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Abstract: Stock price prediction has drawn huge attention due to its impact on
economic stability. Accurate stock price prediction is highly essential to reduce
the risk associated with it so as to decide good investment strategies. There are
various factors influencing the prediction of stock indices namely gross margin,
exchange rate, inflation rate, relative index and so on. Feature selection plays a
vital role in effective and accurate prediction of stock indices. This paper aims
to provide a clear review of widely used features affecting the stock price
fluctuations, feature selection techniques and prediction models from the recent
literature. The study also highlights the future directions in this domain
focusing the enhancement of the prediction performance.
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1 Introduction

Stock market is where purchasing and selling of stocks (shares) happens among buyers
and sellers. Many people around the globe invest in stock market. The stock market has
always been highly unpredictable due to the number of reasons like political situation,
global economy and so on, along with the traditional features. Successful investments are
very difficult in the absence of good ability to predict the stock price. In literature, some
basic factors like technical indicators, macroeconomic indicators, financial ratios, market
sentiments have been used and proved as the main factors affecting the variations in stock
price (Hagenau et al., 2013). The factors or an input variable varies as per the prediction
models. Thus, the viewpoint of selecting principal components for stock prediction is
distinct in associated works as there is no uniformity of the most key variables in stock
prediction. The nature of prediction model may change when different sets of input
features are used. Thus, designing the superlative prediction model for stocks is a
challenging task for the researchers and investors.

This paper has been formulated as follows: Section 2 provides background details for
feature selection in stock price prediction and enlists different types of features used as
input variables, feature selection techniques and the prediction techniques being widely
used for stock prediction. Section 3 provides a general discussion and critical review and
Section 4 concludes the paper.

2 Background details

Many conventional techniques has been used to foresee the stock moving price or closing
price (Tsai and Hsiao, 2010; Oztekin et al., 2016; Zhang et al., 2014; Dash et al., 2014,
2016). Technical analysis and fundamental analysis are the two traditional approaches for
prediction of stock market. Stock price prediction done using technical analysis is
established on historical information where charts are the prime tool (Su and Cheng,
2016; Lee, 2009). From the conventional information, relevant information is mined for
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pattern recognition. The study of the elements affecting supply and demand is known as
the fundamental analysis. Stock price prediction done using fundamental analysis is
based on information gathering and interpretation, and thus makes use of the gap between
an event occurrence and response of the market to the event (Tsai and Hsiao, 2010).
Economic data of companies, auditor’s reports, balance sheets, and income statements are
used for fundamental analysis. Since news echoes the current supply and demand chain
of the market, it also plays a vital role in fundamental analysis. The statistics of the
published papers on feature selection for stock prediction during 2005 to 2017 is given in

Figure 1.

Figure 1 Numbers of published articles considered on feature selection for stock prediction
(2005-2017) (see online version for colours)
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Figure 2 gives an overview of the architecture of stock prediction process. The raw stock
data is taken as the initial input to the model and pre-processing steps are performed to
prepare the data for training the model. The pre-processed data is prorated into training
and test data to optimise the learning model. The trained model is finally used for
interpreting the stock related decisions.

2.1 Feature selection

In stock prediction it is important to choose features with some prediction information.
Reduction of irrelevant or redundant features results in better prediction accuracy and
decreases the computational complexity. Applying feature selection can lead to
simplifying data visualisation and data understanding. It reduces the measurement and
storage necessities, decreases training and usage times disregarding the curse of
dimensionality to enhance the prediction conduct (Schumaker and Chen, 2006; Tan et al.,
2005; Huang et al., 2005). Many methods like Bayesian factor graph (Wang et al., 2015),
principal component analysis (PCA) (Tsai and Hsiao, 2010; Altinbas and Biskin, 2015;
Wing et al., 2014), genetic algorithm (GA) (Tsai and Hsiao, 2010; Anish and Majhi,
2016), decision trees (DT) (Tsai and Hsiao, 2010), Chi-square (Hagenau et al., 2013),
sequential forward search (Ni et al., 2011), mutual information (Barak et al., 2015), factor
analysis (Altinbas and Biskin, 2015) and so on has been used in literature for feature
selection. GA, PCA, and DT are three well known feature selection techniques due to
their ability to find near optimal feasible solution in a reduced computational time in
comparison to other feature selection techniques. Next, we discuss in brief the different
types of features used in literature for stock prediction.

