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Abstract: As additive manufacturing transitions from manufacturing 
prototypes to rapid manufacturing, more human factors considerations must be 
assessed and integrated for improved work design. This review paper provides 
an overview of human-machine integration for human factors, cognitive 
ergonomics, and artificial intelligence to improve the performance output of the 
additive manufacturing process. In addition, case studies are shared to provide 
integration concepts for artificially intelligent systems. It is anticipated that the 
contents of this review paper will pave the path for further research into the 
integration of human factors and cognitive ergonomics for artificial intelligence 
in additive manufacturing. 
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This paper is a revised and expanded version of a paper entitled ‘Integration  
of human factors, cognitive ergonomics, and artificial intelligence in the 
human-machine interface for additive manufacturing: a literature survey’ 
presented at 15th Annual Dayton Engineering Science Symposium (DESS), 
Dayton, Ohio, 29 October 2019. 

 

1 Introduction 

Much has been stated and written about the current and future potential of additive 
manufacturing. However, one area that has not been adequately addressed is Human 
Factors and Ergonomics in additive manufacturing concerning promoting better system 
performance. As additive manufacturing transitions from a technology of manufacturing 
prototypes to rapid manufacturing, more human factors considerations must be assessed 
and integrated for improved work design. This paper provides an overview of human-
machine integration for human factors, cognitive ergonomics, and artificial intelligence 
to improve the performance output in the additive manufacturing process. 

2 Background 

2.1 Additive manufacturing 
Additive manufacturing (AM) is a fabrication process that deposits, cures, or consolidates 
material layer upon layer to create a product (Horn and Harrison, 2012). The product 
formed is based on a three-dimensional (3D) model made from computer-aided-design 
(CAD) software like SolidWorks. When additive manufacturing first originated in the 
1980s, its primary use was for rapid prototyping products due to reducing both time and 
cost compared to other traditional manufacturing methods such as milling and drilling 
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(Gardan, 2016). Today, additive manufacturing’s primary use remains for rapid 
prototyping. Although additive manufacturing has not become more common in the 
manufacturing environment outside of prototyping due to the technology remaining 
expensive and unable to mass-produce (Bailey and Bosworth, 2014), the industry is 
slowly growing (Bikas et al., 2016). General Electric is one company that has led the  
growth of metal additive manufacturing with its recent use and development of 3D 
printing for components used in its aircraft engines (Sand, 2019). The success of General 
Electric’s use of additive manufacturing could lead to lowered cost and shortened lead 
times for them as a company due to the consolidation of manufacturing their components 
(Sand, 2019), but this could be due to the small batch size of their engines compared to 
other industries. Although more research is necessary, there are known environmental, 
ecological, and design benefits with a potential for even more depending on the 
development of additive manufacturing technologies. 

Some of the studied ecological benefits of using additive manufacturing are less raw 
material needed for production, which leads to a reduction in the weight of transported 
products and wasteful manufacturing processes, along with the declining need for 
centralised locations in part manufacturing (Peng et al., 2018). Other potential ecological 
benefits exist for additive manufacturing such as limited material waste, a recyclable 
material, and higher energy efficiency, but these benefits are dependent on the design of 
the product, the material of the product, the amount of excess material used for 
supporting the part during printing, and the number of products being produced (Rejeski 
et al., 2018). In terms of economic benefits, the foremost economic interests coincide 
with additive manufacturing’s primary function of rapid prototyping with reduced 
development costs and material waste during prototyping compared to the traditional 
subtractive manufacturing processes (Bailey and Bosworth, 2014). The other prospective 
cost savings that come with additive manufacturing processes have similar variability to 
environmental benefits with factors such as build failure rates or incorrect fabrication of 
the product (Baumers et al., 2017). The major advantage of using additive manufacturing 
is the ease of design and production of models in short product cycles (Horn and 
Harrison, 2012). 

With the direct use of a three-dimensional CAD model to produce a product, additive 
manufacturing can create a single component that has intricacies that other manufacturing 
processes cannot replicate. The ability to compose a complex component allows the 
designer to create a model with sophisticated structures instead of designing for 
manufacturability and creating a series of pieces requiring final assembly (Mantyjarvi et 
al., 2018). This freedom of design provided with additive manufacturing allows 
engineers to design products with higher performance for numerous applications, such as 
modular weaponry for military use (Schrand, 2016) or aeroplane blades made of high-
performance alloys (Horn and Harrison, 2012). Though additive manufacturing has clear 
and significant advantages for manufacturers beyond rapid prototyping, there are 
disadvantages to additive manufacturing that have prevented additive manufacturing 
from growing into a more prominent role in the manufacturing environment. 

