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Abstract: Stock price prediction has drawn huge attention due to its impact on 
economic stability. Accurate stock price prediction is highly essential to reduce 
the risk associated with it so as to decide good investment strategies. There are 
various factors influencing the prediction of stock indices namely gross margin, 
exchange rate, inflation rate, relative index and so on. Feature selection plays a 
vital role in effective and accurate prediction of stock indices. This paper aims 
to provide a clear review of widely used features affecting the stock price 
fluctuations, feature selection techniques and prediction models from the recent 
literature. The study also highlights the future directions in this domain 
focusing the enhancement of the prediction performance. 
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1 Introduction 

Stock market is where purchasing and selling of stocks (shares) happens among buyers 
and sellers. Many people around the globe invest in stock market. The stock market has 
always been highly unpredictable due to the number of reasons like political situation, 
global economy and so on, along with the traditional features. Successful investments are 
very difficult in the absence of good ability to predict the stock price. In literature, some 
basic factors like technical indicators, macroeconomic indicators, financial ratios, market 
sentiments have been used and proved as the main factors affecting the variations in stock 
price (Hagenau et al., 2013). The factors or an input variable varies as per the prediction 
models. Thus, the viewpoint of selecting principal components for stock prediction is 
distinct in associated works as there is no uniformity of the most key variables in stock 
prediction. The nature of prediction model may change when different sets of input 
features are used. Thus, designing the superlative prediction model for stocks is a 
challenging task for the researchers and investors. 

This paper has been formulated as follows: Section 2 provides background details for 
feature selection in stock price prediction and enlists different types of features used as 
input variables, feature selection techniques and the prediction techniques being widely 
used for stock prediction. Section 3 provides a general discussion and critical review and 
Section 4 concludes the paper. 

2 Background details 

Many conventional techniques has been used to foresee the stock moving price or closing 
price (Tsai and Hsiao, 2010; Oztekin et al., 2016; Zhang et al., 2014; Dash et al., 2014, 
2016). Technical analysis and fundamental analysis are the two traditional approaches for 
prediction of stock market. Stock price prediction done using technical analysis is 
established on historical information where charts are the prime tool (Su and Cheng, 
2016; Lee, 2009). From the conventional information, relevant information is mined for 
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pattern recognition. The study of the elements affecting supply and demand is known as 
the fundamental analysis. Stock price prediction done using fundamental analysis is 
based on information gathering and interpretation, and thus makes use of the gap between 
an event occurrence and response of the market to the event (Tsai and Hsiao, 2010). 
Economic data of companies, auditor’s reports, balance sheets, and income statements are 
used for fundamental analysis. Since news echoes the current supply and demand chain 
of the market, it also plays a vital role in fundamental analysis. The statistics of the 
published papers on feature selection for stock prediction during 2005 to 2017 is given in 
Figure 1. 

Figure 1 Numbers of published articles considered on feature selection for stock prediction 
(2005–2017) (see online version for colours) 

 

Figure 2 System architecture for stock prediction (see online version for colours) 
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Figure 2 gives an overview of the architecture of stock prediction process. The raw stock 
data is taken as the initial input to the model and pre-processing steps are performed to 
prepare the data for training the model. The pre-processed data is prorated into training 
and test data to optimise the learning model. The trained model is finally used for 
interpreting the stock related decisions. 

2.1 Feature selection 

In stock prediction it is important to choose features with some prediction information. 
Reduction of irrelevant or redundant features results in better prediction accuracy and 
decreases the computational complexity. Applying feature selection can lead to 
simplifying data visualisation and data understanding. It reduces the measurement and 
storage necessities, decreases training and usage times disregarding the curse of 
dimensionality to enhance the prediction conduct (Schumaker and Chen, 2006; Tan et al., 
2005; Huang et al., 2005). Many methods like Bayesian factor graph (Wang et al., 2015), 
principal component analysis (PCA) (Tsai and Hsiao, 2010; Altinbas and Biskin, 2015; 
Wing et al., 2014), genetic algorithm (GA) (Tsai and Hsiao, 2010; Anish and Majhi, 
2016), decision trees (DT) (Tsai and Hsiao, 2010), Chi-square (Hagenau et al., 2013), 
sequential forward search (Ni et al., 2011), mutual information (Barak et al., 2015), factor 
analysis (Altinbas and Biskin, 2015) and so on has been used in literature for feature 
selection. GA, PCA, and DT are three well known feature selection techniques due to 
their ability to find near optimal feasible solution in a reduced computational time in 
comparison to other feature selection techniques. Next, we discuss in brief the different 
types of features used in literature for stock prediction. 

