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Abstract: A fuzzy neural Petri nets (FNPNs) controller is utilised for 
controlling a three-links robot arm which considers a nonlinear dynamic 
system. The incorporation of the classical FNN with a Petri net (PN) has been 
suggested to produce a new representing system called FNPN structure to 
alleviate the computation burden. The motion equation of three links robot arm 
is derived from Lagrange’s equation. This equation has been incorporated with 
the motion equations of DC servo motors which motivate the robot. For 
nonlinearity dynamic problems, this paper presents a direct adaptive control 
technique to control three links robot arm utilising the FNPN controller. The 
computer simulation depicts that the present FNPN controller accomplished 
better performance with fast response and minimum error. 
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1 Introduction 

In recent, the intelligent control techniques such as neural-network, fuzzy logic control 
(FLC) and fuzzy-neural network (NN) vastly utilised for motion control of robotic 
applications (Wai and Chen, 2006; Huang and Lee, 2000; Yoo and Ham, 2000; Chang, 
2000; Kim and Lewis, 2000). In popular, the robotic manipulators confront different 
difficulties related to the problems in their dynamics, such as disturbance, uncertainties, 
pay-load parameter and friction. Therefore, building a suitable mathematical model for 
these robots with their control system will face some difficulties. Thereby, the common 
demand on the intelligent control techniques is that they can alleviate the influences of 
parameter uncertainties and disorganised disturbance by utilising their robust learning 
capability without comprehensive knowledge of the system being controlled in the design 
procedures. The FLC has different features such as linguistic information, universal 
approximation theorem, robustness and rule-based algorithm (Wang, 1997). 

Recently, the feed-forward NN has been utilised for many research applications for 
controlling dynamic systems and their identification (Omidvar and Elliott, 1997; Yang 
and Meng, 2003; Das et al., 2006). In addition, the research has been expanded utilising 
recurrent NN (Funahashi and Nakamura, 1993; Jin et al., 1995; Ku and Lee, 1995). For 
example, Jin et al. (1995) studied “the approximation of continuous-time dynamic 
systems using the dynamic recurrent (DRNN) and a Hopfield-type DRNN was presented 
by Funahashi and Nakamura (1993).” 

As is vastly known, both NN systems and fuzzy logic systems strive to harness 
human-like knowledge processing ability. Furthermore, the incorporations between the 
two structures have vast applications. This approach comprises combining the FLC and 
NN into an incorporated system to acquire the merits of both of them (Lee and Teng, 
2000; Hameed et al., 2019). For case, Hameed et al. (2019) suggested a common NN for 
a FLC which is tuning to control an unmanned vehicle. In the last decades, Petri net (PN) 
has been sophisticated into a robust tool for analysis, modelling, controlling, optimisation 
and implementation of different engineering systems (Ameer et al., 2018; David and 
Alla, 1994; Shen, 2003). In this paper, fuzzy neural Petri net (FNPN) has been utilised 
without identification for controlling a three links robot arm. The simulation of the robot 
arm application has been implemented in MATLAB software to presents the results. 
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2 A dynamic model of three links robot arm 

The mathematical model of the arm robot manipulator consists of finding the mapping 
between the mutual positions and the forces applied to the structures, accelerations and 
velocities (Ishii et al., 1997). Two formularisations are mostly utilised to derive  
the dynamic model: namely the Newton-Euler formularisation and the Lagrange 
formularisation (Selvam et al., 2019; Shi and Zhang, 2020). A large number of authors 
and researchers (Schilling, 1998; Spong and Vidyasagar, 2001; Abdul Baqi, 2004), used 
Lagrange’s approach to drive the general form of robot equation of motion. The Lagrange 
formularisations consequently take the alternative form (Wai et al., 2004): 

( ) ( )1( ) ,
2

T

n
Iθ PI θ θ I θ θ θ τ
θ θ

 ∂ ∂+ − + = ∂ ∂ 

    (1) 

where ,θ θ  and nθ R∈  indicate the vectors of joint link positions, velocities and 
acceleration respectively, I(θ) ∈ Rn×n denotes the inertia matrix, n denote the number of 
links, P is the potential energy and τn denoted the torque of n link. In Figure 1, the robot 
manipulator is designed with links which their mass centres C1, C2 and C3 are located at 
the midpoints of segments O1O2, O2O3 and O3P, respectively. Furthermore, the ith link 
has a mass (mn) and a centroidal moment of inertia in a direction normal to the plane of 
motion (In); while the joints are moved by motors delivering torques τ1, τ2, and τ3, the 
lubricant of the joints producing dissipative torques that we will neglect in this model. By 
the supposition that gravity acts in the direction of the Y-axis. In common, the 
mathematical model of the armature-controlled DC servo motors based on an n- link 
robot manipulator can be described as follows (Abdul Baqi, 2004): 

