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Abstract: In order to realise the high-velocity and high-precision motion of the 
multi-axis motion system, a numerical integration-like time-optimal trajectory 
optimisation algorithm combined with iterative learning is proposed. Based on 
the established dynamic model of the multi-axis motion system, the 
mathematical model with time optimisation as the objective function is derived 
under kinematics and dynamics constraints. The planned trajectory is 
discretised and the uniform acceleration equation (SUVAT) between any two 
adjacent discrete points is assumed so that pseudo-velocity planning of the 
phase plane is carried out by SUVAT equation instead of numerical integration 
method, after which the optimal solution satisfying the constraints can be 
obtained. In order to improve the dynamic model and reduce the errors between 
the calculated and the actual measured torques, a PD-type iterative learning 
method with forgetting factor is used to continuously update the dynamic 
model. 

Keywords: high-velocity; high-precision; multi-axis motion system;  
time-optimal control; dynamic model; phase plane; numerical integration; 
iterative learning; forgetting factor. 
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1 Introduction 

After years of development, modern CNC systems such as turning and milling integrated 
machining centres have multi-axis simultaneous machining functions, which can achieve 
complex curve surface machining. However, there are always a lot of empty strokes in 
the processing of complex objects, which makes the control of processing velocity an 
urgent problem to be solved because faster processing velocity can improve the 
processing efficiency and shorten the production cycle of products. In terms of this 
problem, a large number of time-optimal trajectory planning methods have been studied 
and significant research progress has been made. Generally speaking, time-optimal 
trajectory planning can be divided into three stages: motion planning (Ziadi et al., 2021; 
Mohamed et al., 2018; Ouda et al., 2018), trajectory optimisation and trajectory tracking 
(Bellahcene et al., 2021; Guevara et al., 2019; Capito et al., 2016). This paper mainly 
focuses on trajectory optimisation, that is, each axis is required to work at the maximum 
allowable velocity under the critical constraints of a multi-axis motion system to achieve 
high velocity while ensuring high accuracy. 

Time-optimal trajectory optimisation is a single-objective nonlinear optimisation 
problem with multiple constraints, which can be solved by two methods. Specifically, it 
has been proved to be effective in solving this problem through complex mathematical 
optimisation methods, such as the dynamic programming method (Kaserer et al., 2018), 
the sequential quadratic programming (SDP) method (Debrouwere et al., 2013). 
Although the mathematical optimisation method can be applied to nonlinear models, it 
requires too much calculation. Therefore, numerical integration method was proposed by 
Bobrow et al. (1985), which obtains the optimal velocity control curve satisfying the 
torque constraint by finding the conversion curve in the phase plane. On this basis, 
Constantinescu and Croft (2000) increased the constraint of the torque change rate to 
obtain a smoother planning curve. After that, Slotine and Yang (2002) proposed a new 
numerical integration method to make the planning time shorter. Mattmuller and Gisler 
(2009) proposed a pseudo-velocity optimisation method based on the phase plane 
iteration method. Although the numerical integration method has less calculation, it often 
needs to linearise the dynamic model (Reynosomora et al., 2013) to simplify the 
integration calculation, such as ignoring viscous friction, which leads to the inaccuracy of 
the dynamic model. 

Therefore, a numerical integration-like method is proposed to improve the accuracy 
of the dynamic model by considering the nonlinear term of the dynamic model. The 
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method not only retains the advantage of the small amount of calculation, but also can 
calculate the nonlinear model, which is realised by replacing the numerical integration 
method with the uniform acceleration equation (SUVAT) for pseudo-velocity planning 
on the phase plane. 

In addition, although the dynamic model accuracy of the proposed method is 
improved compared with the traditional numerical integration method, it still has the 
possibility of further improvement for the multi-axis motion system will be subject to 
unavoidable disturbance forces, such as disturbances caused by mover current and stator 
magnetic field distortion, the change of mechanical parameters, time delay disturbance 
and so on. Therefore, considering the repetitive work characteristics of multi-axis motion 
systems such as advanced CNC machine tools, a compensation term is added to the 
dynamic model and then updated continuously by using iterative learning algorithm to 
further improve the dynamic model accuracy. 

The rest of this paper is organised as follows. Section 2 studies the dynamic model of 
multi-axis motion system and derives the time-optimal mathematical model based on it. 
Section 3 proposes a time-optimal trajectory optimisation method similar to numerical 
integration and an iterative learning algorithm combined with it. Section 4 shows the 
experimental results of dynamic parameter identification and trajectory optimisation. 
Section 5 summarises this paper. 

2 Time-optimal mathematical model 

Time-optimal trajectory optimisation is essentially an optimisation problem, which can 
generally be solved by two steps. Initially, it is necessary to establish a mathematical 
model of practical problems, including selecting optimisation variables, determining the 
objective function and giving constraints, which are the main content of this section. In 
addition, appropriate optimisation methods should be applied to solve the mathematical 
model, which will be discussed in Section 3. 

2.1 Dynamic model of multi-axis motion system 

2.1.1 Dynamic modelling of multi-axis motion system 
The schematic diagram of the single-axis transmission of the multi-axis motion system is 
shown in Figure 1. The motor output shaft is connected to the ball screw through a 
coupling, and the ball screw is installed on the bearings at both ends of the base. The ball 
screw nut or the slider is fixedly connected to the table with a bolt, so that the table can 
moves linearly along the linear guide. 