The significant reasons why additive manufacturing has not become commonplace in 
the manufacturing environment outside of rapid prototyping is due to its inability to 
match the throughput, quality, quantity, and product consistency of traditional 
manufacturing processes that comes at a manageable cost for mass production (Horn and 
Harrison, 2012). Additive manufacturing has grown with the development of multiple 
fabrication processes in laser-based processes, extrusion-based processes, material jetting 
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processes, adhesive- based processes, and electron beam processes as well as expanded 
availability of metals and plastics for producing parts. However, machining is still needed 
for post-processing of the 3D printing for removing the excess material for the part. Each 
of these process types has favourable applications compared to the others, but all create 
parts layer by layer using a CAD model (Bikas et al., 2016). But until all these 
technologies for additive manufacturing become more reliable and less expensive, it will 
remain in its current role in rapid prototyping. However, as the additive manufacturing 
technologies advance to produce at rapid manufacturing rates, the human-in-the-loop 
must be considered and the use of artificial intelligence. This paper will review and 
leverage published literature regarding human factors and cognitive assessment methods 
to evaluate operator performance and the human-system design in additive 
manufacturing tasks and workstation functions. 

2.2 Cognitive ergonomics 

In general, ergonomics is the study of human work that seeks to improve the safety, 
comfort, and production of humans (Venda et al., 2000). Since its origination, 
ergonomics has been a topic for numerous pieces of research to enhance the work of 
humans in a variety of work environments. Research in ergonomics was solely on 
physical ergonomics during its initial stages of development. This research led to the 
application of physical ergonomic standards in most working environments, thanks to the 
creation of the Occupational Safety and Health Administration (OSHA). With the growth 
of technology came a new and more relevant field of ergonomics for today’s work 
environments: cognitive ergonomics. 

Cognitive ergonomics analyses human work from a mental work perspective and like 
physical ergonomics, seeks to improve humans’ work and productivity (Venda et al., 
2000). The mental work perspective is an essential aspect of designing and evaluating 
occupational tasks because the interaction between an operator and an assigned task is 
critical. Mental work measures provide awareness of where increased task demands 
could negatively impact human performance (Bommer and Fendley, 2018). 

Two significant aspects of cognitive ergonomics are people perceive processed 
information through sight, sound, or feel and how people make decisions based on this 
information (Macleod, 2004). The use of cognitive ergonomics is seen every day from 
how a light switch is designed and mounted vertically on a wall (Macleod, 2004) or how 
a door unlocks when the door handle is pushed down on instead of up. Subtle changes 
such as a door handle and light switch are designed to be easily used and follow 
perception and decision making that humans are accustomed too. Cognitive ergonomics 
are also applied to high-stress environments such as an airplane’s cockpit, its endless 
number of buttons and switches being designed and placed for a typical pilot’s decision-
making (Macleod, 2004). Cognitive ergonomics is used for developing a product 
comfortably for humans and increasing the performance of a product and its user and the 
safety of the person producing the product. 

As stated previously, one of the central focuses of ergonomics is to increase the safety 
of humans (Venda et al., 2000), which is vital in hazardous environments such as 
manufacturing or construction. An example of designing for safety in the design of 
construction safety signs (Chen et al., 2018). In a study done on the construction safety 
signs, results showed that if the sign was the colour red, the signs were easier to identify 
with shorter response time compared to other coloured signs (Chen et al., 2018). Other 
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safety precautions follow this knowledge of red being an ideal colour, such as how a 
computer numerical control (CNC) has a red emergency button that can completely shut 
down a machine. A CNC also can produce a noise like a siren to increase the attention of 
an operator to alert that operator that something is incorrect with the setup or operation of 
the machine and not to precede with the operation (Wei et al., 2018). Lastly, cognitive 
ergonomics is used to increase human production (Venda et al., 2000) such as presenting 
information in appropriate detail (Macleod, 2004) when working on a computer interface 
to avoid mentally overloading the human operating the computer interface. Cognitive 
ergonomics’ central focuses revolve around the idea of cognitive load and avoiding 
mental overload and under-stimulation for humans. 

