
 
International Journal of Medical Engineering and
Informatics
 
ISSN online: 1755-0661 - ISSN print: 1755-0653
https://www.inderscience.com/ijmei

 
Harnessing the power of machine learning for breast anomaly
prediction using thermograms
 
Aayesha Hakim, R.N. Awale
 
DOI: 10.1504/IJMEI.2021.10040645
 
Article History:
Received: 12 August 2020
Last revised: 13 January 2021
Accepted: 15 January 2021
Published online: 30 November 2022

Powered by TCPDF (www.tcpdf.org)

Copyright © 2023 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijmei
https://dx.doi.org/10.1504/IJMEI.2021.10040645
http://www.tcpdf.org


   

  

   

   
 

   

   

 

   

   Int. J. Medical Engineering and Informatics, Vol. 15, No. 1, 2023 1    
 

   Copyright © 2023 Inderscience Enterprises Ltd. 
 
 

   

   
 

   

   

 

   

       
 

Harnessing the power of machine learning for breast 
anomaly prediction using thermograms 

Aayesha Hakim* and R.N. Awale 
Veermata Jijabai Technological Institute, 
H.R. Mahajani Marg, Matunga, Mumbai, Maharashtra 400019, India 
Email: aayesha.hakim@gmail.com 
Email: rnawale@el.vjti.ac.in 
*Corresponding author 

Abstract: Breast cancer is the most fatal cancer among women globally. 
Thermography provides an early sign of a developing abnormality based  
on the temperature changes in breasts. In this work, statistical features extracted 
from the segmented breast region are used for breast cancer prognosis.  
Machine learning algorithms like support vector machine (SVM), k-nearest 
neighbourhood (kNN), naïve Bayes and logistic regression without and with 
principal component analysis (PCA) as a pre-cursor are applied to the extracted 
data to classify thermograms as malignant or benign. Classification was also 
performed using tree-based classifiers, namely, decision tree and random forest. 
This work indicates that thermal imaging is capable of predicting breast 
pathologies coupled with machine learning algorithms. The PCA-SVM model 
has the best accuracy, sensitivity, specificity and AUROC of 92.74%, 77.77%, 
95.83% and 0.8699 respectively. Among tree-based classifiers, random forest 
classifier has the best accuracy, sensitivity, specificity and AUROC of 94.4%, 
97.5%, 78.72% and 0.97961 respectively with five-fold cross validation. Our 
study produced competitive results when compared to other studies in the 
literature. 

Keywords: breast cancer; breast thermography; infrared imaging; thermal 
imaging; machine learning. 
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1 Introduction 

According to the World Health Organization (WHO), one of the major reasons of death 
among women globally is breast cancer. It impacts 2.1 million women per year 
worldwide (Breast Cancer India, 2020). Approximately 60% deaths are due to delay in 
diagnosis. For better survival of patients and lesser use of the treatments, many imaging 
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systems are continually being developed to diagnose this disease as early as possible. 
Although, the gold standard for imaging breasts is mammography, its performance is 
poor in younger women with dense breasts (Keyserlingk et al., 1998). Patients who 
repeatedly undergo mammography, for evaluation of suspected lesions are exposed to 
harmful X-ray radiations (Khandpur, 1994). Being a structural imaging modality, 
ultrasound (USG) (Prasad and Houserkova, 2007) is used to find the size, shape, texture 
and density of a breast lump. Its diagnostic performance is poor in fatty breasts due to 
poor penetration of sound waves. Magnetic resonance imaging (MRI) (Prasad and 
Houserkova, 2007) machine uses a large magnet and radio waves to create images of 
detailed cross sections of the breast. MRI is often used in conjunction with 
mammography. Ng and Sudharsan (2001) suggested that human skin temperature pattern 
is symmetric bilaterally. Neo-angiogenesis (Ng et al., 2001) is the formation of new 
blood vessels that develop to feed cancerous tumours. Proliferating tissues generate more 
infrared radiation (Jones, 1998) which leads to high vascularity and production of heat 
which gets transferred to the skin surface and is detected by thermal imaging (Bronzino, 
2006). Cancer increases the breast temperature by 1°C–2°C which leads to asymmetrical 
patterns in the thermogram (Fok et al., 2002). Thermography is efficient in detecting  
non-palpable breast cancer early for women between 30–50 years with dense breasts. It is 
a private, painless, contactless process and does not expose the patient to any radiation 
hazard. This opens potential for thermography to be used as a safe risk marker for routine 
examination of breasts. 