2.2 Features

Stock prices are determined in the marketplace where selling and buying occurs. There
exists no definite equation that tells about the behaviour of the stock. Literature states that
there are different features that move the stock price up and down (Tsai and Hsiao, 2010).
These features which affect the behaviour of the stock market, are divided into four
categories: fundamental features, technical features, macroeconomic features and market
sentiment. Each of these features are further discussed in brief.

2.2.1 Fundamental features

The fundamental comprises of the qualitative and quantitative information that adds to
the economic well-being and the consequent financial estimation of a company, security
or currency. These fundamentals are analysed by analysts and investors to establish an
estimate to whether the underlying asset is treated as justifiable investment or not. For
businesses, some of the fundamentals are information such as revenue, earnings, assets,
liabilities and growth. In a stock market, stock prices can be determined primarily by
fundamental features which is an amalgamation of an earning base for example, earnings
per share (EPS) and a valuation multiple for example a P/E ratio.

The stock price has correlation with the intrinsic values like sales, profitability, EPS,
management, corporate image, product quality, employee layoffs, accounting errors or
scandals and so on. Table 1 lists out some of the fundamental factors (Tsai and Hsiao,
2010; Zhang et al., 2014) known from the literature. The fundamental factors may vary
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from region to region. Till date there exists no in general agreement on fundamental

variables.
Table 1 List of fundamental, technical features and macroeconomic features
Sl. no.  Fundamental features Technical features Macroeconomic features
1 Gross margin growth 20-day bias Exchange rate
2 Net income Rate of change Inflation rate
3 Operating income Stochastic indicator Oil price
4 Cash flow ratio Relative index US lagging indicator
5 Current ratio 10-day moving average Foreign exchange reserves
6 Quick ratio Moving average Interest rate
convergence/divergence
(MACD)
7 Sales growth ratio Commodity channel index Monitoring indicator
(CChH
8 Liabilities ratio Buying/selling willingness Merchandise trade volume
indicator
9 Operation income Moving average oscillators Export foreign exchange
growth (MAO) volume
10 Ordinary income Buying/selling momentum Merchandise export
growth indicator
11 Continued income Psychological line Industry production index
growth
12 Fixed asset turnover ~ Relative strength index (RSI)  Import price index increase
rate
13 Inventory turnover Rate of change (ROC) Export price index increase
rate
14 Net income growth Stochastic slow Foreign investment
approval
15 Total asset growth Disparity 5 Merchandise import
16 Operating Income Momentum
17 Return on total asset Disparity 10
18 Total asset growth
19 Inventory turnover
20 Days payables
outstanding

2.2.2 Technical features

Technical features are also referred as technical indicators as it indicates future price
levels or direction from past patterns. It is a class of measurement, in which value is
obtained from generic price activity in a particular stock. These are primarily used for
analysing short term price movements. Some of the technical features being widely used
are listed in Table 1. As per, Huang and Tsai (Lee, 2009), technical indexes are practiced
on daily price variation in the stock. More technical features along with details can be
referred from Tsai and Hsiao (2010) and Dash et al. (2014).
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2.2.3 Macroeconomic features

Macroeconomic features are the external factors affecting the stock price. Literature
states that factors like gross domestic product (GDP), inflation, exchange rate, etc. affect
stock price (Tsai and Hsiao, 2010; Zhang et al., 2014). They play an important role in the
stock price movement. Table 1 lists out some of the macroeconomic features widely
being used.

The macroeconomic features vary from region to region. Thus, there exists no
globally agreed upon list of macroeconomic features. The economic and political
condition of one region may affect other region too. Tsai and Hsiao (2010) provides the
list of few more macroeconomic features.