Cognitive load theory (CLT) defines human limitations in processing information in 
working memory from three distinct loads: intrinsic, extraneous, and germane (Galy and 
Melan, 2015). First, intrinsic cognitive load is the quantity of material required for 
processing and the difficulty of the material being processed (Galy and Melan, 2015). 
Secondly, extraneous cognitive load is the elements of one’s learning environment that 
can negatively or positively affect one’s workload (Galy and Melan, 2015). Lastly, the 
germane mental workload is the load that is generated by the applications of problem-
solving techniques (Galy and Melan, 2015). All three of these loads are factored into both 
types of memory: working memory and long-term memory (Kalyuga, 2011). Working 
memory is temporary memory that one contemplates based on the information they 
perceive (Wickens and Lee, 2004) while long-term memory is information that can be 
retrieved from the past, whether it be minutes later to years later (Wickens and Lee, 
2004). Understanding these different types of workload and memory provides insight into 
the various cognitive abilities required for an operator. Furthermore, knowledge of these 
workloads as well as the multiple resources that factor into one’s mental workload allows 
one to measure the cognitive workload of an operator and acquire a more holistic 
understanding of their workload and whether one’s performance is a result of their task 
demands (Bommer and Fendley, 2018). 

The Multiple Resource Theory (MRT) assesses task demand by considering the 
resources that factor into the workload of humans and a human’s ability to perform in 
high-workload environments (Wickens, 2002). The five resources of the human mind that 
factor into a human’s performance are visual processing, auditory processing, cognitive 
processing, speech, and motor (Bommer and Fendley, 2018). With these five resources 
in mind, the Multiple Resource Theory analyses three specific components within a 
compilation of the five resources: task demands, availability of resources, and resource 
overlap (Bommer and Fendley, 2018). By analysing these three components, the 
evaluation of an operator will be holistic by completely breaking down all the elements 
to one’s task performance. This analysis will also allow one to predict an operator’s 
performance and their ability to complete their given task or tasks (Bommer and Fendley, 
2018). The CLT provides insight into the distinct three mental workloads. The Multiple 
Resource Theory breaks down a human’s performance by analysing the five resources 
that factor into mental workload. These two theories can be applied by selecting an 
appropriate resource or resources to measure a human’s performance and the distinct 
mental workload needed to complete the operator’s given tasks. 
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2.3 Computational methods 

For measuring mental or cognitive workload, there are three types of measures: 
physiological, subjective, and performance. Physiological measures are measures of the 
body’s physical responses that range from eye fixation rate to the pitch of one’s voice 
(Badiru and Bommer, 2017). These physiological measures include measuring the 
resources outlined in the Multiple Resource Theory by using bodily activities of the 
following: cardiac, brain, respiratory, speech, and eye (Badiru and Bommer, 2017). 

The cardiac measures for mental workload include heart rate (HR), heart rate 
variability (HRV), and absolute interbeat intervals (Grassmann et al., 2017). Some of the 
physiological measures of the brain can be measured using an electroencephalogram 
(EEG), electrocardiogram (ECG), electrooculogram (EOG), or an electromyogram 
(EMG) (Zhang et al., 2017). Respiratory measures for mental workload include the 
respiratory rate, airflow, and volume, along with respiratory gas analysis (Charles and 
Nixon, 2019). Speech measures used for measuring mental workload include the pitch, 
rate, and loudness of speech (Badiru and Bommer, 2017). Lastly, the eye measures used 
in calculating mental workload include pupil dilation, blink rate, fixation rate, saccadic 
rate, and pupil diameter (Yan et al., 2019). 

Generally, physiological measures have been used in measuring mental workload due 
to the measurements providing accurate and objective data (Zhao et al., 2018). 
Physiological measures are also known for having better performances in measurement 
facets such as sensitivity, diagnostic ability, and non-intrusiveness when comparing it to 
subjective measures (Zhao et al., 2018). Subjective measures provide a different dynamic 
to measuring one’s cognitive workload that physiological measures do not offer with the 
measure being based on the operator’s perception (Badiru and Bommer, 2017). 