1.1 Related works 

Clinical interpretation of breast thermograms is based on colour analysis (Shahari and 
Wakankar, 2015). Healthy breasts indicate low heat level and appear purple on a 
thermograph. Warmer areas emit more heat than cooler ones. Spots appearing red, 
orange, or yellow in a breast thermograph indicate the presence of abnormality as shown 
in Figure 1. US Food and Drugs Administration (FDA) (2011) in 1982 approved the 
usage of thermal imaging with mammography for the screening of breasts. 

Figure 1 Thermograms of (a) benign case and (b) malignant case (see online version for colours) 

 
(a)     (b) 

Source: Visual Lab (2014) 

Head et al. (2000) used infrared index as a metric to quantify breast abnormalities for 
infrared images of 220 patients. They analysed the possibility of a link between family 
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history or hormone therapy with the results obtained and the study showed no correlation. 
Qi et al. (2000) and Scales et al. (2004) used Canny edge detector and Hough transform 
(Borchartt et al., 2013) to identify breast contours. Edge detection gave false results in 
case of sagging breasts, i.e., flat lower part. Hough transform is a slow operation and 
takes more than 96% of processing time. Studies conducted in Acharya et al. (2012, 
2010), Madhu et al. (2016) and Wakankar and Suresh (2016) used an support vector 
machine (SVM) classifier by feeding it the extracted statistical and texture features from 
thermograms. The accuracy of classification was 88.1% in Acharya et al. (2012). The 
obtained sensitivity and specificity in Madhu et al. (2016) were 90% and 94.3% as 
compared to 85.71% and 90.48% from Acharya et al. (2010). A similar work (Borchartt 
et al., 2011) reported the use of a free LibSVM classifier. Kuruganti and Qi (2002) used 
the extracted features from thermograms to measure the asymmetry between left and 
right breasts using K-means clustering and k-nearest neighbourhood (kNN) methods. 
However, the dataset used was too small to confirm their results. A case study (Kirubha 
et al., 2018) was conducted on two patients – one, who had undergone screening 
mammography and the other had cancer (proven by biopsy) respectively. Segmented 
tumour region extracted from mammogram and thermogram was compared for the 
diagnosis of breast cancer. SVM with radial basis function (RBF) kernel was used in 
Gogoi et al. (2019) and Sathish et al. (2017) to classify breast thermograms as healthy, 
benign and malignant and hotspots were categorised quadrant wise in breasts. Accuracy 
reported was 90%. In Silva et al. (2014), SVM and ANN were used to segregate the 
thermal images into three classes – normal, benign and malignant. Their results were 
promising as many studies reported in literature classified thermograms into two classes 
only. Work conducted in Francis et al. (2014) used principal component analysis (PCA) 
to reduce the data dimensions and fed the transformed feature set to an SVM reporting a 
sensitivity of 83.3% which indicated that rotational thermography can be potentially used 
for screening breast cancer. Khan and Arora (2018) and Gaber et al. (2013) used Gabor 
filter to extract the texture features from the left and right breasts. SVM was used to 
classify images and an accuracy of 84.5% and 92.06% respectively was obtained. Sh  
et al. (2016) used different training-testing data partition, with an SVM classifier for 
thermograms and proved 80%–20% gave the best accuracy of 99.51%. 

