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Abstract: The globally linearising control (GLC) structure is adopted to
solve both the step tracking and disturbance rejection problems for distributed
parameter system described by a time-fractional partial differential equation.
The actuation is assumed to be distributed in the spatial domain while
the controlled output is defined as a spatial weighted average of the state.
First, following a similar reasoning to geometric control and based on the
late lumping approach, an infinite dimensional state feedback that yields
a fractional finite dimensional system in closed loop is developed. Then,
the input of this resulting closed-loop system is defined by means of a
robust controller to cope with step disturbances. Assuming that the output
shaping function is non-vanishing, on the spatial domain, it is demonstrated
that the GLC strategy is stable. Two applications examples are presented to
show, through simulation runs, the stabilisation, step tracking and disturbance
rejection capabilities of the GLC scheme.
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1 Introduction

The dynamical behaviour of distributed parameter systems (DPSs) can be described by
two important classes of partial differential equations (PDEs): integer PDEs (IPDEs)
and fractional or non-integer PDEs (FPDEs). The IPDEs and FPDEs are used to
describe more accurately DPSs, which are characterised by normal and anomalous
transport phenomena, respectively (Ray, 1989; Christofides, 2001b; Klages et al.,
2008; Evangelista and Lenzi, 2018). The IPDEs involve derivative operators of
integer order of the variable of interest, while FPDEs involve derivative operators of
fractional (non-integer) order. Fractional derivative operators are non-local and they
yield interesting information on the complex behaviour of some physical phenomena,
which cannot be captured using derivatives of integer order (Terasov and Tarasova,
2020; Klages et al., 2008; Evangelista and Lenzi, 2018; Kesarkar and Selvaganesan,
2013; Khadhraoui and Jelassi, 2017; Nataraj and Kalla, 2010; Pourhashemi et al., 2019).
Three types of FPDEs are distinguished: time FPDE (TFPDE) where the fractional
derivative is only with respect to time, space FPDE (SFPDE) where the fractional
derivative is only with respect to space and time-space FPDE (TSFPDE) where two
fractional derivatives are present with respect to time and space. Nowadays, it has turned
out that many physical, chemical, thermal, biological and other real-world systems can
be modelled very successfully and more accurately by FPDEs (Deng et al., 2020;
Evangelista and Lenzi, 2018; Klages et al., 2008; Liang et al., 2004; Liu, 2013; Bǎleanu
and Lopes, 2019).

Due to the distributed nature of the characteristic variables of DPSs and the high
complexity represented by the transport phenomena, the study of DPSs has attracted
the attention of the control community (Christofides, 2001a; Meurer, 2013; Padhi
and Faruque Ali, 2009; Si et al., 2018; Wang et al., 2011). Overall, for DPSs, two
control design approaches can be used: early and late lumping approaches (Ray, 1989;
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Christofides, 2001a; Meurer, 2013). The early lumping approach consists in deriving
an approximate finite dimensional model of the DPS, and the controller is carried out
based on the resulting approximate model (Morris, 2020; Liu, 2010). The late lumping
approach constitutes an interesting and effective alternative, its principle consists in
using the PDEs model in the process design of the controller, which yields superior
performances in closed loop compared to the early lumping approach (Christofides
and Daoutidis, 1996). Both approaches have been successfully applied to control DPSs
described by IPDEs (see Christofides, 2001b, 2001a; Morris, 2020; Meurer, 2013; Liu,
2013 and references therein). However, the early lumping approach should be applied
with care to avoid the spillover phenomenon, which means that the designed controller
based on the approximate model may influence the states of the closed-loop system that
are not used in this approximate model (Morris, 2020). Consequently, these neglected
modes can be activated by the controller, which deteriorates the performance and
destabilises the closed-loop system.