Figure 1 Single-axis transmission diagram 
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The single-axis dynamic structure model of the multi-axis motion system (Zhang et al., 
2017) is shown in Figure 2. The contact surfaces between the coupling, bearing, ball, 
table and linear guide are regarded as a spring damping system. 

Figure 2 Single-axis dynamic structure model 

 

Driven by the motor torque τm, the motor rotation angle is qm and the screw rotation angle 
is qs. After the ball transmission, the relative rotation angle of the screw nut is qn, and the 
displacement of the table fixedly connected to the screw nut is u. In addition, considering 
the large shear and torsional stiffness, the screw can be regarded as a simply supported 
beam that does not deform and the radial displacement of the whole lead screw is 
consistent due to the bearing, that is, vb(x) = vb. The displacement in the vertical direction 
of the workbench in contact with the linear guide is v. 

Because the established dynamic structure model has non-conservative forces such as 
damping force, motor driving force and Coulomb force on the table, the complete 
Lagrange’s second equation can be applied for analysis. 

+ + i
i i i i

d T T U R Q
dt q q q q

∂ ∂ ∂ ∂  − = ∂ ∂ ∂ ∂ 
 (1) 

where T is the system kinetic energy, U is the system potential energy, qi is the 
generalised coordinate, R is the dissipation function, and Qi is the generalised force in qi. 

The system kinetic energy includes the moment of inertia of the motor, the coupling 
and the screw, the kinetic energy of the ball screw nut and the table. 

( ) ( ) ( ) ( )2 2 2 2
1 2 1 2 1 2

1 1 1 1+ + + + + + +
2 2 2 2m c m c s sT J J q J J q m m u m m v=  (2) 

where Jm, Jc1 and Jc2 are the moment of inertia of the motor, the coupling at the motor end 
and the coupling at the screw end respectively, m1 and m2 are the mass of the ball screw 
nut and the table respectively. · is the derivative of time t. 

The system potential energy includes the elastic potential energy of the springs. 

( ) ( ) ( )2 2 2 2
lg

1 1 1 1+ + +
2 2 2 2c m s s s n lb rb bU k q q k q q k k v k v= − − −  (3) 
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where kc is the stiffness of the coupling, ks and klg are the stiffness of the contact surface 
between the screw and the nut and the contact surface of the table and the linear guide 
respectively, klb and krb are the radial stiffness of the left and right bearings respectively. 

The system dissipation function includes concentrated damping and structural 
damping of ball screws. 

( ) ( )2 2 2
lg

1 1 1+ + + sgn( )
2 2 2c m s s s n cR C q q C q q C u f u= − − ⋅  (4) 

where Cc is the damping coefficient of the coupling, Cs and Clg are the damping 
coefficient of the contact surface between the screw and the nut and the contact surface 
between the table and the linear guide, fc is the coulomb friction coefficient between the 
table and the linear guide. 

From equations (1) to (4), the dynamic model can be obtained as: 

( ) ( ) ( ) ( )
( )

1 2 1 2 1 2

lg lg

+ + +
+ + + + + sgn( )

m m c m c s s

lb rb b c

τ J J q J J q m m u m m v
k k v k v C u f u

= + + + +
⋅

 (5) 

In practical applications of multi-axis motion systems such as CNC machine tools, qm is 
measurable while qs, qn and u are immeasurable. Therefore, qs and qn can be 
approximately substituted for qm while u can be expressed by qn as u = qnph/2π where ph 
is the helical pitch of the screw. In addition, since the displacement of vibration vb and v 
are too small to measure in practical application, they are approximately fitted by a 
constant term C. In summary, the dynamic model can be simplified as: 

m bτ H= ⋅ β  (6) 

where [ ] [ ]( ) 1 , ,T
b m m m c cH q sign q q M f f C= =β  fv = ph · Clg/2π, M = Jm + 

Jc1 + Jc2 + Js + ph (m1 + m2)/2π, 1 2 lg( + ) + ( + ) + .lb rb bC m m v k k v k v=  
Next, s is defined as the path of the table of the multi-axis motion system, then the 

motor angle can be expressed as the function of s, i.e., q(s). At the same time, s is the 
function of time t. Generally speaking, for any trajectory starting at t = 0 and ending at  
t = T, s(0) = 0 ≤ s(t) ≤ 1 = s(T) (Xiao et al., 2012) is assumed. In order to facilitate the 
trajectory planning in phase plane ( , ),s s  the motor angular velocity ( )q t  and angular 
acceleration ( )q t  are transformed into the function of the table path scalar s. 