e T aτ K i=  (2) 

e m m m m mτ J q B q τ= + +   (3) 

a
t a a a E m

div R i L K q
dt

= + +   (4) 

where τe ∈ Rn represents ‘the vector of electromagnetic torque’, KT ∈ Rn×n represents ‘the 
diagonal matrix of motor torque constants’, ia ∈ Rn represents ‘the vector of armature 
currents’, Jm ∈ Rn×n represents ‘the diagonal matrix of the moment inertia’, Bm ∈ Rn×n 
represents ‘the diagonal matrix of torsional damping coefficients’, ,m mq q  and n

mq R∈  
indicate ‘the vectors of motor shaft positions, velocities and accelerations, respectively’, 
τm ∈ Rn represents ‘the vector of load torque’, vt ∈ Rn represents ‘the vector of armature 
input voltages’, Ra ∈ Rn×n represents ‘the diagonal matrix of armature resistance’,  
La ∈ Rn×n represents ‘the diagonal matrix of armature inductance’, and KE ∈ Rn×n 
represents ‘the diagonal matrix of the back electromotive force (EMF) coefficients’. In 
order to apply the DC servo motors for driving an n-link robot manipulator, a relationship 
between the motor-shaft position qm and the joint position θ can be illustrated as  
(Abdul Baqi, 2004): 

m
r

m

q τg
θ τ

= =  (5) 
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The governed equation of an n-link robot manipulator with actuator dynamics can be 
acquired as (Wai and Chen, 2006): 

( )* ( ) , ,I θ θ D θ θ θ d U+ + =    (6) 

where U ∈ Rn indicate the control effort vector, i.e., the input of armature voltages, 

[ ]*

( ) ( )n q

n n n

I θ I I θ
I L I J

= +

= +
 (7) 

( ) ( ) ( )

( ) ( ) ( ) [ ]{ }
( ) ( ) ( )

1, ,
2

, , , , ( )

, , , , ( )

T

n n n

n n n n En n n

IθC θ θ I θ θ
θ

D θ θ θ L I θ θ θ θ B I θ J θ

L C θ θ θ θ R C θ θ θ R B θ K θ L G θ θ R G θ

 ∂= −  ∂ 

 = + + + + 

 + + + + + + 

 

    

        

 (8) 

( )n q n nd L I θ θ L N R N= + +   (9) 

where G(θ) is gravity vector, N indicates the vector of external disturbance tl and friction 
term ( ).f θ  Then, we can rewrite equation (6) as: 

( )( )* 1( ) , ,θ I θ U D θ θ θ d−  = − + 
    (10) 

By using the method of numerical integration such Euler method for equation (10), we 
can get position, velocity and acceleration for each link. 

Figure 1 Three links robot arm 
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3 FNPN structure and control 

To achieve the path (trajectory) tracking of a three links robot arm under various moving 
angles efficiently (Reza et al., 2019), the FNPN used to control the trajectory tracking of 
the arm robot, as depicts in Figure 2. The proposed controller structure with an online 
learning algorithm is utilised in this paper. 

Figure 2 Block diagram of robot arm based on FNPN controller 
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3.1 FNPN structure 

The essential idea of a PN is combined with a conventional FNN is utilised to established 
an FNPN system. The FNPN structure is shown in Figure 3. Where the major difference 
between the classical FNN and the FNPN is the transition layer (Shen, 2003; Wai and 
Liu, 2009). The basic function and the signal propagation in each layer of the FNPN are 
described as follows. 

3.1.1 Input layer 

For every node, j in the input layer transmits the input linguistic variables xj (j = 1, 2, …, 
n) to the next layer directly. 

3.1.2 Membership layer 
Each node in the membership layer carry out a membership function; the input of this 
layer can be represented by the output of the previous layer (input layer) which can be 
defined through Gaussian membership functions as follow (Angels, 2003): 
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( ) ( )

( ) ( )

2

2
1
2

exp

j cij
i j

cij

ij i j i j

x m
net x

s

mf net x net x

−
= −

  =     

 (11) 

where exp[.] is the exponential function, and mcij and scij are, respectively, the mean and 
the standard deviation of the Gaussian function. 