2.2 Features 

Stock prices are determined in the marketplace where selling and buying occurs. There 
exists no definite equation that tells about the behaviour of the stock. Literature states that 
there are different features that move the stock price up and down (Tsai and Hsiao, 2010). 
These features which affect the behaviour of the stock market, are divided into four 
categories: fundamental features, technical features, macroeconomic features and market 
sentiment. Each of these features are further discussed in brief. 

2.2.1 Fundamental features 
The fundamental comprises of the qualitative and quantitative information that adds to 
the economic well-being and the consequent financial estimation of a company, security 
or currency. These fundamentals are analysed by analysts and investors to establish an 
estimate to whether the underlying asset is treated as justifiable investment or not. For 
businesses, some of the fundamentals are information such as revenue, earnings, assets, 
liabilities and growth. In a stock market, stock prices can be determined primarily by 
fundamental features which is an amalgamation of an earning base for example, earnings 
per share (EPS) and a valuation multiple for example a P/E ratio. 

The stock price has correlation with the intrinsic values like sales, profitability, EPS, 
management, corporate image, product quality, employee layoffs, accounting errors or 
scandals and so on. Table 1 lists out some of the fundamental factors (Tsai and Hsiao, 
2010; Zhang et al., 2014) known from the literature. The fundamental factors may vary 
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from region to region. Till date there exists no in general agreement on fundamental 
variables. 
Table 1 List of fundamental, technical features and macroeconomic features 

Sl. no. Fundamental features Technical features Macroeconomic features 
1 Gross margin growth 20-day bias Exchange rate 
2 Net income Rate of change Inflation rate 
3 Operating income Stochastic indicator Oil price 
4 Cash flow ratio Relative index US lagging indicator 
5 Current ratio 10-day moving average Foreign exchange reserves 
6 Quick ratio Moving average 

convergence/divergence 
(MACD) 

Interest rate 

7 Sales growth ratio Commodity channel index 
(CCI) 

Monitoring indicator 

8 Liabilities ratio Buying/selling willingness 
indicator 

Merchandise trade volume 

9 Operation income 
growth 

Moving average oscillators 
(MAO) 

Export foreign exchange 
volume 

10 Ordinary income 
growth 

Buying/selling momentum 
indicator 

Merchandise export 

11 Continued income 
growth 

Psychological line Industry production index 

12 Fixed asset turnover Relative strength index (RSI) Import price index increase 
rate 

13 Inventory turnover Rate of change (ROC) Export price index increase 
rate 

14 Net income growth Stochastic slow Foreign investment 
approval 

15 Total asset growth Disparity 5 Merchandise import 
16 Operating Income Momentum  
17 Return on total asset Disparity 10  
18 Total asset growth   
19 Inventory turnover   
20 Days payables 

outstanding 
  

2.2.2 Technical features 
Technical features are also referred as technical indicators as it indicates future price 
levels or direction from past patterns. It is a class of measurement, in which value is 
obtained from generic price activity in a particular stock. These are primarily used for 
analysing short term price movements. Some of the technical features being widely used 
are listed in Table 1. As per, Huang and Tsai (Lee, 2009), technical indexes are practiced 
on daily price variation in the stock. More technical features along with details can be 
referred from Tsai and Hsiao (2010) and Dash et al. (2014). 
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2.2.3 Macroeconomic features 
Macroeconomic features are the external factors affecting the stock price. Literature 
states that factors like gross domestic product (GDP), inflation, exchange rate, etc. affect 
stock price (Tsai and Hsiao, 2010; Zhang et al., 2014). They play an important role in the 
stock price movement. Table 1 lists out some of the macroeconomic features widely 
being used. 

The macroeconomic features vary from region to region. Thus, there exists no 
globally agreed upon list of macroeconomic features. The economic and political 
condition of one region may affect other region too. Tsai and Hsiao (2010) provides the 
list of few more macroeconomic features. 

