Outbreak trends of fatality rate into coronavirus disease-2019 using deep learning Online publication date: Wed, 30-Nov-2022
by Robin Singh Bhadoria; Yash Gupta; Ivan Perl
International Journal of Medical Engineering and Informatics (IJMEI), Vol. 15, No. 1, 2023
Abstract: The World Health Organization (WHO) has declared the novel coronavirus as global pandemic on 11 March 2020. It was known to originate from Wuhan, China and its spread is unstoppable due to no proper medication and vaccine. The developed forecasting models predict the number of cases and its fatality rate for coronavirus disease 2019 (COVID-19), which is highly impulsive. This paper provides intrinsic algorithms namely - linear regression and long short-term memory (LSTM) using deep learning for time series-based prediction. It also uses the ReLU activation function and Adam optimiser. This paper also reports a comparative study on existing models for COVID-19 cases from different continents in the world. It also provides an extensive model that shows a brief prediction about the number of cases and time for recovered, active and deaths rate till January 2021.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Medical Engineering and Informatics (IJMEI):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com