( ) ( ) ( )q t q s q s s′= =  (7) 

2( ) ( ) ( ) + ( )q t q s q s s q s s′ ′′= =  (8) 

where 
2 2 2 2/ , / , ( ) ( ), ( ) ( ) / .s ds dt s d s dt q s q s q s q s s′ ′′= = = ∂ = ∂ ∂  

By substituting equation (7) and (8) into equation (6), the path coordinate dynamic model 
of multi-axis motion system can be obtained as 

2( ) + ( ) + ( ) + ( )τ m s s v s s f s s c s= ⋅ ⋅ ⋅  (9) 

where ( ) ( ), ( ) ( ), ( ) ( ), ( ) sgn[ ( )] + .v cm s M q s v s M q s f s f q s c s f q s C′ ′′ ′ ′= ⋅ = ⋅ = ⋅ = ⋅  
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2.1.2 Dynamic parameter identification of multi-axis motion system 
The dynamic parameter identification process is shown in Figure 3. First, the established 
dynamic model is analysed to design two excitation trajectories and the parameter 
estimation method is selected based on the minimum dynamic parameter set. Then the 
motor moves along the designed excitation trajectories and the data including the motor 
angles and torques can be collected. One set of data is processed by the selected 
parameter estimation method to obtain the multi-axis motion system dynamic parameters. 
The other set of data is used to verify the estimated parameters, analyse the model errors, 
and judge whether the design requirements are met. If the requirements are met, the 
identification ends, otherwise, the dynamic model should be rebuilt or the excitation 
trajectory should be selected again. 

Figure 3 Principle diagram of dynamic parameter identification 

 

In Section 2.1.1, the dynamic model has been established and the minimum dynamic 
parameter set has been determined. The excitation trajectory is designed by using the 
finite Fourier series with the basic frequency ω, which is related to the natural frequency 
of the system. 

0
1

( ) sin( ) cos( ) +
iN i i

k k
i i

k

a b
q t ωkt ωkt q

ωk ωk=

= −  (10) 

Each Fourier series has 2 × Ni + 1 parameters, which include the amplitudes andi i
k ka b   

(k = 1, …, Ni) of the sine and cosine functions and the initial configuration of the motor 
qi0 when the excitation occurs. Ni is the order of Fourier series. Let 

{ }1 1 1, , , , , 1, , ,i i i i
Niδ a a b b i n= =  where n| is the number of axes of the motion 

system. The condition number of the observation matrix A(δ, ω) is selected as the 
optimisation criterion so the design of the excitation trajectory can be regarded as a 
constraint optimisation problem. 

( )
( )
( )

min max

max max

max max

ˆ arg min ( ( , ))
,

with ,
,

for 0 /

δ

s

s

s

f s

δ cond A δ ω
q q pT δ q
q q pT δ q
q q pT δ q
p T T

=

 ≤ ≤
− ≤ ≤
− ≤ ≤
≤ ≤

 (11) 
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Ts is the sampling period of data collection in the experiment. The base frequency ω is 
fixed and its value depends on the required spectrum and data acquisition capabilities. 
qmin, qmax, max maxandq q  are the vectors of the minimum and maximum values of the 
motor rotation angle, the maximum angular velocity and the maximum angular 
acceleration respectively. 

The recursive least square parameter estimation algorithm (RLS) is used to estimate 
the dynamic parameters. Then the recurrence equation can be established according to 
equation (6) as 

1

ˆ ˆ ˆ( ) ( 1) + ( ) ( ) ( ) ( 1)

( ) ( 1) + ( ) ( ) ( 1) ( )

( ) ( ) ( ) ( ) 1

m b

T
b bb

T
b

k k K k τ k H k k

K k P k H k H k P k H k

P k I K k H k P k

−

 = − − − 

= − −  
= − −  

β β β

 (12) 

The initial state P(0) and ˆ(0)β  can be obtained from a batch of data 
0 0(1), , ( ) and (1), , ( )m m m mq q L τ τ L  by using a one-time completion algorithm. 

[ ] 1(0) Φ Φ
ˆ(0) (0)Φ Γ

T

T

P

P

−
=

=β
 (13) 

0 0Φ [ (1), , ( )] , Γ [ (1), , ( )] ,T T
b b m mH H L τ τ L= =  L0 is the data length. 

2.2 Time-optimal mathematical model 

Given the motor velocity limits max minand ,q q  the velocity limit inequality can be 
obtained as: 

min max( )q q s q≤ ≤  (14) 

By substituting equation (7) into equation (14), the velocity limit inequality can be 
rewritten as: 

min max/ ( ) / ( )q q s s q q s′ ′≤ ≤  (15) 

Given the motor acceleration limits max max min, and ,q q  the acceleration limit inequality 
can be obtained as: 

min max( )q q s q≤ ≤  (16) 

By substituting equation (8) into equation (16), the acceleration limit inequality can be 
rewritten as: 

( ) ( )2 2
min max( ) / ( ) ( ) / ( )q q s s q s s q q s s q s′′ ′ ′′ ′− ≤ ≤ −  (17) 

According to equation (9) and the given motor torque limits τmax and τmin, the torque limit 
inequality can be obtained as: 

2
min max( ) + ( ) + ( ) + ( )τ m s s v s s f s s c s τ≤ ≤  (18) 



   

 

   

   
 

   

   

 

   

   98 T. Zhang et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

The optimisation goal of time-optimal trajectory planning is to minimise the total 
execution time of the trajectory, so the objective function can be selected as: 

0
min 1

T
T dt=   (19) 

Replace the micro element dt with ds, the objective function can be expressed as: 
1

0

1minT ds
s

=   (20) 

Combining the objective function (20) and constraints (15), (17), and (18), the optimal 
objective mathematical model can be determined as: 

( ) ( )

1

0

min max

2 2
min max

2
min max

1min

(0) 0 ( ) 1
(0) 0 ( ) 1

/ ( ) / ( )s.t.
( ) / ( ) ( ) / ( )

( ) + ( ) + ( ) + ( )

T ds
s

s s T
s s T
q q s s q q s
q q s s q s s q q s s q s
τ m s s v s s f s s c s τ

=

= =
 = = ′ ′≤ ≤
 ′′ ′ ′′ ′− ≤ ≤ −
 ≤ ≤



 (21) 

3 Numerical integration-like optimisation method 

In Section 2, the dynamic model of multi-axis motion system includes the nonlinear term 
of viscous friction. Compared with the linear dynamic model which ignores viscous 
friction, the nonlinear dynamic model undoubtedly increases the computational 
complexity of solving the time-optimal mathematical model. However, a more accurate 
dynamic model is conducive to get a better solution. In addition, using the torque 
calculated by the dynamic model as the feed-forward torque and combining with the 
feedback torque to design the control law can improve the control accuracy. 