2.2.4 Market sentiments

Market sentiment is the market participants psychology. It may be the opinion of a single
person or a group of persons and it may be often biased (Barak et al., 2015). It is
considered as one of the important factor in stock price prediction. People give their
opinions in social media which are accessible worldwide. The news also affects the stock
market. Dynamics of market sentiment is being explored by Hagenau et al. (2013),
de Fortuny et al. (2014), Barak et al. (2015) and Wing et al. (2014).

3 Prediction techniques

Choosing a prediction model is another key feature in obtaining a good accuracy for
stock price prediction. Many techniques like artificial neural network (ANN) (Tsai and
Hsiao, 2010; Zhang et al., 2014; Su and Cheng, 2016; Anish and Majhi, 2016; Das and
Padhy, 2012), support vector machine (SVM) (Hagenau and Liebmann, 2013; Oztekin
et al., 2016; Zhang et al., 2014; Su and Cheng, 2016; Huang and Tsai, 2009; Ni et al.,
2011; Nguyen et al., 2015; Das and Padhy, 2018; Dash et al., 2014), fuzzy inference
systems (Oztekin et al., 2016; Barak et al., 2015) are widely accepted prediction models.
Neural networks can implicitly detect complex non-linear relationships between different
features (Zhang et al., 2014). Opinion mining also has been used for sentimental analysis
of stock related news or opinions.

Prediction techniques may vary in accordance with the feature set. The fusion of
various prediction techniques may be used for better accuracy in stock price prediction.
Next, we discuss in brief the standard widely used prediction techniques in literature for
stock prediction.

3.1 Support vector machine

SVM from the ground of machine learning, is relevant to classification and regression
among many supervised learning techniques. As per Vladimir Vapnik’s statistical theory
of learning algorithm, SVM is a supervised methodwhichcan classify as per prior
prescribed classes or do regression. Because of this, SVM Algorithm is sometimes known
as a support vector regression. SVM algorithms have been gaining more popularity due to
its features and promising empirical conduct. As compared to the traditional empirical
risk minimisation methods, SVM’s structural risk minimisation features show much
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better and superior results. Expected risk of an upper bound is minimised by structural
risk minimisation, whereas empirical risk minimisation lowers the miscalculation of
training data. Thus, SVMs give a decent generalisation conduct with an efficiency of
computation as far as the speed and complexity is concerned. It deals with multi-
dimensional data easily. SVMs also work very well under different situations even when
the sample dataset is small (Cristianini and Shawe-Taylor, 2000; Zhang et al., 2014).

From literature, it is found that several authors use SVR to match with their projected
model. SVR is that the SVMs comprehend to unravel assessment issues of nonlinear
regression. The concept of SVR depends on the calculation of a linear regression which
performs in an exceedingly high dimension feature area wherever the in take information
are mapped via a nonlinear function (Schumaker and Chen, 2006).

The SVM has been chosen by Oztekin and Kizilaslan (2016) as the main driver for
miniature formation for text mining-based stock price prediction. For classification as
buy/sell, the model has been measured with adaptive neuro fuzzy inference system and
neural network based on MLP. It is found that SVM outperforms ANFIS and ANN in
terms of its accuracy results. SVM is utilised on different mix of messages, which are
expressed in feature vectors, and their subsequent price effect of stock (Hagenau et al.,
2013). Further, the performance of ANN, Naive Bayes and SVMs have been compared
and resulted in SVMs to be far better as far as performance is concerned as part of a pilot
study.

A forecasting model which is based on SVM with a hybrid method to select features
(F_SSFS) has been proposed as a stock trend predictor (Ni et al., 2011) reducing the
number of training for SVM. With the combination of different prediction techniques, a
data analytic approach has been developed which shows that stock price forecasting
performance can be dramatically executed by utilising ANFIS, ANN, and SVM (Zhang
et al., 2014). Examples of financial prediction using SVM applications. Least squares
SVM (LS-SVM) utilises linear rather than quadratic programming, thus reducing
computational complexity of the actual SVM technique (Gestel et al., 2003).Mapping the
data to a features space is included by LS-SVM, which has a function formulated that can
be utilised for TS prediction (Huang and Shyu, 2010). SVM has been utilised as a part of
writing because of its capacity to deal with risk in an extremely successful way.