This study investigates the use of thermal imaging in decision-making for the 
diagnosis of breast cancer coupled with machine learning algorithms. Rest of the paper is 
organised as follows – Section 2 describes the methods and materials used to conduct the 
investigation and various machine learning algorithms used. Classification results and 
discussions are presented in Section 3. Section 4 concludes the paper with some 
discussion on scope for future work. 

2 Methods and materials 

The objective of this study is to determine with a high degree of certainty if a tumour is 
malignant or benign using thermal images and machine learning algorithms. We used a 
set of 287 images from the Database of Mastology Research (DMR) (Visual Lab, 2014) 
which were captured by FLIR SC-620 IR camera at the Hospital of the Federal 
University of Pernambuco, Brazil (Hakim and Awale, 2020). The demographic data of 
subjects is mentioned in Table 1. 
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Table 1 Demographic data of subjects in DMR 

Age range No. of malignant cases (pathology) No. of benign cases (healthy) 
29–50 26 134 
51–70 18 79 
71–85 03 27 
Total 47 240 

Source: Visual Lab (2014) 

2.1 Region of interest extraction 

The RGB images acquired from DMR are converted into greyscale images. We segment 
only the breast, i.e., region of interest (ROI) from each image in order to eliminate errors 
from other unnecessary warm areas like the background, arm-pits, head, neck portion, 
area underneath the breast (Qi and Head, 2001). Breast region is extracted manually by 
generating a unique breast mask (Gonçalves et al., 2019) for each thermogram from the 
Canny edge detected image. We fixed the size of all the segmented breast images as  
256 × 256 since the original image size is large. The individual breast masks are then 
multiplied with their corresponding greyscale images obtained after removal of the 
irrelevant regions. Thus, we obtain only the breast region from each breast thermogram 
as shown in Figure 2. 

Figure 2 Segmentation of (a) small breast sizes, (b) big breast sizes and (c) asymmetric breast 
sizes from DMR 

 
(a) 

 
(b) 

 
(c) 



   

 

   

   
 

   

   

 

   

    Harnessing the power of machine learning for breast anomaly prediction 5    
 

    
 
 

   

   
 

   

   

 

   

       
 

2.2 Feature extraction 

Statistical features (Hakim and Awale, 2020; NIST, 2017; Schaefer et al., 2009) are 
extracted from the segmented breast region and used them for classification. Before 
building machine learning models, we have scaled the features to ensure that no 
independent variable is dominating other variables in the model. A .csv (comma 
separated values) file is prepared with all the feature values and the target variable, i.e., 
malignant (1) or benign (0). 

1 First order statistics 
• Mean: Mean is defined as the average colour in the image. 
• Variance: Variance measures the deviation of grey levels from the mean value. 

Standard deviation is the square root of variance. 

2 Second order statistics 
• Skewness: Skewness is a measure of asymmetry of a pixel distribution around 

the mean value. 
• Kurtosis: Kurtosis is the fourth moment and characterises the peakiness of the 

distribution in comparison to a normal distribution. 

3 Texture features (Hakim and Awale, 2020; Haralick et al., 1973) 

Texture features help in understanding the way the intensity varies within an image 
and follows a pattern. The texture information is obtained in pixel domain using 
grey-level co-occurrence matrix (GLCM). We averaged every value obtained from 
the four GLC matrices corresponding to four directions (θ = 0°, 45°, 90°, and 135°) 
keeping d = 1 pixel. 
• Contrast: Contrast is a measure of grey level variations between a pair of pixels. 
• Correlation: Correlation presents the linear dependency of grey level values in 

GLCM. 
• Energy: Energy measures the local uniformities of grey levels. Images with 

similar pixels have large energy values. 
• Homogeneity: Homogeneity gives the distribution of elements with respect to 

the diagonal of GLCM. 
• Entropy: Entropy is a measurement of randomness present in an image and 

represents the degree of disorder present in an image. 