Subjective measures are easier to administer and analyse compared to physiological 
measures but are administered after the task or tasks have been completed, which can 
affect the reliability of the results if the task or tasks are extensive (Longo, 2015). 
Subjective mental workload measures include the Workload Profile (WP), Cooper-
Harper scales, Bedford scale, subjective workload assessment technique (SWAT), 
subjective workload dominance technique (SWORD), and the National Aeronautics and 
Space Administration Task Load (NASA-TLX) (Badiru and Bommer, 2017). 

Workload Profile collects data on demands of the task which includes perceptual 
processing, response selection execution, spatial processing, verbal processing, visual 
processing, auditory processing, manual output, and speech output using a rating system 
imposed on all of their tasks with these dimensions being analysed (Badiru and Bommer, 
2017). Like the Workload Profile, Cooper- Harper scales use a rating system that is filled 
out by operators after the task is completed but can use a decision tree in conjunction 
with the rating system to analyse the workload of an operator (Moorhouse, 1990). The 
Bedford workload scale uses a 10-point rating system assigned based on the mental 
workload of the operator (Wang et al., 2013). For example, ratings 1 to 3 indicate a low 
workload and the operator has spare mental capacity doing these tasks, while a task with 
a rating of 10 indicates there is no spare capacity and no available attention that can be 
permitted to be used on other tasks (Wang et al., 2013). 

The subjective workload assessment technique (SWAT) is a subjective questionnaire 
type analysis that looks at three dimensions: time load, mental effort load, and 
psychological stress load (Rubio et al., 2004). These three dimensions are then rated on a 
three-level scale: low (1), medium (2), and high (3) that determines the mental workload 
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of an operator (Rubio et al., 2004). The next step of the SWAT analysis is having an 
operator rank all 27 possible combinations of the three dimensions and three levels in 
their perception of increasing workload (Rubio et al., 2004). Following the operator 
ranking all possible combinations, conjoint scaling procedures are followed to create a 
single rating scale with interval properties (Rubio et al., 2004). Lastly, actual ratings of 
workload for given tasks are completed and converted into a numeric score between 0 
and 100 using the interval scale (Rubio et al., 2004). The next subjective measure for 
mental workload that will be covered is the subjective workload dominance method. 

The subjective workload dominance (SWORD) measures workload using a series of 
relative judgements that compares the workload of various task conditions (Vidulich et 
al., 1991). SWORD follows three distinct steps: collecting raw judgement data, 
constructing the judgement matrices, and calculating SWORD ratings (Vidulich et al., 
1991). In collecting raw judgement data, the rater is given the rating sheet that lists all 
possible paired comparison of tasks after completing all tasks (Vidulich et al., 1991). This 
rating sheet has one task on the left side of the evaluation and the other on the right, and 
the rater has to compare the levels of workload for both of the tasks and determine which 
task has a higher workload or workload dominant and how dominant it is (Vidulich et al., 
1991). The rater does this for all of his tasks before constructing the judgement matrices 
to compare task difficulty (Vidulich et al., 1991). The rater marks the judgement matrices 
based off of which task was the dominant (Vidulich et al., 1991). If the left-side task was 
more dominant, the rater would use a 2 to 9 scale depending on how dominant the left-
side task is compared to the right-side task with two being the least dominant and nine the 
most dominant (Vidulich et al., 1991). If the right-side task was more dominant, the rater 
would use the 1⁄2 to 1⁄9 with 1⁄2 being the least dominant and 1/9 being the most 
dominant (Vidulich et al., 1991). The SWORD rating for each task is then calculated by 
using the geometric mean for each row of the matrix and normalising the means 
(Vidulich et al., 1991). The final subjective measurement method for mental workload 
covered will be NASA-TLX. 

Lastly, NASA-TLX has operators rate the mental demand, physical demand, temporal 
demand, overall performance, effort, and frustration of their tasks in a questionnaire 
format following the completion of all tasks (Alaimo et al., 2018). The first step to 
obtaining the rating for each dimension is assigning a score on twenty-step bipolar scales 
for each dimension (Rubio et al., 2004). A score from 0 to 100 is received on each scale, 
and then using a paired comparison between all six dimensions is completed to 
consolidate the six individual ratings into a single score (Rubio et al., 2004). The pairwise 
comparison requires an operator to pick the dimension that is most relevant to workload 
out of all the pairs of the six dimensions (Rubio et al., 2004). The weighting of a 
dimension scale for each task is determined by the number of times the dimension is 
picked as the most relevant (Rubio et al., 2004). Finally, the workload score is computed 
by multiplying the weight by the individual dimension scale score, summing across all 
scales, and dividing by 15, which is the total number of paired comparisons (Rubio et al., 
2004). Performance measures are discussed in the next section. 