When it comes to solve the time-optimal mathematical model, the mathematical 
optimisation methods will lead to problems such as large amount of calculation while 
numerical integration methods are not suitable for nonlinear models. Therefore, in order 
to solve the nonlinear constrained time-optimal mathematical model and ensure the 
calculation efficiency, a numerical integration-like optimisation method is proposed. The 
method discretises the trajectory and assumes that the motion between any two adjacent 
discrete points is uniformly accelerated so that the uniform acceleration equation can be 
used to replace numerical integration method for planning. 

Under the condition of ensuring the chord height error, the path of the table is 
discretised into N points. 
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( ) ( ) ( ) ( )
( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1

1

1

2 2

2

1min

0 1
0 1

/ /

s.t. / /

+ + +
for 1, ,

N

k

n

n

k k k k k

k k k k k k kk k

k k k k k k k kk

T
s

s s
s s
q s q s s q s q s

q s q s s q s s q s q s s q s

τ s m s s v s s f s s c s τ s
k N

=

= =
 = =
 ′ ′≤ ≤
 ′′ ′ ′′ ′− ≤ ≤ −
 ≤ ≤
 =



 (22) 

with () and ()  standing for the respective lower and upper limit. The first derivatives 

( )kq s′  and second derivatives ( )kq s′′  of the motor rotation angle at each discrete point 
can be obtained according to difference principle. 

3.1 Maximum velocity limit curve 

According to equation (9), the dynamic equation at any discrete point sk after 
compensation can be expressed as: 

( ) ( ) ( ) ( ) ( ) ( ) ( )2+ + + + for 1, ...,i k i k k i k i k k i k i k i kkτ s m s s v s s f s s c s δ s τ s i n≤ ≤ =  (23) 

where n is the degree of freedom of the multi-axis motion system, δi(sk) is the 
compensation term of the dynamic model, which can be updated by iterative learning 
algorithm. The specific algorithm will be studied in Section 3.3. 

When mi(sk) ≠ 0, the upper limit ( ),acc k ks sα  and lower limit ( ),acc k ks sβ  of pseudo 
acceleration under kinematic constraint (acceleration constraint) can be obtained 
according to equation (17) while the upper limit ( ),tor k ks sα  and lower limit 

( ),tor k ks sβ  of pseudo acceleration under dynamic constraint (torque constraint) can be 
obtained according to equation (18). Therefore, the upper and lower limits of pseudo 
acceleration under two kinds of constraints can be expressed as: 

( ) ( ) ( )( ), min , , ,k k tor k k acc k ks s s s s s=α α α  (24) 

( ) ( ) ( )( ), max , , ,k k tor k k acc k ks s s s s s=β β β  (25) 

When mi(sk) = 0, sk is a zero inertia point. At this time the pseudo  
acceleration is only determined by the kinematic constraints, that is 

( ) ( ) ( ) ( ), , , , , .k k acc k k k k acc k ks s s s s s s s= =α α β β  
It has been shown (Bobrow et al., 1985) that the maximum velocity limit curve under 

the acceleration and torque constraints is the curve composed of max,ks  which satisfies 
equation (26) on the phase plane ( , ).s s  

( ) ( ), ,k k k ks s s s=α β  (26) 
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Equation (26) is usually nonlinear, which results in a lot of time to solve it. Therefore, the 
golden section method is considered to get the maximum velocity limit curve MVCtor&acc 
under the acceleration and torque constraints. Then combining the maximum velocity 
limit curve MVCvel obtained from the velocity constraint (15), the maximum velocity 
limit curve MVC = min(MVCtor&acc, MVCvel) satisfying the three constraints can be 
obtained finally. 

3.2 Time-optimal trajectory optimisation algorithms 

In order to improve the calculation efficiency, the uniform acceleration equation can be 
used instead of the numerical integration method to plan time-optimal trajectory of 
nonlinear dynamic model. The algorithm discretises the trajectories and assumes that any 
adjacent discrete points are uniformly accelerated with the maximum or the minimum 
pseudo-acceleration. According to the uniform acceleration equation, we can get the 
following equation 

( ) 2
max/min, 1 1 12 +k k k k ks s s s s− − −= −  (27) 

where ( ) ( )max, min,, , , .k k k k k ks s s s s s= =α β  
The process of time-optimal trajectory optimisation algorithm on the phase plane 

( , )s s  is shown in Figure 4, which consists of six steps. 

Step 1 Calculate forwards, (i.e., increasing s) by the equation (27) from the initial point 
(0, 0) to the discrete point sa with maximum pseudo acceleration max,1.s  If a = n, 
go to step 6; if it intersects with MVC, that is, ( ),a as MVC s≥  go to step 2. The 
obtained planning curve is α – profile. 