3.2 Artificial neural network

An ANN is an interconnected assembly of straightforward multiprocessing components,
whose practicality is loosely supported animal neuron. The processing capability of the
network is hold on within the inter unit affiliation strengths or weights, attained by a
method of adaptation to or learning from a collection of training patterns (Hassoun,
1995). An ANN incorporates an oversized range of parameters that permits learning the
intrinsic nonlinear link presented in time-series, expanding their forecasting potential
(Arasaratnam and Haykin, 2008; Specht, 1990; Zhang et al., 2014). Main power of ANNs
is that the capacity of versatile nonlinear operate approximation with a name deficiency
(Cybenko, 1989). As a nonparametric and information driven model, ANNs do not need
further presumptionsprior to the model formation. Varied issues and threats are related to
ANNSs. The chosen weights and thresholds have major hit on the prediction outcomes.
During training the ANN, local optima are often found in — lieu of the global optimum.
ANN continues to be thought-about as a ‘black-box’ and does not give intuitive narration
of the prediction method.
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Gogken et al. (2016) planned a hybrid ANN model for 45 technical indicators
(features) that were reduced to 26 and 23 non-redundant options by GA and harmony
search accordingly. It absolutely was found that stock price prediction efficiency of the
HS-ANN is considerably higher than that of GA-ANN model and therefore the regular
model of ANN. Higher prediction performance is found by combining multiple feature
selection methods over single feature selection technique by Tsai and Hsiao (2010). They
indeed combined PCA, GA and DT approach on union, intersection and multi-
intersection level along side MLP for stock’s fall/rise prediction so as to recommend for
buy/sell severally.

3.3 Fuzzy inference system

An ANFIS will construct associate in nursing input-output mapping supported each
human information within the kind of fuzzy if-then rules with membership of appropriate
methods and provided input-output knowledge combinations. It implements a neural
network in assurance of the form of membership functions and of the extraction of rule.
ANFIS design adopts a composite processs of learning within the structure of adaptative
networks (Jang, 1993). This illation system integrates the most effective options of
formal logic and ANNs which handles the nonlinearity and unpredictability in the
real-world systems (Lee and Ouyang, 2003). Fuzzy sets adaptation (Chaudhuri and De,
2011) is competent to handle unpredictability and impreciseness in forecasting of
company knowledge. It is effective to find a set of optimum options and different
parameters. Barak et al. (2015) gift a completely unique prognostication miniature for
stock markets on the premise of the wrapper adaptive neural fuzzy inference system
(ANFIS) — imperialist competitive algorithm (ICA) and technical analysis of Japanese
holder. Imperialist competitive formula has been used to set choice.

C.H. Su and Cheng (2016) planned a time-series model that implemented planned
ANFS methodology to pick the cheap variables into the ANFIS model, and used a model
of adaptative expectation to enhance prognostication ability. The study in Su and Cheng
(2016) planned associate in nursing INFS methodology to pick three vital technical
indicators, and used the chosen technical indicators as intake variables for ANFIS model
of prognostication to get the preliminary estimates.

4 Discussion and critical review

Stock market data are considered to be highly unpredictable. At any given time, there can
be trends, random walks, cycles or combination of all which may result in unpredictable
situation of stock market. Buying or selling a stock is a very complicated decision as
there are several aspects that might influence the stock price values. Many external
factors affect the stock values which in turn results in variation in stock market. It is
being observed that the dynamic political scenarios have their own impacts along with
fundamental and macroeconomic features on stock market trends. Identifying the
influential factors is a key task in the field of stock market.
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Summarisation of analysis of feature selection techniques in stock price prediction

Table 2
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Figure 3 Numbers of published articles considered on feature selection for stock prediction for
different types of features (2005-2017) (see online version for colours)

percentage of articles

B macroeconomic

B sentimental

technical
68

H integrated

Articles surveyed mainly focus on feature selection for the stock price prediction of either
single stock index or multiple stock market indexes. But many other studies focus in
forecasting the return of single or multiple stocks. Articles in Table 2 may be divided in
four sections: category 1 (macroeconomic feature), category 2 (sentimental feature),
category 3 (technical features), and category 4 (integrated features).