The first thing to note with performance measures for mental workload is that it 
assumes that increased task difficulty leads to an increase in task demand (Rubio et al., 
2004). To meet this assumption, measuring mental workload based on performance 
requires the use of two types of measures: primary task and secondary task (Longo, 
2015). Primary task measures are used to indicate performance, while secondary task 
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measures are used to calculate one’s spare attentional capacity along 9 2 with short 
periods of workload (Longo, 2015). 

A performance measure for mental workload is centred around human error 
probabilities (HEPs), which are calculated by taking the number of observed errors and 
dividing it by the number of possibilities for an error (Badiru and Bommer, 2017). There 
are plenty of analyses used for forecasting HEP, such as the Technique for Human Error 
Rate Prediction (THERP), and Cognitive Reliability and Error Analysis Method 
(CREAM) (Liang et al., 2010). 

For THERP, the overall HEP is calculated by completing a task analysis that is then 
converted into a tree diagram that displays all the human errors possible for each task 
(Shirley et al., 2015). HEPs are then subjectively estimated for each possible error, and 
the overall HEP is computed using all the HEPs from each task (Shirley et al., 2015). The 
CREAM method is a human error classification method system that divides human errors 
into eight error modes and three headings of influence factors that gives a framework for 
evaluating human error (Liao et al., 2016). Like THERP, CREAM forecasts HEPs 
subjectively through the opinions of experts (Liao et al., 2016). The use of performance 
measures does allow for a detailed analysis of the resources competing between one 
another in tasks (Longo, 2015) but lacks the objectivity of physiological measures and 
input of operators that subjective measures include. 

Cognitive ergonomics have made significant progress from its origination to now 
with several theories being developed and applied to a multitude of studies and 
experiments. The development of the theories such as the CLT and Multiple Resource 
Theory which have helped in distinguishing the various mental workloads that humans 
deal with, the resources that go into receiving and retaining information, and how to 
measure mental workload overall. Subjective, physiological, and performance measures 
have been developed and used in a variety of work environments to analyse human 
performance. The results of these measurements have been analysed and tested to 
produce modifications to tasks, workstations, and/or product designs to adapt to human 
perception (Macleod, 2004) and potentially increasing productivity and/or safety of the 
human (Chen et al., 2018). 

3 Human considerations in additive manufacturing 

Human considerations in additive manufacturing stem from the three goals of human 
factors: increasing safety, enhancing performance, and increasing user satisfaction 
(Wickens and Lee, 2004). Of these three factors, the most prominent issue with additive 
manufacturing currently is the safety hazards that could damage a human’s health and, 
eventually, the environment (Bours et al., 2017). The three main safety hazards for 
humans is the exposure of toxic chemicals throughout the manufacturing process, the 
harmful emissions produced in some of the processes, and potential static causing 
hazardous materials to react (Bours et al., 2017). For enhancing the performance of 
additive manufacturing, there is definite room for growth in the performance of additive 
manufacturing systems in their throughput, quality, and product consistency of the 3D 
printer (Horn and Harrison, 2012) as well as the energy consumed in additive 
manufacturing’s unit processes (Kellens et al., 2017). 

In terms of the human performance in these systems, training and gaining experience 
with 3D modelling and the process of printing 3D models on a 3D printer safely and 
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properly are the two primary enhancement methods for a human’s performance in 
additive manufacturing (Shelton, 2019). Improvements to the user’s interface for the 
computer used to create the 3D models, and the interface for the 3D printers along with 
how the additive manufacturing process is managed and analysed are improvements to 
the technology that can increase human performance. The idea of incorporating more 
artificial intelligence in the process should also increase human performance in additive 
manufacturing. User satisfaction can be increased mostly through making the user 
interfaces on three- dimensional software like SolidWorks or Autodesk Inventor and the 
3D printer more user-friendly by providing the right amount of feedback and simple 
design (Lee et al., 2010). The advantages and disadvantages slightly differ on the additive 
manufacturing process used whether that is selective laser melting, selective laser 
sintering, fused deposition modelling, or stereolithography (Bikas et al., 2016), but the 
safety potential benefits and concerns for each of these processes are similar. Some of the 
potential safety benefits for additive manufacturing is that there is less material, produce 
less waste, and the process is more self-contained compared to the conventional 
manufacturing processes (Rejeski et al., 2018). Unlike popular manufacturing methods, 
additive manufacturing methods present similar safety concerns from the hazardous 
materials used to managing the harmful emissions produced during the manufacturing 
processes (Rejeski, et al., 2018). 