Figure 3 Architecture of FNPN 
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3.1.3 Petri layer 
The Petri layer of the FNPN producing tokens makes utilise of competition laws to 
choose the convenient fired nodes as follows (Angels, 2003): 

( )
( )

1, if

0, if
ij i j th

ij
ij i j th

mf net x d
tr

mf net x d

   ≥  = 
  <  

 (12) 
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where trij is the transition and dth is a dynamic threshold value diverse with the 
corresponding error to be introduced later. Can be seen that the dynamic threshold value 
in equation (12) is adjusted by the following equation (Angels, 2003): 

exp( )
1 exp( )th

Ed
E

−=
+ −

α β
β

 (13) 

where α and β are positive constants. This means that the higher the error, the lower the 
threshold value. In other words, if the error becomes large, the threshold values will be 
reduced in order to fire more rules for the present situation (Angels, 2003). 

3.1.4 Rule layer 
Each node i in the rule layer is indicated by П. which means that all the input signals are 
multiplied and the result represents the output. The output of the rule layer is presented as 
following (Angels, 2003): 

( ) , 1

0, 0

n
ij i j ijjci

ij

mf net x tr

tr

   =  ∅ = 
 =

∏  (14) 

where ∅i represent the ith (output of the rule layer). 

3.1.5 Output layer 
Each node yo calculates the total output as the gathering of all input signals as (Angels, 
2003): 

in
o coi cii

y w= ∅  (15) 

where wcoi is weight connection between ith (output of rule layer) and oth (output layer). 

3.2 Online learning algorithm 

The main goal of the optimisation algorithms is learning the parameters or variables for 
any controller or network to get the optimal solution. In this paper, the optimisation 
algorithm is utilised to learning the parameters of FNPN controller and how to get a 
recurrent gradient vector, where the learning algorithm is working according to a fitness 
(error) function for a parameter of the network utilising the string rule. Due to calculate 
the gradient vector in the opposite direction to the flow of the output of each node. 
Generally, the algorithm is indicated as the back-propagation learning rule. To depict the 
online tuning algorithm of the FNPN utilising the supervised gradient-descent algorithm 
the fitness (error) function Ec defines as follow: 

( )2 2 2
1 2 3

1
2c c c cE e e e= + +  (16) 

where ec1, ec2 and ec3 are errors between reference outputs and robot’s link1, link2 and 
link3 output respectively, then the gradient of the error Ec with regard to weights, the 
mean and standard deviation of the Gaussian function are given: 
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po poc c co o
co ci

coi co po o coi o

y yE E e u e
w y u w u

∂ ∂∂ ∂ ∂ ∂= = − ∅
∂ ∂ ∂ ∂ ∂ ∂

 (17) 

3

21

po cj cijc
co coi ciocij o cij

y X mE e w
m u s=

∂ −∂ = − ∅
∂ ∂  (18) 

( )2
3

31

cj cijpoc
co coi ciocij o cij

X myE e w
s u s=

−∂∂ = − ∅
∂ ∂  (19) 

where po

o

y
u

∂
∂

 is the sensitivity system, uo and ypo are FNPN control output and robot arm 

output, respectively. The accurate estimation for the sensitivity of the system is difficult 
to determine due to the uncertain dynamics of the robot arm system. Identifiers can be 
performed to estimate the sensitivity of the system but it is required a hard computation 
effort. To vanquish this problem and raising the online learning speed, the sensitivity of 
the system can be approximated by their sign functions (Angels, 2003) as follow: 

( ) ( 1)
( ) ( 1)

po po po

o o o

y y k y k
sign

u u k u k
∂ − − ≅  ∂ − − 

 (20) 

Equations (17) to (19) are substituted in equations (21) to (23) 

( 1) ( ) c
ci ci cw

ci

Ew k w k η
w

∂+ = −
∂

 (21) 

( 1) ( ) c
cij cij cm

cij

Em k m k η
m

∂+ = −
∂

 (22) 

( 1) ( ) c
cij cij cs

cij

Es k s k η
s

∂+ = −
∂

 (23) 

where ηcw is learning rate for the weights, ηcm, ηcs are the learning rate for the mean and 
standard deviation of the Gaussian function, respectively. 