2.3 Classification using machine learning models 

Classification is a powerful strategy used to categorise datasets, so that the analysis can 
be utilised in prognosis to make faster decisions. The extracted features from 
thermograms are fed into the classification algorithms to analyse the breast thermal 
images. Each image has nine biostatistical features. So, we have a vector of 9 × 287 
features for the classification purpose. We apply PCA and then fit machine learning 
algorithms like SVM, kNN, naïve Bayes and logistic regression on the reduced dataset to 
classify thermograms. Tree-based classifiers like decision tree (DT) and random forest 
does not need feature scaling, as they are if else nested loop and cause branching of  
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data. For the proposed work, we used open-source tool Python and Jupyter notebook 
(scikit-learn.org, 2019) for machine learning and data visualisation. We divided the 
dataset into training (80%) and test set (20%) for all algorithms. 

2.3.1 Principal component analysis 
Some of the features in the datasets are more selective and decisive than other features 
which are redundant. Two highly correlated variables bias the output and make samples 
of both classes look the same. PCA reduces the overwhelming number of dimensions by 
constructing principal components (PCs) based on maximum variance along the axis 
(Lashkari et al., 2016). PCs are calculated only from the knowledge of features and not 
classes. Hence, PCA is an unsupervised method. PCA provides efficient visualisation of 
our nine-dimensional feature set and speeds up the machine learning algorithms. We use 
it as a pre-processing step for supervised learning tasks and fit a classifier on the  
PCA-transformed data. The eigenvectors give the proportion of dataset’s explained 
variance that lies along the axis of each PC. All the nine components capture 100% 
variance in data. Eigenvectors and eigenvalues are ordered in descending order where 
eigenvector with the highest eigenvalue is the most significant (i.e., the first PC). As seen 
from Table 2, the first two PCs contribute to 86.46% of the total variance and can be 
chosen for classification. At least 80% of original dataset’s information should be 
retained (Lashkari et al., 2016) and rest are dropped as they represent very less 
information. 
Table 2 Eigenvalues and explained variance for various PCs 

Principal component # Eigenvalue Proportion of variance 
1 4.0 0.6295 
2 2.0 0.2351 
3 1.1 0.0721 
4 0.8 0.0238 
5 0.8 0.0231 
6 0.7 0.010 
7 0.6 0.0045 
8 0.5 0.0010 
9 0.4 0.0009 

A scree plot helps to identify the number of components needed to summarise the data 
and captures the variation contributed by each PC. Here, first two PCs are sufficient to 
describe the essence of the data after which the scree plot bends quickly to flatten out as 
seen in Figure 3. 

A loading plot helps to identify how strongly each variable influences a PC. When 
two vectors are close, with a small angle between them, the two variables they represent 
are positively correlated. If vectors form 90°, they are not likely to be correlated. When 
vectors diverge away from each other with 180° angle, they are negatively correlated. 
The loading plot for our data shown in Figure 4 shows that variables – variance, kurtosis, 
contrast, correlation and homogeneity have large positive loadings (values close to 1) on 
the first PC. Skewness and energy have large negative loadings (values close to –1) on 
second component. 
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Figure 3 Scree plot for PCs and explained variance 

 

Figure 4 Loading plot for first two PCs (see online version for colours) 

 

2.3.2 SVM with grid search 
SVM is a supervised learning method that implements classification by constructing a 
hyper plane as a decision boundary (Nunes et al., 2010; Rejani and Selvi, 2009) which 
maximises the distance (margin) between the classes and lowers the generalisation error 
of the classifier. We build a two-class SVM classifier over a feature vector obtained from 
the features extracted from thermograms and the class of the samples. We used a linear 
kernel (mapping function) to make a decision boundary. C (cost) is a regularisation 
parameter that imposes a penalty to the model for misclassifications. Higher the penalty, 
it is less possible to misclassify a sample. But a very large C leads to overfitting. We 
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performed a ten-fold cross validation grid search and computed model accuracy for 
different values of C. We select the optimal C as 1.16 as it maximised the training 
model’s ten-fold cross-validation accuracy (87.70%) and gave the kappa value (k) as 
0.754 as compared to kappa of 0.68 for C = 0.4 (84% accuracy). The plot of accuracy vs. 
cost for training model is shown in Figure 5. 