2.2.4 Market sentiments 
Market sentiment is the market participants psychology. It may be the opinion of a single 
person or a group of persons and it may be often biased (Barak et al., 2015). It is 
considered as one of the important factor in stock price prediction. People give their 
opinions in social media which are accessible worldwide. The news also affects the stock 
market. Dynamics of market sentiment is being explored by Hagenau et al. (2013),  
de Fortuny et al. (2014), Barak et al. (2015) and Wing et al. (2014). 

3 Prediction techniques 

Choosing a prediction model is another key feature in obtaining a good accuracy for 
stock price prediction. Many techniques like artificial neural network (ANN) (Tsai and 
Hsiao, 2010; Zhang et al., 2014; Su and Cheng, 2016; Anish and Majhi, 2016; Das and 
Padhy, 2012), support vector machine (SVM) (Hagenau and Liebmann, 2013; Oztekin  
et al., 2016; Zhang et al., 2014; Su and Cheng, 2016; Huang and Tsai, 2009; Ni et al., 
2011; Nguyen et al., 2015; Das and Padhy, 2018; Dash et al., 2014), fuzzy inference 
systems (Oztekin et al., 2016; Barak et al., 2015) are widely accepted prediction models. 
Neural networks can implicitly detect complex non-linear relationships between different 
features (Zhang et al., 2014). Opinion mining also has been used for sentimental analysis 
of stock related news or opinions. 

Prediction techniques may vary in accordance with the feature set. The fusion of 
various prediction techniques may be used for better accuracy in stock price prediction. 
Next, we discuss in brief the standard widely used prediction techniques in literature for 
stock prediction. 

3.1 Support vector machine 

SVM from the ground of machine learning, is relevant to classification and regression 
among many supervised learning techniques. As per Vladimir Vapnik’s statistical theory 
of learning algorithm, SVM is a supervised methodwhichcan classify as per prior 
prescribed classes or do regression. Because of this, SVM Algorithm is sometimes known 
as a support vector regression. SVM algorithms have been gaining more popularity due to 
its features and promising empirical conduct. As compared to the traditional empirical 
risk minimisation methods, SVM’s structural risk minimisation features show much 
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better and superior results. Expected risk of an upper bound is minimised by structural 
risk minimisation, whereas empirical risk minimisation lowers the miscalculation of 
training data. Thus, SVMs give a decent generalisation conduct with an efficiency of 
computation as far as the speed and complexity is concerned. It deals with multi-
dimensional data easily. SVMs also work very well under different situations even when 
the sample dataset is small (Cristianini and Shawe-Taylor, 2000; Zhang et al., 2014). 

From literature, it is found that several authors use SVR to match with their projected 
model. SVR is that the SVMs comprehend to unravel assessment issues of nonlinear 
regression. The concept of SVR depends on the calculation of a linear regression which 
performs in an exceedingly high dimension feature area wherever the in take information 
are mapped via a nonlinear function (Schumaker and Chen, 2006). 

The SVM has been chosen by Oztekin and Kizilaslan (2016) as the main driver for 
miniature formation for text mining-based stock price prediction. For classification as 
buy/sell, the model has been measured with adaptive neuro fuzzy inference system and 
neural network based on MLP. It is found that SVM outperforms ANFIS and ANN in 
terms of its accuracy results. SVM is utilised on different mix of messages, which are 
expressed in feature vectors, and their subsequent price effect of stock (Hagenau et al., 
2013). Further, the performance of ANN, Naive Bayes and SVMs have been compared 
and resulted in SVMs to be far better as far as performance is concerned as part of a pilot 
study. 

A forecasting model which is based on SVM with a hybrid method to select features 
(F_SSFS) has been proposed as a stock trend predictor (Ni et al., 2011) reducing the 
number of training for SVM. With the combination of different prediction techniques, a 
data analytic approach has been developed which shows that stock price forecasting 
performance can be dramatically executed by utilising ANFIS, ANN, and SVM (Zhang  
et al., 2014). Examples of financial prediction using SVM applications. Least squares 
SVM (LS-SVM) utilises linear rather than quadratic programming, thus reducing 
computational complexity of the actual SVM technique (Gestel et al., 2003).Mapping the 
data to a features space is included by LS-SVM, which has a function formulated that can 
be utilised for TS prediction (Huang and Shyu, 2010). SVM has been utilised as a part of 
writing because of its capacity to deal with risk in an extremely successful way. 