Step 2 Calculate ( )2 2
, 1, , 1 / 2( ),MVC a a aMVC a MVC as s s s s −−= − −  where MVCs  is the  

pseudo-velocity on MVC. If , , , ,or ,MVC a MVC a MVC a MVC as s s s< >  go to step 3, 
where , ,, andMVC a MVC as s  represent the upper and lower limits of the pseudo 
acceleration obtained by equation (24) and (25) when the pseudo displacement 
is sa and the pseudo velocity is , ;MVC as  otherwise search forward along MVC to 
discrete point sb. If b = n, go to step 6; if , , , ,or ,MVC b MVC b MVC b MVC bs s s s< >  
interrupt search and let a = b. The obtained planning curve is γ – profile. 

Step 3 Calculate ( )2 2
, 1, , 1 / 2( ).MVC a a aMVC a MVC as s s s s −−= − −  If , , ,MVC a MVC as s>  go to 

step 4; otherwise if , , ,MVC a MVC as s<  search forward along MVC to discrete 
point sc. If , , , ,MVC c MVC c MVC cs s s< <  go to step 5; otherwise if , , ,MVC c MVC cs s>  
use Algorithm 1 to calculate backwards from point sc until it intersects the 
planned curve and calculate forward to point sd with the maximum pseudo 
acceleration. If d = n, go to step 6; if ( ),d ds MVC s≥  let a = d and go to step 2. 
The obtained planning curve is δ – profile. 
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Figure 4 Flow diagram of time-optimal trajectory optimisation algorithm (see online version  
for colours) 
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Step 4 Calculate forwards from point sa to point se with the maximum pseudo 
acceleration max, .as  If e = n, go to step 6; if it intersects with MVC, that is 

( ),e es MVC s≥  let a = e and go to step 2. The obtained planning curve is  
α – profile. 

Step 5 Calculate backwards, (i.e., decreasing s) from point sc by using Algorithm 1 
until the curve intersects with the planned curve. The obtained planning curve is  
β – profile. 

Step 6 Calculate backwards, (i.e., decreasing s) from point (1, 0) by using Algorithm 1 
until the curve intersects with the planned curve. The obtained planning curve is 
β – profile. Finally, the obtained curvesα – profile, β – profile, γ – profile and  
δ – profile are combined into a curve in order, which is the time-optimal 
planning curve. 

Algorithm 1 The pseudo velocity interval 1( , )k ks s−  of any two discrete points sk–1 and 
sk is equally divided into m parts, obtaining m + 1 points which are 
recorded as ( ), ( 1), ..., (0).k k ks m s m s−  Start searching from 1(0)ks −  along 
the s  axis until finding i that satisfies ( , ( 1)) ( , ( 1))com k k k ks s s i s s i− < −β  
and ( , ( )) ( , ( )),com k k k ks s s i s s i> β  i.e., finding the interval ( ( 1), ( ))k ks i s i−  
containing ( )ks x  who satisfies ( , ( )) ( , ( )),com k k k ks s s x s s x= β  and then use 
the golden section method to obtain ( ).ks x  

3.3 Iterative learning algorithm 

In order to further improve the dynamic model accuracy, iterative learning algorithm is 
applied to update the compensation term of the dynamic model. The control block 
diagram is shown in Figure 5. First of all, the desired positions and feed forward torques 
are obtained based on the dynamic model by using the time-optimal trajectory 
optimisation algorithm proposed in Section 3.2. Then the motor feedback positions and 
actual torques during the experiments are used in iterative learning algorithm to modify 
the dynamic model. After that, the trajectory is optimised again based on the revised 
model. Follow this process and the time-optimal trajectory is gradually close to the 
optimal solution. 

When the bandwidth of the velocity loop is at least three times larger than that of the 
position loop and the step response does not oscillate, the velocity loop can be simplified 
as a unit gain (Shih et al., 2002). Therefore, the plant can be simplified as shown in 
Figure 5, where Kp is the position loop gain and T is the sampling period of the system. 
To sum up, the input-output relationship of the system can be written as: 

, , , , ,
1 +
+ +

p
i l fb i l i l r

p p

K
s τ s

Ts K Ts K
=  (28) 

where i is the serial number of the axis, l is the number of iterations, si,l,fb is the feedback 
position, si,l,r is the desired position, τi,l is the calculated torque. 

The open-closed loop PD type iterative learning method with forgetting factor is 
designed as shown in Figure 5, whose control law is: 
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{ }, +1 , ,0 , ,[1 ( )] + ( ) + +i l i l i p i l d i lτ Q r l τ r l τ L e L e= −  (29) 

where r(l) is the forgetting factor, Q, Lp and Ld are gains, ei,l = si,l,fb – si,l,r, 
, , 1

, .i l i l
i l

e ee
T

−−
=  

By analysing the lifted matrix (Barton and Alleyne, 2007) of equation (28) and (29), the 
lifted expression of si,l,fb and τi,l+1 can be obtained as: 

, , ,
ˆˆˆ ˆ +i l fb i ls Pτ d=  (30) 