Compared to the control of IPDEs, which has attained a level of maturity, control
of FPDEs remains an explored research area and few contributions are reported in
the literature. Through hybrid simulation (numerical and symbolic simulations), Liang
et al. (2004) proved that two boundary controllers that achieve both stabilisation and
disturbance rejection for integer wave equation can be applied to a time-fractional
diffusion-wave equation. Both state and output feedback control problems of cascade
connection of a linear time-fractional diffusion-reaction system, with spatially varying
diffusivity, and a linear fractional ordinary differential equation are investigated by Chen
et al. (2020) in the framework of backstepping. Ge et al. (2016) solved the boundary
stabilisation problem of a time-fractional diffusion-reaction equation by converting it
to a Mittag-Leffler stable linear system using an invertible coordinate transformation.
Then, the controller design problem is reduced to solve a linear hyperbolic PDE.
The same control problem but with Robin boundary conditions was solved by Chen
et al. (2017) using the backstepping method. Both Dirichlet and Neumann boundary
controllers that stabilise an unstable time-fractional reaction-diffusion equation are
developed, in the framework of backstepping, by Zhou and Guo (2018). The stabilisation
of a time-fractional diffusion-reaction equation with a non-constant diffusion coefficient
using an observer-based output feedback was proposed by Chen et al. (2018) using
the backstepping method. Zhou et al. (2019) used the active disturbance rejection
control (ADRC) to achieve a Mittag-Leffler stabilisation by boundary control of an
unstable time-fraction diffusion-reaction equation. Spatial FPDEs are less investigated
by the control community and few results are available. A distributed controller of
spatial fractional diffusion equation was developed by Maidi and Corriou (2019) in
the framework of the geometric approach. The same control design technique was
considered by Maidi and Corriou (2020) to design a Neumann boundary feedback
controller for the same equation using the concept of extended operator.

The literature review revealed that most contributions deal with boundary control.
The distributed (in-domain) control problem is rarely investigated by the community.
Also, the case of a fraction diffusion-reaction equation is the most frequently studied.
Motivated by these considerations, in the present paper, we consider the distributed
control of the time-fractional diffusion-advection-reaction equation that captures the
dynamical behaviour of many DPSs. This kind of FPDE represents a benchmark model
for many real-world systems characterised by anomalous transport phenomena.
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The input-output linearisation approach or geometric control (Isidori, 1995; Kravaris
and Kantor, 1990a,b; Corriou, 2018) has been extended with success for DPSs
(Christofides and Daoutidis, 1996; Maidi and Corriou, 2011b, 2014, 2016). It is worth
noting that the geometric control technique allows dealing with controller design of
DPSs following the late lumping approach, that is, using directly the PDEs model
without any prior approximation or reduction of the original DPS, which yields an
infinite dimension controller with enhanced performance (Christofides and Daoutidis,
1996). In addition, by adopting the globally linearising control (GLC) strategy, the
full potential of an existing linear control theory can be exploited to cope with
disturbance rejection and modelling errors (Kravaris and Kantor, 1990b; Isidori, 1995;
Corriou, 2018). The GLC has been applied successfully to the boundary control of
counter-current and parallel-flow heat exchangers (Maidi et al., 2009, 2010), to the
boundary control of the linear and nonlinear Stefan problems (Maidi and Corriou, 2014,
2016), and to the distributed control of the spatial fraction diffusion equation (Maidi
and Corriou, 2019).

Motivated by the fact that GLC strategy has not yet been applied for
FPDEs, in this paper, the GLC strategy is extended to the linear time-fractional
diffusion-advection-reaction equation, which constitutes the first-time application of
GLC to this important FPDE that efficiently represents many dynamical systems (Klages
et al., 2008). The control problem consists in controlling an output defined as the
spatial weight average of the state by manipulating a distributed actuation. Thus, under
some reasonable assumptions on both the shaping functions of the actuator and the
sensor, an infinite dimensional state feedback that yields a fractional finite dimensional
system in closed loop is designed following the same reasoning of geometric control
(Isidori, 1995). Then, to cope with disturbances, an external controller is introduced
to define the external reference input involved in the state feedback (the input of
the resulting finite fractional dimensional system). It is demonstrated that the internal
stability of the resulting finite dimension system guarantees the stability of the GLC
strategy. The developed GLC scheme is then applied with success to stabilise an
unstable time-fractional diffusion-reaction equation, and to achieve the step tracking
with disturbance rejection of a time fractional diffusion-advection-reaction equation.

The paper is structured as follows: Section 2 present some mathematical tools from
fractional calculus which are used in this study. Section 3 is devoted to the TFPDE
control problem statement. In Section 4, the proposed design approach of the GLC is
presented and its stability is investigated. Section 5 present two application examples
that show the stabilisation, step tracking and disturbance rejection capabilities of the
GLC. Section 6 concludes the paper.