4 Simulation results 

The Simulink model of the FNPN controller for three links robot arm has been 
implemented in MATLAB software program. The number of rules and outputs are 50 and 
3, respectively. The initial mean and standard of membership function were computed as 
equations (24) and (25) (Shen, 2003), beside the 0.001 values for weights. However, the 
FNPN control without identification is implemented. The plant sensitivity calculated by 
equation (20), this reduces the time consuming to evaluate the parameters in offline 
forward or inverse identification also reduces the time required to calculate the plant 
sensitivity in forward control. The inputs to FNPN controller depended on the error 
between the reference outputs and robot arm outputs such as shown in Figure 2 and 
derivative of error, for this reason, six inputs fed to FNPN control. The learning rate of 
weights, mean and standard are ηcw = 0.02, ηcm = 0.00012 and ηcs = 0.001, respectively. 
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Figure 4 FNPN control for (a) link1, (b) link2 and (c) link3 for five epochs (see online version 
for colours) 
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Figure 4 FNPN control for (a) link1, (b) link2 and (c) link3 for five epochs (continued)  
(see online version for colours) 

 
(c) 

Figure 5 FNPN control simulation results of position response and MSE for link1, link2 and 
link3, (a) FNPN control for link1 for 100 epochs (b) FNPN control for link2 for  
100 epochs (c) FNPN control for link3 for 100 epochs (d) MSE for link1 after  
100 epochs (e) MSE for link2 after 100 epochs (f) MSE for link1 after 100 epochs  
(see online version for colours) 
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Figure 5 FNPN control simulation results of position response and MSE for link1, link2 and 
link3, (a) FNPN control for link1 for 100 epochs (b) FNPN control for link2 for  
100 epochs (c) FNPN control for link3 for 100 epochs (d) MSE for link1 after  
100 epochs (e) MSE for link2 after 100 epochs (f) MSE for link1 after 100 epochs 
(continued) (see online version for colours) 

 
(b) 

 
(c) 
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Figure 5 FNPN control simulation results of position response and MSE for link1, link2 and 
link3, (a) FNPN control for link1 for 100 epochs (b) FNPN control for link2 for  
100 epochs (c) FNPN control for link3 for 100 epochs (d) MSE for link1 after  
100 epochs (e) MSE for link2 after 100 epochs (f) MSE for link1 after 100 epochs 
(continued) (see online version for colours) 

 
(d) 

 
(e) 
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Figure 5 FNPN control simulation results of position response and MSE for link1, link2 and 
link3, (a) FNPN control for link1 for 100 epochs (b) FNPN control for link2 for  
100 epochs (c) FNPN control for link3 for 100 epochs (d) MSE for link1 after  
100 epochs (e) MSE for link2 after 100 epochs (f) MSE for link1 after 100 epochs 
(continued) (see online version for colours) 

 
(f) 

The robotic system is influenced by some of the important parameters that affect its 
control performance such as the friction term ( )f θ  the external disturbance tl(t) and the 
parameter changing of 3rd link’s mass m3. For the two simulation examples, there are 
three situations including: 

• nominal situation (m3 = 1 kg and N = 0) at starting 

• parameter changing position takes place at t = 15 sec (m3 = 2 kg) 

• disturbance, besides, friction forces are also counted in this simulation 

• sampling time Ts = 0.01 sec. 

Hence, 

[ ]( ) 5sin(5 ) 3sin(5 ) sin(5 ) T
lt t t t t=  

( ) ( ) ( ) ( )1 1 2 2 3 320 .8 10 .4 5 .2
T

f θ θ sign θ θ sign θ θ sign θ = + + +         

( )( )lN t t f θ= +   

max min
max ( 1)

1
n n

ij n
i

X Xm X i
N

−= − −
−

 (24) 
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max min2
1

n n
ij

i

X Xs
N

−=
−

 (25) 

where Xnmax, Xnmin are the pre-specified maximum and minimum bounds of nth input to 
FNPN. Figures 4(a) to 4(c) show the earlier FNPN control after five epochs for  
three links while Figures 5(a) to 5(f) are shown the FNPN the control position response 
and mean square error (MSE) for link1, link2 and link3, respectively for 100 epochs. 
Table 1 shows the gradient MSE for the control simulation result. 

Figure 4 show the earlier FNPN control after five epochs for three links. 
Table 1 Mean square error 

Link1 position Link2 position Link3 position 
0.0078 0.0075 0.0063 

5 Conclusions 

In this paper, an FNPN controller utilised for controlling the three-links robot arm 
without identification. The supervised gradient-descent algorithm is utilised to learning 
the parameters of the FNPN controller to get an optimal response with minimum error. 
The online tuning algorithm is used according to the fitness function to get a recurrent 
gradient vector. This paper proved that the convergence of errors for control of  
three links using the FNPN controller is very good. For this reason, the state returned to 
the error is large at starting of control, this makes the threshold equal to 0 (dth = 0) to fire 
more rules, when the error is reducing the threshold is increase. This reduces the firing 
rules to decrease the computation this is useful in real-time control and produces a fast 
response in the nonlinear control systems. 
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