3.2 Artificial neural network 

An ANN is an interconnected assembly of straightforward multiprocessing components, 
whose practicality is loosely supported animal neuron. The processing capability of the 
network is hold on within the inter unit affiliation strengths or weights, attained by a 
method of adaptation to or learning from a collection of training patterns (Hassoun, 
1995). An ANN incorporates an oversized range of parameters that permits learning the 
intrinsic nonlinear link presented in time-series, expanding their forecasting potential 
(Arasaratnam and Haykin, 2008; Specht, 1990; Zhang et al., 2014). Main power of ANNs 
is that the capacity of versatile nonlinear operate approximation with a name deficiency 
(Cybenko, 1989). As a nonparametric and information driven model, ANNs do not need 
further presumptionsprior to the model formation. Varied issues and threats are related to 
ANNs. The chosen weights and thresholds have major hit on the prediction outcomes. 
During training the ANN, local optima are often found in – lieu of the global optimum. 
ANN continues to be thought-about as a ‘black-box’ and does not give intuitive narration 
of the prediction method. 
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Göçken et al. (2016) planned a hybrid ANN model for 45 technical indicators 
(features) that were reduced to 26 and 23 non-redundant options by GA and harmony 
search accordingly. It absolutely was found that stock price prediction efficiency of the 
HS-ANN is considerably higher than that of GA-ANN model and therefore the regular 
model of ANN. Higher prediction performance is found by combining multiple feature 
selection methods over single feature selection technique by Tsai and Hsiao (2010). They 
indeed combined PCA, GA and DT approach on union, intersection and multi-
intersection level along side MLP for stock’s fall/rise prediction so as to recommend for 
buy/sell severally. 

3.3 Fuzzy inference system 

An ANFIS will construct associate in nursing input-output mapping supported each 
human information within the kind of fuzzy if–then rules with membership of appropriate 
methods and provided input-output knowledge combinations. It implements a neural 
network in assurance of the form of membership functions and of the extraction of rule. 
ANFIS design adopts a composite processs of learning within the structure of adaptative 
networks (Jang, 1993). This illation system integrates the most effective options of 
formal logic and ANNs which handles the nonlinearity and unpredictability in the  
real-world systems (Lee and Ouyang, 2003). Fuzzy sets adaptation (Chaudhuri and De, 
2011) is competent to handle unpredictability and impreciseness in forecasting of 
company knowledge. It is effective to find a set of optimum options and different 
parameters. Barak et al. (2015) gift a completely unique prognostication miniature for 
stock markets on the premise of the wrapper adaptive neural fuzzy inference system 
(ANFIS) – imperialist competitive algorithm (ICA) and technical analysis of Japanese 
holder. Imperialist competitive formula has been used to set choice. 

C.H. Su and Cheng (2016) planned a time-series model that implemented planned 
ANFS methodology to pick the cheap variables into the ANFIS model, and used a model 
of adaptative expectation to enhance prognostication ability. The study in Su and Cheng 
(2016) planned associate in nursing INFS methodology to pick three vital technical 
indicators, and used the chosen technical indicators as intake variables for ANFIS model 
of prognostication to get the preliminary estimates. 

4 Discussion and critical review 

Stock market data are considered to be highly unpredictable. At any given time, there can 
be trends, random walks, cycles or combination of all which may result in unpredictable 
situation of stock market. Buying or selling a stock is a very complicated decision as 
there are several aspects that might influence the stock price values. Many external 
factors affect the stock values which in turn results in variation in stock market. It is 
being observed that the dynamic political scenarios have their own impacts along with 
fundamental and macroeconomic features on stock market trends. Identifying the 
influential factors is a key task in the field of stock market. 
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Table 2 Summarisation of analysis of feature selection techniques in stock price prediction 
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Table 2 Summarisation of analysis of feature selection techniques in stock price prediction 
(continued) 
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Table 2 Summarisation of analysis of feature selection techniques in stock price prediction 
(continued) 
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Table 2 Summarisation of analysis of feature selection techniques in stock price prediction 
(continued) 
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Table 2 Summarisation of analysis of feature selection techniques in stock price prediction 
(continued) 
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Table 2 Summarisation of analysis of feature selection techniques in stock price prediction 
(continued) 
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Table 2 Summarisation of analysis of feature selection techniques in stock price prediction 
(continued) 
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Table 2 Summarisation of analysis of feature selection techniques in stock price prediction 
(continued) 
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Table 2 Summarisation of analysis of feature selection techniques in stock price prediction 
(continued) 
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Table 2 Summarisation of analysis of feature selection techniques in stock price prediction 
(continued) 
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Table 2 Summarisation of analysis of feature selection techniques in stock price prediction 
(continued) 
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Figure 3 Numbers of published articles considered on feature selection for stock prediction for 
different types of features (2005–2017) (see online version for colours) 