2 Mathematical preliminary

Fractional calculus theory extended both the differentiation and the integration of a
mathematical function to arbitrary order (Kilbas et al., 2006; Podlubny and Thimann,
1999). In this section, some tools from fractional calculus used along this study are
presented.

Several definitions have been proposed for the fractional derivative in the literature
(Capelas de Oliveira and Tenreiro Machado, 2014; Sales Teodoro et al., 2019). Among
these definitions, the Caputo derivative is useful to tackle problems where initial
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conditions are set with respect to the variables of interest and the respective derivatives
of integer-order, which are provided in practice and with clear physical interpretations.
Note that most physical fractional systems that are encountered in practice fulfill this
requirement dealing with the initial conditions. These important considerations have
motivated the use of the Caputo derivative in this paper.

Definition 1 (Podlubny and Thimann, 1999): The Caputo fractional derivative of order
α > 0 for an absolutely continuous function f(t) is defined by

C
0 D

α
t f(t) =

1

Γ(n− α)

t∫
0

f (n)(ξ)

(t− ξ)α+1−n
dξ (1)

where n ∈ N (N being the set of natural numbers) is the smallest positive number such
that n− 1 ≤ α < n and Γ(.) is the gamma function.

Special functions play a key role in dealing with engineering problems involving
differential equations. The Mittag-Leffler function is a kind of special functions that
is used in solving fractional differential equations (Kilbas et al., 2006; Podlubny and
Thimann, 1999). Various Mittag-Leffler functions have been developed and successfully
used for solving engineering problems (Haubold et al., 2011). The two-parameter
Mittag-Leffler function occurs both in the analysis of dynamical systems and control
theory.

Definition 2 (Podlubny and Thimann, 1999): The two-parameter (α > 0 and β > 0)
Mittag-Leffler function is defined by

Eα,β(t) =

+∞∑
k=0

tk

Γ(αk + β)
. (2)

The study of the asymptotic property of the solutions of fractional differential equations
is reduced to the study of the asymptotic behaviour of Mittag-Leffler functions using
explicit estimation formulas of these functions. For the two-parameter Mittag-Leffler
function (2), several useful explicit estimation formulas have been developed by Wang
et al. (2018). The following lemma gives the explicit estimation formula, along the
negative axis, when α ∈ (0, 1] and β = α+ 1.

Lemma 1 (Wang et al., 2018, Lemma 2.5): Let λ > 0 be arbitrary constant and t > 0.
For any α ∈ (0, 1] and β = α+ 1, we have

|Eα,β(−λ tα)| ≤ m(α, λ)

t2α
+

1

λ tα
(3)

in which

m(α, λ) =

∞∫
0

e−r1/α dr

| sin(π α)|π αλ2
. (4)

Definition 3 (Podlubny and Thimann, 1999): The Laplace transform of the Caputo
derivative is
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L
[
C
0 D

α
t f(t)

]
= sα F (s)−

n−1∑
k=0

sα−k−1f (k)(0) (5)

where s is the Laplace variable.

In the following, R and R+ denote the sets of real and positive real numbers,
respectively. L2(Ω̄) is the space of measurable integrable real functions defined on the
closed domain Ω̄ = [0, 1] with the canonical inner product (Atkinson and Han, 2009)

⟨f(z), g(z)⟩ =
1∫

0

f(z) g(z) dz (6)

that induces the following norm

∥f(z)∥ =

 1∫
0

f2(z) dz


1
2

. (7)

The first and the second partial derivatives of the function f(z, t) with respect to the z
argument is noted as follows

∂zf(z, t) =
∂f(z, t)

∂z
, ∂zzf(z, t) =

∂2f(z, t)

∂z2
. (8)

3 Control problem formulation

The dynamical behaviour of a class of nonequilibrium processes characterised by
anomalous transport-reaction phenomena (Klages et al., 2008; Evangelista and Lenzi,
2018) is described by the following linear time-fractional diffusion-advection-reaction