( ), +1 , ,ˆ ˆ ˆˆ ˆ +i l l i l i lτ Q R τ Le=  (31) 

where 

, , , 1

, , , 2 1
, , ,

, , , 1 1

(1) (1) 0 0
(2) (2) 0ˆˆ ˆ, , ,

( ) ( 1)

i l fb i l

i l fb i l
i l fb i l

i l fb i l n n

s τ p
s τ p p

s τ P

s n τ n p p p−

     
     
     = = =
     
     −    

 

1

+ 0 0 0

1 0 0 + 0 0
( ) 1 ( ) 0ˆ ˆ ˆ ˆ, , and

0 0 + 0( ) 1 ( )

0 0 +
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d d
p

l l

d
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d d
p

LL
T

L LL
T Tr l r l

R L R L
LLr l p r l
T

L LL
T T

−

 
 
 
   −  −   = =   
  −   
 
 −  

are n × n matrices. 
The lifted expression of error signal is: 

( ), , , , , , , ,
ˆˆˆ ˆ ˆ ˆ ˆ +i l i l r i l fb i l r i le s s s Pτ d= − = −  (32) 

Combine equations (30) ~ (32), the lifted expression of τi,l+1 can be expressed as: 

( ), +1 .ˆ ˆ ˆ ˆˆˆ +i l l i lτ Q R LP e W= −  (33) 

For any given initial control and initial state of each operation process, the necessary and 
sufficient condition for the iterative learning algorithm to converge uniformly is: 

( )( )ˆ ˆ ˆ 1 [1, ]k lλ Q R LP k n− < ∀ ∈  (34) 

According to the path coordinate dynamic model (9), the dynamic equation of any point 
sk on the trajectory after discretisation can be expressed as: 

( ) ( ) ( ) ( ) ( ) ( )2
, +1 , +1 , +1 , +1 , +1 , +1+ + + +i l k i l k k i l k i l k k i l k i l kkτ s m s s v s s f s s c s δ s=  (35) 

Further, iterative equation of the compensation term of the dynamic model can be 
obtained as: 
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( ) ( ) ( ) ( ) ( ) ( ) ( ){ }, +1 , ,0 , ,[1 ( )] + ( )i l k i l k i k p k i l k d k i l kδ s Q r l δ s r l δ s L s e s L s e s= − − −  (36) 

Figure 5 Iterative learning algorithm control block diagram 

 

4 Experimental verification and discussion 

As shown in Figure 6, the experimental platform is a multi-axis motion system, which is 
composed of X and Z axes in series. The types of the motors for the two axes are Delta 
ECMA-CA0604RS, which are driven by Delta ASD-A2-0421-E AC motion driver, and 
then their rotary motion is converted into linear motion of the worktable through the ball 
screw. The experiments of dynamic parameter identification and time-optimal trajectory 
optimisation are carried out on this platform. The excitation trajectory optimisation, 
dynamic parameter identification, time-optimal trajectory optimisation and iterative 
learning algorithm of multi-axis motion system are calculated by MATLAB R2018b. The 
control system of the platform is built on Windows 7 64-bit system and uses EtherCAT 
for communication. Its control cycle and sampling cycle are both 1ms. Besides, the 
industrial computer model is DT-610P-ZQ170MA, the CPU is Intel Core i7-4770, the 
highest main frequency is 3.40GHz, and the operating memory is 8 GB. 

4.1 Dynamic parameter identification experiment 

Based on equation (11) in Section 2.1.2 and the SDP algorithm, a MATLAB program is 
designed to obtain the optimal excitation trajectory, whose parameters δ̂  are shown in 
Table 1. 
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Figure 6 Experimental platform (see online version for colours) 

 

Table 1 Excitation trajectory parameters 

Parameters X-axis Z-axis  Parameters X-axis Z-axis 
qi0 (rad) 14.702 9.043  ~ ~ ~ 

1
ia  –12.412 16.861  

1
ib  –0.397 –7.044 

2
ia  –2.012 –9.419  

2
ib  3.680 –5.035 

3
ia  –2.288 –1.306  

3
ib  –20.433 3.770 

4
ia  26.881 11.015  

4
ib  –16.883 9.685 

5
ia  8.515 6.755  

5
ib  –4.404 –2.110 

6
ia  –1.159 –3.296  

6
ib  19.220 –6.619 

Let the multi-axis motion system move along the excitation trajectory and then the 
collected motor angles and actual torques can be processed by using the Butterworth 
filter and central difference method. The initial states of dynamic parameters are 
calculated according to equation (13), and the dynamic parameters are calculated 
iteratively according to equation (12). The iterative processes are shown in Figure 7. 

Table 2 Errors of the calculated and actual torques of the motors 

 X-axis Z-axis 
IAE 7.2% 14.2% 
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For another verification trajectory, the calculated torques of each axes are determined by 
using the identified dynamic parameters, which are compared with the collected actual 
torques as shown in Figure 8. The blue curve represents the actual torques, the red curve 
represents the computed torques and the green curve represents the errors of the torques. 
It can be seen that the calculated torque curve of each axis is basically consistent with the 
actual torque curve, but the difference between them is obvious near the reverse points of 
the axis torques caused by the noise of acceleration signal, the inaccurate inertia matrix 
identification in the process of dynamic parameter identification and the reverse friction 
force. In general, the integral absolute errors (IAE) of the two axis torques are shown in 
Table 2, where the value of X axis is 7.2% and that of Z axis is 14.2%. 