Figure 5 Plot of SVM training model’s accuracy vs. cost (see online version for colours) 

 

2.3.3 Logistic regression 
Logistic regression is a supervised learning technique where labelled data is provided for 
the classifier to make decisions rationally for the new data. A decision boundary is 
converted to probabilities (Pearl, 1998) and a threshold of 0.5 is set in a sigmoid curve as 
shown in Figure 6. The probability greater than 0.5 is considered as ‘malignant (1)’ and 
lower than 0.5 is considered as ‘benign (0)’. We performed 50 iterations of training with 
tolerance of 0.0001 after which convergence is reached and training stops. 

Figure 6 Sigmoid curve decision boundary for logistic regression (see online version for colours) 
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2.3.4 k-nearest neighbours 
kNN is a classification technique which assigns an unknown sample to the class to which 
the majority of its ‘k’ nearest neighbours belong to (Mejia et al., 2015). Euclidean 
distance metric is computed between test data point and all labelled datapoints. The top 
‘k’ labelled datapoints are selected from the ascending order of distance and their class 
labels are looked at. The test data is assigned to the class label that majority of ‘k’ 
labelled datapoints belong to, as seen in Figure 7. 

( ) ( ) ( ) ( )2 2 2
1 1 2 2,i i i i i i ip ipd x x x x x x x x= − + − + + −  

( ){ }A Ri x : , ( , ), i mp iR d x x d x xm= ∈ ≤ ∀ ≠  

Figure 7 Illustration of the kNN classifier (see online version for colours) 

 

Figure 8 Plot of accuracy vs. number of neighbours (see online version for colours) 
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The misclassification error for each ‘k’ value between 1 and 15 was calculated. The 
number of misclassified samples was least for ‘k’ = 10 and the best performance with 
accuracy of 82.2% were achieved as seen in Figure 8. 

2.3.5 Naive Bayes classifier 
Naïve Bayes classifier (Zhang, 2004) is a probabilistic classifier based on Bayes’ 
theorem. It assumes that features are conditionally independent. For binary class dataset, 
a sample is classified in the class which has higher probability (Pearl, 1998). To decide 
between two class labels L1 and L2, the ratio of the posterior probabilities for each label 
is computed. With Gaussian distribution model in place for each class, we computed the 
likelihood probability P(features | L1) and P(features | L2) for each data point. The 
posterior ratio is finally computed, thus determining which class label is the most 
probable for a given point (Mandal, 2017). 

( )
( )

( )
( )

( )
( )

1 1 1

2 2 2

| features features |
| features features |

P L P L P L
P L P L P L

=  

2.3.6 DT classifier 
A top-down tree is constructed using features and a decision is made on the first good 
search (Lior and Oded, 2005). Data is recursively split into branches to build a tree for 
breast cancer prediction by using Gini index to find a variable and corresponding 
threshold for splitting the input data into two or more subgroups. Gini index reduces for 
every passing node in the tree. To predict a response, one needs to follow the 
decisions/rules in the tree from the root (beginning) node down to a leaf node. Leaf nodes 
are classes, 0 (benign) or 1 (malignant) as shown in Figure 9. In our work, maximum 
number of splits allowed was 100, minimum leaf samples were 3. To protect against 
overfitting and biasing of tree, five-fold cross-validation was used. The partition stops 
when: 

a all samples for a given node belong to same class 

b no attributes remaining for partitioning 

c no samples are left (Mandal, 2017). 