C
0 D

α
t x(z, t) = Ax(z, t) + Bu(t), z ∈ Ω (9)

subject to the boundary Dirichlet conditions

x(0, t) = f(t), (10)
x(1, t) = g(t) (11)

and the initial condition

x(z, 0) = ϕ(z), z ∈ Ω̄. (12)

where z ∈ Ω̄ and t ∈ R+ denote the spatial and the time variables, respectively. Ω̄ =
[0, 1] is the whole spatial domain, that is, the closure of the open set Ω = (0, 1). ∂Ω =
{0, 1} is the boundary of Ω. The variable of interest x ∈ L2(Ω̄) is the state that can
represent a species concentration (mass transfer process) or a temperature (heat transfer
process). u(t) ∈ R is the manipulated variable. f(t) ∈ R and g(t) ∈ R are smooth
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bounded functions assumed to be the disturbances. The linear spatial operators A and
B are defined as follows:

Ax = a2 ∂zzx+ a1 ∂zx+ a0 x, (13)
Bu = b(z)u, (14)

where b(z) ∈ L2(Ω̄) and c(z) ∈ L2(Ω̄) are smooth continuous functions that
characterise the spatial distribution of the actuation and the structure of the sensor,
respectively. The constants a2, a1 and a0 represent the diffusion coefficient, the velocity
of the moving quantity and the reaction rate, respectively. Note that the algebraic sign
of a1 provides the information on the convective flow direction. The time-fractional
derivative in equation (9) is taken in the sense of Caputo (see Definition 1), which is
more suitable for nonequilibrium processes with nonzero initial conditions.

The control objective consists in solving both the step tracking and the disturbance
rejection problems in the case of an output defined as the spatial weighted average of
the state given as follows

y(t) = Cx(z, t) (15)

by manipulating the distributed control variable u(t), with

Cx = ⟨c(z), x⟩ (16)

Assumption 1: c(z) is a continuous function with min
z∈Ω̄

|c(z)| = c∗ ̸= 0.

Assumption 2: The functions b(z) and c(z) are not orthogonal, that is, ⟨c(z), b(z)⟩ ̸= 0.

Remark 1: As the function c(z) is continuous and Ω̄ is a compact domain, consequently
|c(z)| (|.| being the absolute value) is bounded and admits a minimum in Ω̄ denoted by
c∗, that is, c∗ = min

z∈Ω̄
|c(z)|.

To tackle the formulated control problem, it is proposed to use the GLC strategy
(Kravaris and Kantor, 1990b; Corriou, 2018). In the following section, a design
approach of GLC is proposed for the control problem (9)–(15).

Remark 2: The control problem (9)–(15) is given with Dirichlet boundary conditions,
but it can be assumed that the following development remains valid for other kinds of
boundary conditions.

Remark 3: It is worth noting that since a boundary control problem can be converted to
a distributed control one using the concept of extended operator (Stafford and Dowrick,
1977), hence the following theoretical developments remain valid when designing a
GLC for a TFPDE with a boundary actuation. The design of a boundary state feedback
based on the conversion of a boundary control problem to a distributed one is discussed
in length in Maidi et al. (2010) and Maidi and Corriou (2011b, 2011a).
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4 Globally linearising control

In this section, the GLC structure based on the input-output linearisation approach
(Kravaris and Kantor, 1990a; Isidori, 1995; Corriou, 2018) is adopted to solve the
formulated control problem (9)–(15). The design of the GLC proceeds in two steps.
The first step an output stabilising state-feedback that yields in closed loop a linear
system relating the controlled output and an external reference input. The resulting state
feedback does not involve an integral action, so it cannot achieve a zero steady-state
error in the presence of constant disturbances or modelling errors. Hence, the second
step consists in designing an external controller around the linear system called external
reference input-controlled output.

In the following, a GLC design approach is proposed to solve both the step tracking
and disturbance rejection problems for the time-fractional PDE (9) with the output (15).