Figure 7 Iterative processes of dynamic parameters (see online version for colours) 
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Figure 8 Comparison of torques of the axes in the identification experiment, (a) X-axis torques, 
(b) Z-axis torques (see online version for colours) 

 
(a) 

 
(b) 

4.2 Time-optimal trajectory optimisation experiment 

There are several ways to define geometric trajectory, including polynomial, the 
combination of straight line, arc and cycloid (Müller et al., 2007) and spline (Bobrow  
et al., 1985), among which spline is more suitable for describing the motion of platform 
(Oberherber et al., 2015). In the practical application of multi-axis motion system, 
machining paths are always determined by multi-purpose spline curves, most of which 
are NURBS curves. Considering the complexity and variability of the actual machining 
paths, the NURBS curve interpolator (Cheng et al., 2002) is used to generate a ‘star 
shaped’ curve path with variable curvature to simulate the machining path, which is used 
for verifying the effectiveness of the algorithm proposed. According to the effective 
stroke of the experimental platform, the selected parameters of the star curve are shown 
in Table 3, and the trajectory generated by the interpolation is shown in Figure 9. 
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Table 3 ‘Star curve’ parameters 

Number k = 2 
Node vector U = {0, 0, 0, 1/9, 2/9, 3/9, 4/9, 5/9, 6/9, 7/9, 8/9, 1, 1, 1} 
Serial number 
of vertex 

Control point 
coordinates (mm) 

Weight 
factor 

 Serial number 
of vertex 

Control point 
coordinates (mm) 

Weight 
factor 

1 (0.0, 0.0) 1  6 (108.0, 0.0) 1 
2 (48.0, 24.0) 1  7 (144.0, –40.0) 0.7 
3 (48.0, 64.0) 1  8 (96.0, –32.0) 1 
4 (96.0, 32.0) 1  9 (48.0, –64.0) 1 
5 (144.0, 40.0) 0.7  10 (48.0, –24.0) 1 

Table 4 Trajectory execution time (ms) 

Sample 
size N 1,005 2,079 3,014 4,018 4,920 6,028 7,008 7,930 8,909 10,045 

c = 10 1,735 1,733 1,735 1,736 1,735 1,733 1,735 1,737 1,736 1,736 
c = 5 1,736 1,736 1,736 1,737 1,736 1,737 1,735 1,736 1,737 1,736 
c = 2 1,738 1,738 1,738 1,738 1,739 1,739 1,739 1,738 1,739 1,739 
c = 1 1,738 1,740 1,740 1,740 1,739 1,739 1,740 1,739 1,739 1,739 
c = 0.5 1,739 1,741 1,740 1,740 1,740 1,740 1,740 1,740 1,740 1,740 
c = 0.2 1,739 1,741 1,740 1,740 1,740 1,741 1,740 1,740 1,740 1,740 
c = 0.1 1,739 1,741 1,741 1,741 1,741 1,741 1,741 1,741 1,741 1,741 
c = 0.05 1,739 1,741 1,741 1,741 1,741 1,741 1,741 1,741 1,741 1,741 
c = 0.02 1,739 1,741 1,741 1,741 1,741 1,741 1,741 1,741 1,741 1,741 
c = 0.01 1,739 1,741 1,741 1,741 1,741 1,741 1,741 1,741 1,741 1,741 

It should be noted that the parameters such as the sample size and trajectory optimisation 
accuracy might influence the solution accuracy. Therefore, robustness of the optimisation 
algorithm should be analysed and a sensitivity research (Chai et al., 2020) of the sample 
size N and trajectory optimisation accuracy on the numerical integration-like (NI-like) 
method has been carried out. As is known, trajectory optimisation accuracy is related to 
curvature change rate c. For the trajectory shown in Figure 9, the trajectory execution 
time is generated by correspondingly selecting the values of N and c from the sets (1,005, 
2,079, 3,014, 4,018, 4,920, 6,028, 7,008, 7,930, 8,909, 10,045) and (10, 5, 2, 1, 0.5, 0.2, 
0.1, 0.05, 0.02, 0.01), which is shown in Table 4. It can be observed that the trajectory 
execution time does not vary significantly as the sample number N and curvature change 
rate c increase. Besides, the algorithm will converge gradually with the decrease of the 
curvature change rate of the trajectory when the sample size is given. This is because 
when the curvature change rate of the trajectory is small to a certain value which depends 
on the given trajectory, the discretised trajectory can completely describe the original 
trajectory. 

The optimal mathematical model (21) can actually be regarded as a convex-concave 
problem, which can be solved in several ways. An intuitive approach to solve the 
problem as a NLP (Steinhauser and Swevers, 2005) that can be solved by utilising, e.g., 
an interior point solver like IPOPT, which is used for comparing with NI-like algorithm 
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by solving the optimal path tracking problem. The calculation time of the two methods is 
shown in Figure 10 as the sample number N increases, where for every number of 
discretisation points and each method, the problem is solved ten times to take variations 
into account. 

Figure 9 Star curve (see online version for colours) 

 

Figure 10 Comparison of the calculation time of the NLP and the NI-like algorithm (see online 
version for colours) 

 

In either case, the calculation time scales approximately linearly with the number of 
discretisation points. However, compared with NLP method, the NI-like method has less 
calculation time which is crucial in case the problem size increases. 