68 

12 

10 10 

 

Articles surveyed mainly focus on feature selection for the stock price prediction of either 
single stock index or multiple stock market indexes. But many other studies focus in 
forecasting the return of single or multiple stocks. Articles in Table 2 may be divided in 
four sections: category 1 (macroeconomic feature), category 2 (sentimental feature), 
category 3 (technical features), and category 4 (integrated features). 

A very significant part of decision making is based on data collection and 
consolidation via data analytic modelling, so this kind of a Parsimonious model definitely 
will be very interesting to the decision makers. 

To simplify the intricacy of the model and achieve frugality, decreasing the number 
of input variables required for estimating is very critical which is a well-known factor, 
and hence to quicken the decision making operation and reduce the computation time is 
also critical. In turn expanding the number of variables becomes harder to access and/or 
collect as well resulting in high computational complexity (Wang et al., 2015). 

The first category in Table 2 includes articles that use macroeconomic features as 
input data features. Macroeconomic feature of well-developed North America, Western 
Europe and other solid economy countries has been considered under this category. It is 
evident from Table 2 that generally, 10 or more input variables are used in most of the 
studies under category 1. There are also examples like Olson and Mossman (2003) who 
used 59 input variables and Zorin and Borisov (2002) who used 61 variables. Exchange 
rate, price of oil, rate of interest, inflation rate, foreign exchange, GDP and import/export 
price are the most common macroeconomic features used as input variables (Wang et al., 
2015; Oztekin et al., 2016; Altinbas and Biskin, 2015). Internal and external political 
uncertainty mostly causes the rise and fall of the GDP. In addition to the common 
macroeconomic features many other features are also used in other papers, which varies 
from country to country. GDP usually impacts one country/location to other 
country/location. Hence countries affected by macroeconomic features are also 
considered in many papers. 

It is evident that financial assimilation exists across the globe from the 
experimentation and writings (Fischer and Palasvirta, 1990). Fluctuation of stock market 
usually flows among the developed countries and gets transmitted to emerging markets. 
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Fischer and Palasvirta (1990) studied that there exists an immense statistical relationship 
among 23 stock indices. Oztekin et al. (2016) represented a collection of developed and 
emerging markets, with US stock prices dominating the rest of the world. Thus, for the 
forecasting of the BIST 100, it is sensible to use a US index. Directional movements in 
the US indices, like the DJIA, the Nasdaq Composite, or the S&P 500 mirror each other 
approximately. From Table 2, it is evident that a combination of macroeconomic features 
along with other features for stock prediction may give better prediction accuracy. 

The second category in Table 2 includes articles that use sentimental features as input 
data features. Textual news and textual opinion affect the stock market in a very effective 
manner. Thus, we may say that market sentiments have greater impact on the stock 
prediction results. Often, the buy and sell of stock is biased by the user sentiments. 
Different techniques have been used to evaluate the sentiments for prediction of stock. 
Balanced mutual information along with Naive Bayes has been used in Gunduz and 
Cataltepe (2015) for closing price prediction taking into consideration the financial news. 
Chi-square-based feature selection gives good classification accuracy in Hagenau et al. 
(2013) for the textual news from Germany and UK publications. Chi-square, bi-normal 
separation and frequency-based feature selection methods are compared along with SVM 
with linear kernel for sentimental features. The study reveals the improvement of stock 
price prediction due to the sentimental features. Many techniques have been used for 
sentimental features and it is found that more noun, verbs and words should be allowed 
for good training and validation purpose. 