4.1 State feedback design

The application of the input-output linearisation approach (Isidori, 1995; Kravaris
and Kantor, 1990b) has been extended successfully to hyperbolic DPSs described by
quasi-linear first-order PDEs by Christofides and Daoutidis (1996) by introducing the
concept of the characteristic index which is a generalisation to DPSs of the notion of
lumped parameter system relative degree (Isidori, 1995). Then, interesting applications
of the input-output linearisation have been reported in the literature (Shang et al., 2005;
Liu, 2003; Gundepudi and Friedly, 1998; Maidi et al., 2009, 2010; Maidi and Corriou,
2011b, 2014, 2016). For SFPDE systems, the characteristic index can be determined by
calculating the successive time integer derivatives of the controlled output (Maidi and
Corriou, 2019, 2020). For TFPDE systems, the situation is considerably more complex
since the characteristic index cannot be determined following the same derivation
process since the time derivative of the interest variable x(z, t) is of fractional type. In
this subsection, we propose a design approach of the infinite dimensional state feedback
that achieves a set point tracking of the controlled output (15).

Evaluating the Caputo time derivative of the controlled output (15) for the
TFPDE (9) yields

C
0 D

σ
t y(t) = CC

0 Dσ
t x(z, t) (17)

and taking into account equation (9), it follows that

C
0 D

σ
t y(t) = CAx(z, t) + CBu(t). (18)

Now, according to the definitions of the operators B and C given by equations (14) and
(16), respectively, it follows that

CBu(t) = ⟨c(z), b(z)⟩u(t) (19)

and by taking into account Assumption 2, that is,

⟨c(z), b(z)⟩ ̸= 0 (20)
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it can be seen from equation (18) that the manipulated input u(t) appears explicitly
in the Caputo time derivative of the controlled output y(t). Thus, by assuming the
following feedback control

v(t) = y(t) + τC0 Dσ
t y(t) (21)

and combining equations (15), (18) and (21), the external reference input v(t) results

v(t) = Cx(z, t) + τ CAx(z, t) + τ ⟨c(z), b(z)⟩u(t) (22)

where τ is the desired time constant.
Then, using equation (22), the following output stabilising control law results

u(t) =
v(t)− y(t)− τ CAx(z, t)

τ ⟨c(z), b(z)⟩
(23)

which yields in closed loop the following fractional finite dimensional system (21).
Then, by assuming zero initial conditions, equation (21) can be written in the Laplace
domain (transfer function), according to the Definition 3, as follows

Y (s)

V (s)
=

1

τ sα + 1
. (24)

Note that equation (24) is obtained by taking the Laplace transform of equation (21).

4.2 External controller design

As stated before, the control law (23) does not guarantee a zero asymptotic error in the
presence of step disturbances. From a practical viewpoint, since the state-feedback (23)
yields a linear fractional finite dimensional system (21), a meaningful option to achieve
a zero asymptotic error consists in defining an external reference input v(t), around
the linear fractional system v(t)− y(t) given by equation (24), by means of a robust
controller as follows (Kravaris and Kantor, 1990b; Corriou, 2018):

v(t) =

∫ t

0

G(t− ξ) e(t) dξ (25)

where e(t) = yd(t)− y(t) is the tracking error (yd(t) is the desired set-point reference),
and the kernel G(t− ξ) is an inverse of a transfer function determined so as to enforce
a desirable behaviour of the controlled variable y(t). Controller design approaches for
fractional order systems can be found in Xue et al. (2007); Bijnan and Kamal (2015);
Faieghi et al. (2012), Razminia and Torres (2013) and Petráš (2019).

The GLC structure is depicted in Figure 1.
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Figure 1 GLC for TFPDE (9) (see online version for colours)
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4.3 Stability of the control strategy

In this subsection, the stability of the GLC scheme in Figure 1 is investigated. Note that
the stabilities of both the inner and the outer feedback control loops of the GLC structure
imply its stability. Now, as the external controller designed around the fractional system
v(t)− y(t) meets the performance demands and stability margin in closed loop, hence
the outer feedback control loop is stable. So it remains to investigate the stability of
the inner feedback control loop, that is, the stability of the fractional finite dimensional
system v(t)− y(t).

The time response of the fractional finite dimensional system (24), for a step
reference v(t) of an amplitude M , can be expressed with respect to the Mittag-Leffler
function (2) as follows (Valério and da Costa, 2012):

y(t) = M tα Eα, α+1(−tα) (26)

then

|y(t)| = |M | |tα| |Eα, α+1(−tα)| (27)

and using the result of Lemma 1, we have

|y(t)| ≤ |M |
(
m(α, 1)

tα
+ 1

)
(28)

hence

lim
t→+∞

|y(t)| ≤ |M | (29)

which means that the controlled output y(t) is stable, that is, the fractional finite
dimensional system (24) is externally stable (input-output stability). This is not sufficient
to conclude about the stability of the inner feedback control loop, which is also linked
to its internal stability (input-state stability).