2

1

1 ( )
n

i

GI p
=

= −  

( ) ( )2 2
( ) ( )1GI P P+ − = − +   

( ) 2 ( ) ( ) 2 ( )( ) log logH s P P P P+ + − −= − −  

( ) ( )/ % / %Here P P of ve class of ve class+ − = + −  
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Figure 9 DT model for features extracted from the DMR dataset (see online version for colours) 

 

2.3.7 Random forest classifier 
A risk of overfitting is involved in the DT classifier. The random forest classifier has the 
same basic structure as a DT and uses Gini index to split the tree; however, it selects a 
random subset of variables at each node of each tree instead of splitting a tree node using 
all variables, and only those variables selected are used as candidates to determine the 
best split for the node. Thus, it builds multiple trees (forest) from the same dataset and 
selects the best tree to classify the test samples (Lior, 2010; Breiman, 2001). It is an 
ensemble classification algorithm that reduces the risk of overfitting (following a  
full-grown tree like in DT) and the required training time. In our work, we have  
12 features and number of learners/classifiers (DTs) are 30. We fixed the maximum 
amount of splits/depth of DT to 20 and learning rate to 0.1. The square root of total 
number of features is used as the maximum number of features in each DT. All classifiers 
are bagged to classify the test data based on voting method. 

2.4 Performance evaluation parameters 

Comparison of the performance of a classifier with other classifiers to categorise 
thermograms is done using some evaluation metrics (Koprowski, 2014) like accuracy, 
sensitivity, specificity, PPV and NPV. They are calculated using the data in the confusion 
matrix. The diagonal grid values in the confusion matrix show the number of cases that 
are correctly classified and the off-diagonal values show the falsely classified cases. 
Accuracy gives the percentage of correct classification. However, it is not enough alone 
to reveal how well the model predicted ‘benign’ and ‘malignant’ cases independently. 
Sensitivity is the ability of a classifier to detect malignancy while specificity is the ability 
to detect benign cases. PPV reflects the malignant possibility of positive result while 
NPV reflects the benign possibility of negative result. F1-score is the harmonic mean of 
precision and recall. It ranges between 0 (worst value) and 1 (best value). 

Precision True positive
True positive False positive

=
+
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Recall True positive
True positive False negative

=
+

 

F1 2 Precision Recall
Precision Recall

∗= ×
+

 

3 Classification results and analysis 

In our study as seen in Table 3, the highest classification accuracy of 92.74% is achieved 
by using two PCs with the SVM classifier followed by an accuracy of 92.5% with  
PCA-logistic regression. SVM and logistic regression classifiers show remarkably high 
accuracy in separating malignant cases from benign when the axes are rotated with PCA. 
Due to imbalance in data, the ratio between positive and negative support vectors 
becomes more imbalanced; therefore, samples at the boundary of hyperplane are more 
likely to be classified as negative and favour predictions of the majority class (benign) on 
the test samples. Using PCA as a pre-cursor to kNN, we apply kNN to the  
matrix corresponding to extracted PCs. KNN on its own is slow at classification time. 
PCA-KNN thus saves computation complexity and time. Naive Bayes classifier is good 
at predicting negative class tuples, but it is worst amongst all classifiers at predicting 
positive class tuples. Naive Bayes (NB) is fastest in terms of computation speed. Feature 
reduction with PCA causes features to become uncorrelated which satisfy the basic 
independence assumption of naïve Bayes and as a result NB performs much better and 
has robust results with PCA as a pre-cursor step. Classifiers that are based on comparing 
the pairwise distances of samples like KNN are hardly affected when the axes are rotated 
using PCA because the pairwise Euclidean distances remain exactly the same. It is 
identified that AUC score is significant to consider for correct prediction of breast cancer 
instead of only considering accuracy. Comparison of our results with past results of 
literature is shown in Table 4. These results point out that accuracy and specificity of our 
work is appreciably higher as compared to other works, with a smaller number of 
misclassifications. Borchartt et al. (2013) results have high sensitivity but very low 
specificity value is observed due to an unbalanced and small sample set used. 
Table 3 Performance evaluation parameters of various classifiers with and without PCA as  