A very significant part of decision making is based on data collection and
consolidation via data analytic modelling, so this kind of a Parsimonious model definitely
will be very interesting to the decision makers.

To simplify the intricacy of the model and achieve frugality, decreasing the number
of input variables required for estimating is very critical which is a well-known factor,
and hence to quicken the decision making operation and reduce the computation time is
also critical. In turn expanding the number of variables becomes harder to access and/or
collect as well resulting in high computational complexity (Wang et al., 2015).

The first category in Table 2 includes articles that use macroeconomic features as
input data features. Macroeconomic feature of well-developed North America, Western
Europe and other solid economy countries has been considered under this category. It is
evident from Table 2 that generally, 10 or more input variables are used in most of the
studies under category 1. There are also examples like Olson and Mossman (2003) who
used 59 input variables and Zorin and Borisov (2002) who used 61 variables. Exchange
rate, price of oil, rate of interest, inflation rate, foreign exchange, GDP and import/export
price are the most common macroeconomic features used as input variables (Wang et al.,
2015; Oztekin et al., 2016; Altinbas and Biskin, 2015). Internal and external political
uncertainty mostly causes the rise and fall of the GDP. In addition to the common
macroeconomic features many other features are also used in other papers, which varies
from country to country. GDP usually impacts one country/location to other
country/location. Hence countries affected by macroeconomic features are also
considered in many papers.

It is evident that financial assimilation exists across the globe from the
experimentation and writings (Fischer and Palasvirta, 1990). Fluctuation of stock market
usually flows among the developed countries and gets transmitted to emerging markets.
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Fischer and Palasvirta (1990) studied that there exists an immense statistical relationship
among 23 stock indices. Oztekin et al. (2016) represented a collection of developed and
emerging markets, with US stock prices dominating the rest of the world. Thus, for the
forecasting of the BIST 100, it is sensible to use a US index. Directional movements in
the US indices, like the DJIA, the Nasdaq Composite, or the S&P 500 mirror each other
approximately. From Table 2, it is evident that a combination of macroeconomic features
along with other features for stock prediction may give better prediction accuracy.

The second category in Table 2 includes articles that use sentimental features as input
data features. Textual news and textual opinion affect the stock market in a very effective
manner. Thus, we may say that market sentiments have greater impact on the stock
prediction results. Often, the buy and sell of stock is biased by the user sentiments.
Different techniques have been used to evaluate the sentiments for prediction of stock.
Balanced mutual information along with Naive Bayes has been used in Gunduz and
Cataltepe (2015) for closing price prediction taking into consideration the financial news.
Chi-square-based feature selection gives good classification accuracy in Hagenau et al.
(2013) for the textual news from Germany and UK publications. Chi-square, bi-normal
separation and frequency-based feature selection methods are compared along with SVM
with linear kernel for sentimental features. The study reveals the improvement of stock
price prediction due to the sentimental features. Many techniques have been used for
sentimental features and it is found that more noun, verbs and words should be allowed
for good training and validation purpose.