Let us investigate the internal stability of the fractional finite dimensional
system (24). According to Remark 1, its follows that

c∗ ≤ |c(z)|, ∀z ∈ Ω̄. (30)

Multiplying both sides of formula (30) with |x(z, t)| yields
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c∗ |x(z, t)| ≤ |c(z)| |x(z, t)|, ∀z ∈ Ω̄. (31)

and by integrating both sides of the equation with respect to z, we obtain

c∗
∫ 1

0

|x(z, t)| dz ≤
∫ 1

0

|c(z)| |x(z, t)| dz, ∀z ∈ Ω̄. (32)

Now, using the definition of y(t) given by equation (15), it follows that

|y(t)| ≤
∫ 1

0

|c(z)| |x(z, t)| dz (33)

and by combining equations (32) and (33), we obtain

c∗
∫ 1

0

|x(z, t)| dz ≤ |y(t)|, ∀z ∈ Ω̄ (34)

therefore

c∗ lim
t→∞

∫ 1

0

|x(z, t)| dz ≤ lim
t→∞

|y(t)|, ∀z ∈ Ω̄ (35)

hence taking into account the result given by equation (29), we have

lim
t→∞

∫ 1

0

|x(z, t)| dz ≤ |M |
c∗

, ∀z ∈ Ω̄ (36)

which implies that the state x(z, t) is bounded, that is, the fractional system (24) is
internally stable. Consequently, we conclude that the GLC structure based on the state
feedback (23) is stable.

In the following section, the performance of the GLC structure is evaluated through
numerical runs.

5 Application examples

In this section, the stabilisation, step tracking and disturbance rejection capabilities of
the GLC are evaluated via numerical simulation.

The GLC is applied to control an unstable time-fractional diffusion-reaction and
a time-fractional diffusion-advection-reaction systems expressed in terms of deviation
variables. For both systems, the sensor shaping function and the actuation shaping
function are respectively

c(z) = 1.5− z, b(z) = z (1− z) (37)

and the state feedback time constant is τ = 1 s.
The external reference input v(t) is defined by means of an optimal H∞ controller.

The design of the external controller is carried out using the mixed-sensitivity synthesis
method (Gu et al., 2013; Amin and Aijun, 2017; Kaur and Ohri, 2014; Shao et al., 2017)
by assuming an integer-order approximation (rational transfer function) of the fractional
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finite dimensional system (24). The reduced model is obtained using the Oustaloup
approximation (Oustaloup, 1991) of the operator sα by assuming six stable real poles
and six stable real zeros within the frequency range [10−3, 103]. The selected sensitivity
and complementary sensitivity weights are given as follows

W1(s) =
1

s+ 0.01
, W3(s) =

100

0.01 s+ 100
. (38)

The method of lines (Vande Wouwer and Schiesser, 2004) is used to approximate
the TFPDE (9). Both the first and the second spatial derivatives are approximated
using the second-order (three-points) centred finite-difference scheme. The number of
discretisation points is N = 150. The integral term involved in the control law is
evaluated using Simpson’s quadrature (Burden et al., 2016).

Hence, the overall closed-loop system (GLC) is approximated by a multi-order
system of differential equations, i.e., the integer ordinary differential equations of the
external controller and the fractional differential equations that approximate the TFPDE.
Then, the resulting multi-order system is integrated using the implicit product-integration
of rectangular type solver (Garrappa, 2018).

