure 3 (a) Precision score comparison (b) F1-score measure comparison (c) False alarm rate
comparison (see online version for colours)

(a)

(b)

(c)

From Table 4 its evident the ensemble model performs better with increasing in the level
of balancing on an average the accuracy of all the ensemble models is greater than 80%,
since the data is imbalance in nature accuracy measure doesn’t suits the model hence
precision, f-score and false alarm rate is considered. From the results it’s evident that

 Performance evaluation of oversampling algorithm 13

amount and quality of data plays a major role in defining the performance of the
prediction model, since the performance increase with increase with amount of balancing
percentage. Models provides better performance when the dataset balanced at 100% i.e.,
each class contain 50% of entries.

Performance of ensemble model is better compared with traditional classification
models. Figures 3(a), 3(b), and 3(c) shows the average performance of ensemble model
with respect to three different performance measures such as precision, f-score and false
alarm. The results indicate the XGBoost and bagging classifier provides better
performance when compare with other ensemble model for SDP dataset. From the
experimental study its evident that XGBoost performs better compare to other models.

Since ensemble model is combination of diverse set of learners which tries to
optimise the performance of predictions. During learning process, the model performs
high has been preferred over other in subsequent learning process i.e., the method which
fails to classify the data accurately in the next level data passed on to the model which
performs better and hence overall accuracy increases. Also, ensemble model employs
drift and different weighing policies for the data or model which is difficult to classify.

XGBoost is tree-based model which add more and more tree sequentially when there
is a residual error or when model perform poor, hence overall accuracy improved thereby
reducing the overfit. Hence it’s evident from the results that XGBoost algorithm
outperforms other ensemble and traditional classification models.

6 Conclusions and future work

In this paper, a comparative study of MAHAKIL algorithm using different ensemble
algorithm with three different percentage of balancing level is carried out. All the
experiments were conducted on 20 different SDP benchmark dataset obtained from
various repositories which aids in finding the best ensemble model in the case of SDP.
The performance of the experimental setup was compared and analysed based on
precision, F1-score and false alarm rate measure. MAHAKIL algorithm with ensemble
models provides better performance when compared traditional machine learning models.
The results projected for five different datasets with varied level of balancing from
minimum to highest level balancing that exists. Even though obtained better performance
but, still room for improvement in the case of false alarm rate is greater concern. The
performance of the model can be improved by fine tuning the parameters of learner
model to getter better results, since model is trained with default settings. In future the
work can be extended to compare the performance of ensemble model with deep learning
model in view of reduced false alarm rate.

References
Arun, C. and Lakshmi, C. (2020) ‘Class imbalance in software fault prediction data set’, in

Artificial Intelligence and Evolutionary Computations in Engineering Systems, Vol. 1056,
pp.745–757, Springer, Singapore.

Barua, S., Islam, M.M., Yao, X. and Murase, K. (2014) ‘MWMOTE – majority weighted minority
oversampling technique for imbalanced data set learning’, IEEE Trans. Knowledge and Data
Eng., February, Vol. 26, No. 2, pp.405–425.

 14 C. Arun and C. Lakshmi

Bikku, T., Sambasiva Rao, N. and Akepogu, A.R (2019) ‘A novel multi-class ensemble model
based on feature selection using Hadoop framework for classifying imbalanced biomedical
data’, International Journal of Business Intelligence and Data Mining (IJBIDM), December,
Vol. 14, Nos. 1/2, pp.25–39.

Buckland, M.K. and Gey, F.C. (1994) ‘The relationship between recall and precision’, J. Amer.
Soc. Inform. Sci., Vol. 45, No. 1, pp.12–19, 1994.

Chawla, N.V., Bowyer, K.W., Hall, L.O. and Kegelmeyer, W.P. (2002) ‘SMOTE: synthetic
minority over-sampling technique’, Journal of Artificial Intelligence Research, Vol. 16,
pp.321–357, https://doi.org/10.1613/jair.953.

Chidamber, S., Darcy, D. and Kemerer, C. (1998) ‘Managerial use of metrics for object oriented
software: an exploratory analysis’, IEEE Trans Softw. Eng., Vol. 24, No. 8, pp.629–639.

Ebo Bennin, K., Keung, J., Phannachitta, P., Monden, A. and Mensah, S. (2017) ‘MAHAKIL:
diversity based oversampling approach to alleviate the class imbalance issue in software defect
prediction’, IEEE Trans. Softw. Eng., Vol. 44, pp.534–550.

Glasberg, D., Emam, K.E., Melo, W. and Madhavji, N. (1999) Validating Object-oriented Design
Metrics on a Commercial Java Application, National Research Council Canada, Institute for
Information Technology, pp.99–106.

Hall, T., Beecham, S., Bowes, D., Gray, D. and Counsell, S. (2012) ‘A systematic review of fault
prediction performance in software engineering’, IEEE Trans Softw. Eng., Vol. 38, No. 6,
pp.1276–1304.

Han, H., Wang, W.Y. and Mao, B.H. (2005) ‘Borderline-smote: a new over-sampling method in
imbalanced data sets learning’, in Advances in Intelligent Computing, Vol. 3644, pp.878–887,
Springer-Verlag, Hefei, China.

He, H. et al. (2008) ‘Adasyn: adaptive synthetic sampling approach for imbalanced learning’, in
Proc. IEEE Int. Joint Conf. Neural Netw. IEEE World Congr. Comput. Intell., pp.1322–1328.