As mentioned above, the star curve track with 6028 discrete points is selected for 
analysis. Figure 11 and Figure 12 show the planning results of NI-like algorithm and 
NLP algorithm in phase plane ( , )s s  respectively. The velocity, acceleration and torque 
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curves obtained by NI-like algorithm and NLP algorithm are shown in Figure 12, where 
the black dotted lines are upper and lower limit. It can be seen from Figure 13 that the 
velocity, acceleration and torque of the planning trajectory obtained by NI-like algorithm 
are all under the limited conditions, which verifies the effectiveness of the algorithm. 
However, since the NLP algorithm has no mandatory constraints, the velocity and torque 
of X axis and the velocity and acceleration of Z axis obtained by the algorithm exceed the 
limits. The same results can be seen from the phase planes of Figure 11 and Figure 12: 
some points obtained by NLP algorithm exceed the limit while the points obtained by  
NI-like algorithm are all under the limit curve and can fit it well. 

Figure 11 Trajectory planning results of NI-like algorithm in phase plane (see online version  
for colours) 

 

Figure 12 Trajectory planning results of NLP algorithm in phase plane (see online version  
for colours) 
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Figure 13 Velocity, acceleration and torque of planning track (see online version for colours) 

 

4.3 Iterative learning experiment 

For the star curve trajectory given in Section 4.2, the iterative learning algorithm in 
Section 3.3 is applied to continuously modify the dynamic model to optimise the  
time-optimal trajectory. The comparison between the optimisation results of the proposed 
iterative learning algorithm and the open-closed loop PD-type iterative learning method 
is shown in Figures 14, 15, and 16. 

Figure 14 Trajectory execution time (see online version for colours) 

 

Figure 14 shows the change of the trajectory execution time after ten iterations. It can be 
seen from the figure that compared with the 0th iteration; the trajectory execution time of 
PD type iterative learning method with forgetting factor is reduced by 3.5% while that of 
open-closed loop PD type iterative learning method is reduced by 3.0% after ten 



   

 

   

   
 

   

   

 

   

   112 T. Zhang et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

iterations. Furthermore, both algorithms are effective, and the PD-type iterative learning 
method with forgetting factor is slightly better than the open-closed PD-type iterative 
learning method. 

Figure 15 shows the change of root mean square (RMS) of the errors between the 
calculated torques and the actual torques after ten iterations. It can be seen from the 
figure that after ten iterations, the RMS of X and Z-axis torque errors of PD type iterative 
learning method with forgetting factor are reduced by 23.9% and 29.7% respectively 
while those of open-closed loop PD type iterative learning method are reduced by 22.3% 
and 28.8% respectively. In addition, the iterative effect of X-axis is not as ideal as that of 
Z-axis. This is because the Z-axis is mounted on the X-axis, and the movement of the  
Z-axis will have a mechanical effect on the X-axis, thus making the actual dynamic 
model of the X-axis is more complicated than that of the Z-axis. 

Figure 15 RMS of torque error, (a) RMS of X-axis torque error, (b) RMS of Z-axis torque error 
(see online version for colours) 

 
(a) 

 
(b) 
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Figure 16 shows the changes of RMS of tracking error of each axis in the process of ten 
iterations. It can be seen from the figure that the fluctuation ranges of the RMS of the X 
and Z-axis tracking errors by using PD type iterative learning method with forgetting 
factor are within 0.89% and 0.76% respectively while those by using open-closed loop 
PD type iterative learning method are within 1.32% and 0.85% respectively, which shows 
that both methods can guarantee the tracking errors. 

Figure 16 RMS of tracking error, (a) RMS of X-axis tracking error RMS of Z-axis tracking 
error/rad, (b) RMS of Z-axis tracking error (see online version for colours) 

 
(a) 

 
(b) 

As shown in Figure 15, it is clear that the torque errors on each axis of the first three 
iterations are decreased independently due to the improved feed forward torque accuracy, 
which means that the dynamic model accuracy is improved. However, because of 
interference factors such as the environment’s noise on the experimental platform, the 
model has been overcompensated since the fourth iteration, resulting in torque error 
fluctuations. In addition, the execution time of the trajectory optimised by proposed  
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NI-like algorithm is decreased as shown in Figure 14 while the tracking error fluctuates 
as shown in Figure 16 in actual operation process, which is a normal phenomenon of 
motor control: the motor tracking error will fluctuate as its velocity fluctuates. 

5 Conclusions 

A numerical integration-like time-optimal trajectory optimisation algorithm is proposed, 
which minimises the execution time of the motion along the geometric path while taking 
the motor limitations into account to ensure feasibility. The proposed algorithm not only 
retains the advantages of small amount of calculation of the numerical integration 
method, but also considers the nonlinear terms of the dynamic model. The PD-type 
iterative learning method with forgetting factor is used to continuously update the 
dynamic model and then performs trajectory optimisation by the proposed time-optimal 
trajectory optimisation algorithm. Experiments show that after ten iterations, the 
execution time of the selected star curve is reduced by 3.5%, and the torque errors of  
X-axis and Z-axis are reduced by 23.9% and 29.7% respectively. In the process of ten 
iterations, the fluctuation ranges of RMS of the X and Z-axis tracking errors are within 
0.89% and 0.76% respectively. Therefore, it is obvious that the proposed method can 
improve the working efficiency while ensuring tracking accuracy for repetitive operations 
of multi-axis motion system. 
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