pre-cursor 

Method  SVM  Logistic  
regression  KNN  Naive Bayes 

Parameters  Without  
PCA 

With  
PCA  Without  

PCA 
With  
PCA  Without  

PCA 
With  
PCA  Without  

PCA 
With  
PCA 

Accuracy %  88.22 92.74  84.35 92.5  82.2 84.11  81.69 88 
Sensitivity %  77.77 77.77  44.44 66.67  55.55 66.67  22.22 44.44 
Specificity %  89.58 95.83  91.67 97.91  87.5 87.5  87.5 95.83 
PPV %  58.33 77.77  50 85.71  45.45 50  33.33 66.66 
NPV %  95.55 95.83  89.79 94  91.3 93.33  86.27 90.19 
F1 score  0.6667 0.7777  0.4706 0.75  0.5 0.5714  0.2667 0.5333 
AUC  0.8368 0.8699  0.6806 0.8229  0.7153 0.7708  0.5486 0.7013 
Processing time (sec)  1.5 0.75  0.9 0.48  1.35 0.37  0.36 0.17 
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Table 4 Comparison between the results obtained in our study and in past literature involving 
statistical features 

Author(s)/ method Sensitivity 
(%) 

Specificity 
(%) 

Accuracy 
(%) 

Area under 
ROC curve 

(AUC) 

No of images 
used 

Our results (PCA-SVM) 77.77 95.83 92.74 0.8699 240 benign,  
47 malignant 

Localized temperature increase 
(LTI) (Tang et al., 2008) 

93.6 55.7 - - 70 benign,  
47 malignant 

Fuzzy classifier and statistical 
features (Schaefer et al., 2009) 

79.86 79.49 79.53 - 29 malignant, 
117 benign 

Statistical temperature features 
and SVM classifier (Borchartt 
et al., 2011) 

95.83 25 85.71 0.604 24 unhealthy, 
4 healthy 

Texture features and SVM 
classifier (Acharya et al., 
2012) 

85.71 90.48 88.1 - 50 

Gabor coefficients statistical 
and SVM RBF (Gaber et al., 
2013) 

- - 92.06 - 29 healthy,  
34 malignant 

BEMD and URLBP (Madhavi 
and Bobby, 2017) 

92 73 86 0.82 43 normal,  
24 abnormal 

Statistical texture features / 
SVM RBF (Sathish et al., 
2017) 

87.5 92.5 90 - 40 normal,  
40 abnormal 

Gabor filter and SVM (Khan 
and Arora, 2018) 

90.52 82.47 84.5 - 35 normal,  
35 abnormal 

Figure 10 Accuracy and F1 score plots for various machine learning algorithms (see online 
version for colours) 
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Figure 11 Accuracy and F1 score plots for machine learning algorithms with PCA as pre-cursor 
(see online version for colours) 

 

Figure 12 Box plot comparison of accuracies of two best models (see online version for colours) 

 

The accuracy and F1 score of all machine learning algorithms are plotted with and 
without PCA as a precursor as shown in Figure 10 and Figure 11. The average accuracy 
of the two best models is about the same (PCA-SVM model has a slightly better average 
accuracy than PCA-LR), i.e., 92.74% vs. 92.50%. As seen from Figure 12, standard 
deviation is in favour of the PCA-SVM model, i.e., 3.2% vs. 2.3%. 