The third category in Table 2 summarises articles that use technical features as input
data features. From literature, it is found that for stock price prediction, usually technical
features are used as input feature sets (Oztekin et al., 2016; Huang and Tsai, 2009; Lee,
2009; Ni et al., 2011; Nguyen et al., 2015; Gogken et al., 2016; Anish and Majhi, 2016;
Altinbas and Biskin, 2015; Das and Padhy, 2018; Dash et al., 2014; Dash and Dash,
2016). Usually, 7 to 10 technical indicators are used for stock price prediction. But, in
some papers more than 25 technical features have been used as seen from Table 2. The
most common technical features used are Simple moving average (SMA), Exponential
moving average (EMA), Stochastic oscillator (STOC %K and %D), Relative strength
index (RSI), Price rate of change (PROC), Closing price acceleration (CPACC), High
price acceleration (HPACC), moving average convergence/divergence (MACD).
Historical stock prices are used by technical analysts for calculating indicators which are
plotted together with price of stocks on the same chart. These charts are used by investors
to search for particular pattern that indicates movements of the market in future and in
turn adds basis and trend for their decision making. For technical analysis, there are
multitude of indicators which are proposed and each of these indicators provides different
information about the market. Examples are: trends of the market are indicated by moving
averages, whereas relative strength and momentum gives a perspective how a given stock
is overbought or oversold.

The fourth category in Table 2 includes articles that uses an integrated set of features
as input data features. A combination of technical features along with sentimental
features gives a better accuracy as seen from work done by de Fortuny et al. (2014) and
Nguyen et al. (2015). 85 features including fundamental and macroeconomic features has
been used for stock prediction in Tsai and Hsiao (2010). The study reveals that helping to
improve the prediction accuracy a combination of different types of features would be
even much better for stock price prediction.
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From Table 2, it is evident that the count of input variables practiced, differs from
model to model. Average count of input variables adopted in most of the models are
between four to ten, however, there are models where only two input variables are used.
There are also example of Olson and Mossman (2003) where 59 input variables used and
Zorin and Borisov (2002) where 61 input variables used. The statistics of the published
papers on feature selection for stock prediction for different types of features during 2009
to 2016 is given in Figure 3.

Different methods are also applied to find the most significant input variables for the
forecasting procedure amid a large number of candidate ones, depending on how
particular input influences the attained outcomes. A large number of observations are
covered by some studies over a period of years. Whenever there is a missing observation,
the mean value or the latest stock value observed is used to fill. The opening or closing
price of the stock index is most commonly used inputs, also the daily lowest and highest
values are commonly used. Most of the surveyed articles use the daily closing price or
some indicator relying only on it as input.

5 Conclusions

Stock prediction helps the organisations and the stake holders to keep track of the market
and choose accordingly whether to sell, buy or withheld the stock in order to maximise
the profit. Our survey aims to help the stock brokers and investors for investing money in
the stock market. Articles surveyed mainly focus on feature selection for the stock price
prediction of either single stock index or multiple stock market indexes. The review of
literature on stock price prediction reveals that the stock price prediction is highly
dependent on the choice of dataset and input features which may vary from one
methodology to another. A very significant part of decision making is based on data
collection and consolidation via data analytic modelling, so this kind of a parsimonious
model definitely will be very interesting to the decision makers.

Average number of input variables used in most of the models is between four to ten,
however, there are models where more than 30 input variables have been used. The study
reveals that the integration of different types of features like technical, macroeconomic
and sentimental may result in better prediction model. Amongst many feature selection
methods, the most widely used methods are PCA, GA and decision trees as they
contribute in selecting good number of representative features. The study suggests that
the fusion of various feature selection techniques may be used for better accuracy in stock
price prediction. SVM and ANN are found to be widely used prediction models. On the
basis of our survey, it is observed that the usage of a large set of input features may
increase the performance efficiency of the prediction model. But, large set of input
features also increases the computational complexity of the model. To simplify the
intricacy of the model and achieve frugality, decreasing the number of input variables
required for estimating is very critical which is a well-known factor, and hence to
quicken the decision making operation and reduce the computation time is also critical. In
turn expanding the number of variables becomes harder to access and/or collect as well
resulting in high computational complexity. The study put forward the amalgamation of
different feature selection techniques on a large set of integrated features to achieve
higher degree of prediction on stock market with an aim of reducing the computational
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complexity of the model. In addition, presently it is difficult to specify the most effective
approach in stock prediction territory, which may be considered as a future research issue
to perform comparative survey based on all these existing approaches.
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