5.1 Unstable time-fractional diffusion-reaction system

In the first example, the stabilisation capability of the GLC structure is investigated. For
this purpose, we consider the parameters α = 0.4, a2 = 1, a1 = 0 and a0 = 10, and
the initial condition ϕ(z) = sin(π z). The boundary conditions are of Dirichlet type and
are assumed to be homogeneous, that is, f(t) = g(t) = 0. The simulation results of the
open-loop system with u(t) = 0 are given in Figure 2, from which it can be seen that
the stationary point x(z, t) = 0 is open loop unstable. Thus, the closed loop stabilisation
is studied around this point. Taking into account Assumption 1 and using the variational
lemma (Zeidler, 1995), it follows from equation (15) that, to stabilise the time-fractional
diffusion-reaction system, i.e., to have lim

t→+∞
x(z, t) = 0, one must force y(t) to be zero

when t → ∞. Hence, this is can be achieved by taking yd(t) = 0.
The application of GLC to the unstable time-fractional diffusion-reaction system

yields the results depicted in Figure 3 that demonstrates the effectiveness of GLC in
stabilising the system. It is noteworthy that GLC forces the closed-loop system state to
gradually converge to the equilibrium profile x(z, t) = 0. Also, the control law works
effectively with smooth moves to achieve an exponential stability of the closed-loop
system.

5.2 Time-fractional diffusion-advection-reaction system

In the second example, the step tracking and disturbance rejection effectiveness of the
GLC structure are both shown. The parameters of the system are α = 0.8, a2 = 1, a1 =
–1.5 and a0 = 2, and the initial condition ϕ(z) = 0. The boundary conditions are again
of Dirichlet type. The boundary condition at z = 1 is assumed to be homogeneous, that
is, g(t) = 0, while the boundary condition at z = 0, i.e., the variable f(t), is assumed
to be a disturbance for the system.
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Figure 2 Unstable time-fractional diffusion-reaction equation, (a) evolution of the output
(b) the state in open loop (see online version for colours)

(a) (b)

Figure 3 Unstable time-fractional diffusion-reaction equation, (a) evolution of the output
(b) the control (c) the external reference input (d) the state in closed loop
(see online version for colours)

(a) (b)

(c) (d)

The simulation run consists in imposing the following desired output

yd(t) =


0 for t < 1

2 for 1 ≤ t < 12

1 for t ≥ 12

(39)

with the following smooth disturbance
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f(t) =

{
0 for t < 4

1− e4−t for t ≥ 4
(40)

Figure 4 shows that the controlled output y(t) tracks asymptotically the desired
output despite the sudden disturbance. It is clearly observed that the influence of the
disturbance is well attenuated with smooth moves of the manipulated variable u(t).
Consequently, the GLC achieves both the step tracking and disturbance rejection with
satisfactory performance.

Figure 4 Time-fractional diffusion-advection-reaction, (a) evolution of the output (b) the
control (c) the external reference input (d) the state in closed loop
(see online version for colours)

(a) (b)

(c) (d)

Remark 4: The two benchmark models considered as application examples show that
the obtained 3D state profiles are typical of anomalous diffusion-advection-reaction
systems. The obtained profiles are shaped by the controller u(t) through the assumed
actuator structure characterised by the function b(z). The controlled output y(t) is
related to the 3D state profile, through c(z) that characterises the structure of the sensor.
This is a typical response of the fractional lumped parameter system (21). Also, to
achieve a step-point tracking or to compensate the effect of a disturbance, the control
action works effectively to adapt the state profile so that the desired behaviour is
achieved. The GLC strategy provides smooth moves of the actuation u(t) that are
physically reasonable. Overall, the GLC provides excellent performances in output
tracking, disturbance rejection, control moves and stabilisation, which are in agreement
with the phenomena arising in anomalous diffusion-advection-reaction systems.
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6 Conclusions

In this paper, the GLC structure is adopted to control DPSs characterised by anomalous
transport phenomena, which are described by TFPDEs. The objective is to control
a spatial weighted average of the state by manipulating a distributed actuation. The
proposed design approach consists in designing an infinite dimensional state feedback
that yields in closed loop a fractional finite dimensional system given by a linear
ordinary fractional differential equation. To cope with the step disturbance, it is proposed
to define the input of the resulting fractional finite dimensional system by means of
a robust controller. It is demonstrated that, under the assumption of a nonvanishing
shaping output function, the resulting GLC scheme is stable. Finally, the GLC is applied
with success to stabilise an unstable time-fractional diffusion-reaction system, and to
enforce a step tracking despite the bounded disturbance in the case of a time-fractional
diffusion-advection-reaction system.
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