Higher diagonal values of the confusion matrix imply many correct predictions of 
both the classes. Both PCA-SVM and PCA-LR misclassify only four samples. However, 
in case of cancer diagnosis, FP is more acceptable than FN. Thus, PCA-SVM performs 
better in terms of this aspect than PCA-LR. The confusion matrices for various machine 
learning algorithms with and without PCA as a pre-cursor are shown in Table 5 and 
Table 6 respectively. 
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Table 5 Confusion matrices of various classifiers 

Algorithm used 
Predicted class 

Actual class Malignant Benign 
Naives Bayes Malignant 2 7 
 Benign 4 44 
Logistic Regression Malignant 3 6 

Benign 3 45 
KNN Malignant 5 4 
 Benign 6 42 
SVM Malignant 7 2 
 Benign 5 43 

Table 6 Confusion matrices of various classifiers with PCA as a pre-cursor 

Algorithm used 
Predicted class 

Actual class Malignant Benign 
PCA-Naives Bayes Malignant 4 5 
 Benign 2 46 
PCA-logistic 
regression 

Malignant 6 3 
Benign 1 47 

PCA-KNN Malignant 6 3 
 Benign 6 42 
PCA-SVM Malignant 7 2 
 Benign 2 46 

Figure 13 Receiver operating characteristic (ROC) graph for various classifiers with PCA as a 
pre-cursor (see online version for colours) 
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Figure 14 ROC Curve for class 0 (benign) and class 1 (malignant) respectively for DT classifier 
(see online version for colours) 
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Figure 15 ROC curve for class 0 (benign) and class 1 (malignant) respectively for random forest 
classifier (see online version for colours) 
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Figure 16 Overall confusion matrix for DT classifier (see online version for colours) 

 

Figure 17 Overall confusion matrix for random forest classifier (see online version for colours) 
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A study (Mandrekar, 2010) suggests that an AUC of 0.5 reflects almost no 
discrimination, 0.7 to 0.8 is acceptable, 0.8 to 0.9 is excellent, and more than 0.9 is 
outstanding for medical diagnosis. ROC analysis shown in Figures 13, 14 and 15 was 
employed to evaluate the performance of all algorithms. PCA-SVM has the best AUROC 
value of 0.8699. In tree-based classifiers, random forest classifier has the best accuracy, 
sensitivity, specificity and AUROC of 94.4%, 97.5%, 78.72% and 0.97961 respectively 
with five-fold cross validation as seen in Figure 17. For DT classifier, the accuracy, 
sensitivity, specificity and AUC obtained are 92%, 95%, 76.59% and 0.876729 
respectively. Twenty-three samples are misclassified as seen in Figure 16. 

4 Conclusions 

Breast cancer is an important health problem globally. Thermography is a low-cost 
potential solution for the early detection of breast cancer and prognosis indication. 
Despite the presence of mammography as a gold imaging standard in diagnosis of breast 
cancer, there is a need for promoting additional research in thermography to increase the 
sensitivity of prognosis in young women with dense breasts. The manual assessment of 
disease is time-consuming, requiring minute inspection and varies with the perception 
and the level of expertise of the radiologists. This study presents an approach to classify 
breast thermograms based on biostatistical features using various machine learning 
algorithms and increase the reliability of this technique for diagnosis purpose. In this 
work, SVM classifier with and without PCA as a pre-cursor significantly outperforms 
other decision-making models viz. Naïve Bayes, kNN and logistic regression on the 
DMR database. PCA-SVM-based model interprets thermograms as benign or malignant 
with accuracy of 92.74% for training with 80% data and testing with 20% data which is 
the most superior as compared to other classifiers. By reducing the dimension of data and 
time complexity, our approach with PCA helps to improve the results for all classifiers in 
interpreting thermograms as benign or malignant. Random forest classifier has an average 
accuracy, sensitivity, specificity and AUROC of 94.4%, 97.5%, 78.72% and 0.97961 
respectively with five-fold cross validation which is better than the DT classifier. Results 
obtained point out at the viability of using simple statistical measures extracted from the 
breast thermograms as a first approach to aid diagnosis of breast disease. With improved 
accuracy on large database, thermography can be used in adjunct to ultrasound or 
mammography in clinical practice. In future work, nonlinear or kernel-based SVM can 
also be tested on a larger database. 
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