The third category in Table 2 summarises articles that use technical features as input 
data features. From literature, it is found that for stock price prediction, usually technical 
features are used as input feature sets (Oztekin et al., 2016; Huang and Tsai, 2009; Lee, 
2009; Ni et al., 2011; Nguyen et al., 2015; Göçken et al., 2016; Anish and Majhi, 2016; 
Altinbas and Biskin, 2015; Das and Padhy, 2018; Dash et al., 2014; Dash and Dash, 
2016). Usually, 7 to 10 technical indicators are used for stock price prediction. But, in 
some papers more than 25 technical features have been used as seen from Table 2. The 
most common technical features used are Simple moving average (SMA), Exponential 
moving average (EMA), Stochastic oscillator (STOC %K and %D), Relative strength 
index (RSI), Price rate of change (PROC), Closing price acceleration (CPACC), High 
price acceleration (HPACC), moving average convergence/divergence (MACD). 
Historical stock prices are used by technical analysts for calculating indicators which are 
plotted together with price of stocks on the same chart. These charts are used by investors 
to search for particular pattern that indicates movements of the market in future and in 
turn adds basis and trend for their decision making. For technical analysis, there are 
multitude of indicators which are proposed and each of these indicators provides different 
information about the market. Examples are: trends of the market are indicated by moving 
averages, whereas relative strength and momentum gives a perspective how a given stock 
is overbought or oversold. 

The fourth category in Table 2 includes articles that uses an integrated set of features 
as input data features. A combination of technical features along with sentimental 
features gives a better accuracy as seen from work done by de Fortuny et al. (2014) and 
Nguyen et al. (2015). 85 features including fundamental and macroeconomic features has 
been used for stock prediction in Tsai and Hsiao (2010). The study reveals that helping to 
improve the prediction accuracy a combination of different types of features would be 
even much better for stock price prediction. 
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From Table 2, it is evident that the count of input variables practiced, differs from 
model to model. Average count of input variables adopted in most of the models are 
between four to ten, however, there are models where only two input variables are used. 
There are also example of Olson and Mossman (2003) where 59 input variables used and 
Zorin and Borisov (2002) where 61 input variables used. The statistics of the published 
papers on feature selection for stock prediction for different types of features during 2009 
to 2016 is given in Figure 3. 

Different methods are also applied to find the most significant input variables for the 
forecasting procedure amid a large number of candidate ones, depending on how 
particular input influences the attained outcomes. A large number of observations are 
covered by some studies over a period of years. Whenever there is a missing observation, 
the mean value or the latest stock value observed is used to fill. The opening or closing 
price of the stock index is most commonly used inputs, also the daily lowest and highest 
values are commonly used. Most of the surveyed articles use the daily closing price or 
some indicator relying only on it as input. 

5 Conclusions 

Stock prediction helps the organisations and the stake holders to keep track of the market 
and choose accordingly whether to sell, buy or withheld the stock in order to maximise 
the profit. Our survey aims to help the stock brokers and investors for investing money in 
the stock market. Articles surveyed mainly focus on feature selection for the stock price 
prediction of either single stock index or multiple stock market indexes. The review of 
literature on stock price prediction reveals that the stock price prediction is highly 
dependent on the choice of dataset and input features which may vary from one 
methodology to another. A very significant part of decision making is based on data 
collection and consolidation via data analytic modelling, so this kind of a parsimonious 
model definitely will be very interesting to the decision makers. 

Average number of input variables used in most of the models is between four to ten, 
however, there are models where more than 30 input variables have been used. The study 
reveals that the integration of different types of features like technical, macroeconomic 
and sentimental may result in better prediction model. Amongst many feature selection 
methods, the most widely used methods are PCA, GA and decision trees as they 
contribute in selecting good number of representative features. The study suggests that 
the fusion of various feature selection techniques may be used for better accuracy in stock 
price prediction. SVM and ANN are found to be widely used prediction models. On the 
basis of our survey, it is observed that the usage of a large set of input features may 
increase the performance efficiency of the prediction model. But, large set of input 
features also increases the computational complexity of the model. To simplify the 
intricacy of the model and achieve frugality, decreasing the number of input variables 
required for estimating is very critical which is a well-known factor, and hence to 
quicken the decision making operation and reduce the computation time is also critical. In 
turn expanding the number of variables becomes harder to access and/or collect as well 
resulting in high computational complexity. The study put forward the amalgamation of 
different feature selection techniques on a large set of integrated features to achieve 
higher degree of prediction on stock market with an aim of reducing the computational 
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complexity of the model. In addition, presently it is difficult to specify the most effective 
approach in stock prediction territory, which may be considered as a future research issue 
to perform comparative survey based on all these existing approaches. 
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