Joshi, M.V., Kumar, V. and Agarwal, R.C. (2001) ‘Evaluating boosting algorithms to classify rare
classes: comparison and improvements’, in Proc. IEEE Int. Conf. Data Mining, pp.257–264.

Kitchenham, B. (2010) ‘What’s up with software metrics? A preliminary mapping study’, J. Syst.
Softw., Vol. 83, No. 1, pp.37–51.

Kpodjedo, S., Ricca, F., Antoniol, G. and Galinier, P. (2009) ‘Evolution and search based metrics
to improve defects prediction’, in 2009 1st International Symposium on Search Based
Software Engineering, pp.23–32.

Kubat, M. and Matwin, S. (1997) ‘Addressing the curse of imbalanced training sets: one-sided
selection’, in Machine Learning-International Workshop then Conference, Nashville, TN,
USA, Morgan Kaufmann, pp. 179–186.

Laurikkala, J. (2011) ‘Improving identification of difficult small classes by balancing class
distribution’, Artificial Intelligence in Medicine, Vol. 2101, pp.63–66, Springer-Verlag,
Cascais, Portugal.

Li, W. and Henry, S. (1993) ‘Object-oriented metrics that predict maintainability’, J Syst. Softw.,
Vol. 23, No. 2, pp.111–122.

Li, W. and Henry, S. (1996) ‘A validation of object-oriented design metrics as quality indicators’,
IEEE Trans Softw Eng., Vol. 22, No. 10, pp.751–761.

Mahalanobis, P.C. (1936) ‘On the generalized distance in statistics’, Proc. Nat. Inst. Sci., Calcutta,
Vol. 2, pp.49–55.

Menzies, T., Greenwald, J. and Frank, A. (2007) ‘Data mining static code attributes to learn defect
predictors’, IEEE Trans. Softw. Eng., January, Vol. 33, No. 1, pp.2–13.

NASA Data Repository [online] http://promise.site.uottawa.ca/SERepository/datasets-page.html
(accessed 20 October 2021).

Nazir, A. (2019) ‘A critique of imbalanced data learning approaches for big data analytics’,
International Journal of Business Intelligence and Data Mining (IJBIDM), 11 April, Vol. 14,
No. 4, pp.419–457.

 Performance evaluation of oversampling algorithm 15

Ohlsson, N., Zhao, M. and Helander, M. (1998) ‘Application of multivariate analysis for software
fault prediction’, Softw Qual J., Vol. 7, No. 1, pp.51–66.

PROMISE Data Repository [online] Software-Defect-Prediction/Data/dataatmaster·
SinghJasmeet585/Software-Defect-Prediction·GitHub; https://www.kaggle.com/aczy156
/software-defect-prediction-nasa (accessed 20 October 2021).

Provost, F. (2000) ‘Machine learning from imbalanced data sets 101’, in Proc. AAAI’ Workshop
Imbalanced Data Sets, pp.1–3.

Radjenovic, D., Hericko, M., Torkar, R. and Zivkovic, A. (2013) ‘Software fault prediction
metrics: a systematic literature review’, Inf. Softw. Technol., Vol. 55, No. 8, pp.1397–1418.

Rathore, S. and Gupta, A. (2012) ‘Investigating object-oriented design metrics to predict fault-
proneness of software modules’, in 2012 CSI Sixth International Conference on Software
Engineering (CONSEG), pp.1–10.

Rathore, S.S. and Kumar, S. (2019) ‘A study on software fault prediction techniques’, Artif Intell
Rev, Vol. 51, No. 2, pp.255–327.

Reghukumar, A., Jani Anbarasi, L., Prassanna, J., Manikandan, R. and Al-Turjman, F. (2021)
‘Vision based segmentation and classification of cracks using deep neural networks’,
International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, Vol. 29,
Supp. 01, pp.141–156.

Shatnawi, R. and Li, W. (2008) ‘The effectiveness of software metrics in identifying error-prone
classes in post-release software evolution process’, J Syst Softw., November, Vol. 81, No. 11,
pp.1868–1882.

Shatnawi, R., Li, W. and Zhang, H. (2006) ‘Predicting error probability in the eclipse project’, in
Proceedings of the International Conference on Software Engineering Research and Practice,
pp.422–428.

Software Defect Datasets [online] https://ieee-dataport.org/ (accessed 20 October 2021).
Song, Q.m Jia, Z., Shepperd, M., Ying, S. and Liu, J. (2011) ‘A general software defect-proneness

prediction framework’, IEEE Trans. Softw. Eng., Vol. 37, No. 3, pp.356–370.
Sutton, W.S. (1903) ‘The chromosomes in heredity’, Biological Bulletin, Vol. 4, No. 5,

pp.231–250.
Tang, M., Kao, M.H. and Chen, M.H. (1999) ‘An empirical study on object oriented metrics’, in

Proceedings of the International Symposium on Software Metrics, pp.242–249.
Vergin Raja Sarobin, M., Jani Anbarasi, L., Prassanna, J., Manikandan, R. and Al-Turjman, F.

(2021) ‘Swarm intelligence-based optimal device deployment in heterogeneous internet of
things networks for wind farm application’, Int. J. Commun. Syst., 25 May, Vol. 34, No. 8,
p.e4779.

Wang, S. and Yao, X. (2013) ‘Using class imbalance learning for software defect prediction’, IEEE
Trans. Rel., June, Vol. 62, No. 2, pp.434–443.