A major difference between additive manufacturing and modern-day manufacturing 
processes is the materials used which present different health hazards such as higher 
toxicity in materials used, an overabundance of static produced in the process that could 
potentially cause a reaction between materials used in the process (Shelton, 2019), and 
the different emissions that are released (Rejeski et al., 2018). The toxicity hazard is 
minimised by handling materials with no direct contact, such as setting and cleaning up 
the 3D printer through gloves that are attached to the glass window (Shelton, 2019). 
Oxygen is consistently monitored in the room to assure there are no harmful toxins that 
can be inhaled and in other processes such as the filtration process where excess powder 
filters out any toxic materials so the excess powder can be reused (Shelton, 2019). If the 
percentage of oxygen in the room goes below a certain threshold, anyone in the room is 
alarmed to evacuate immediately (Shelton, 2019). If the percentage of oxygen goes below 
an operator set level during the filtration process, the machine automatically shuts off to 
prevent any exposure to toxic particles (Shelton, 2019). 

For reducing the chance of a reaction, static is reduced with the use full-body suits 
that are fire retardant and electrostatic discharge (ESD) shoes during the transfer of the 
metal powder along with an ESD floor (Shelton, 2019). Another form of personal 
protection equipment (PPE) used during the transfer of the metal powder is a positive 
pressure helmet that breaks down toxic particles and pushes them out of the helmet to 
prevent the particles from being inhaled (Shelton, 2019). Another safety hazard that 
additive manufacturing has is the harmful emissions that are produced in the 3D printing 
process. Research has been done regarding reducing emissions in the additive 
manufacturing process, and one tactic that has been found to reduce the emissions is to 
use a high-efficiency filter in an enclosed, well- ventilated indoor environment that could 
help alleviate this safety concern (Kwon et al., 2017). 

The other safety and health concerns with additive manufacturing reside in the 3D 
modelling portion of additive manufacturing. 

The safety concerns that come with 3D modelling are like that of a typical office 
worker such as the potential for computer vision syndrome (CVS) due to the extended 



   

 

   

   
 

   

   

 

   

    Integration of human factors, cognitive ergonomics 319    
 

    
 

   

   
 

   

   

 

   

       
 
 

use of a computer (Teo et al., 2019) or carpal tunnel syndrome (CTS) due to the use of 
keyboard or mouse that lack in ergonomic design (Liu et al., 2016). The health concerns 
with excess computer use have been studied extensively with well-known mitigation 
strategies in place for these. For computer vision syndrome, reduction methods include 
optimising lighting within the room, the position of your computer, taking breaks 
throughout the day, using lubricating eye drops, and computer glasses that reduce 
exposure to blue light (Teo et al., 2019). The use of a pad for both the mouse and 
keyboard has also proven to provide support for the wrists to improve their posture, thus 
helping prevent carpal tunnel syndrome (Liu et al., 2016). There are some methods for 
enhancing the performance of humans in additive manufacturing outside of more training 
and experience like improving the interface of the 3D printer and increasing the use of 
artificial intelligence (AI) in additive manufacturing and the artificial intelligence’s 
effectiveness. 

Since most of the work for humans in additive manufacturing comes from the time 
needed to 3D model a part, proper training and experience with 3D modelling are the 
primary ways to enhance the performance of a human. The 3D modelling software’s 
interface, as well as the interface of the additive manufacturing machine or 3D printer, is 
another way the performance of a human can be enhanced, which can also lead to higher 
user satisfaction with the software. Using cognitive ergonomic techniques and guidelines 
to design both user interfaces can lead to potential rises in performance and satisfaction, 
such as consistent dialogue box designs, maximising screen space on the interface, and 
customisability with the system’s interface (Lee et al., 2010). The failure analysis of AM 
could also use improvement by utilising more effective AI in AM systems to effectively 
improve human performance. 

AI is being utilised in three tasks in additive manufacturing: the computer is able to 
select the point of contact for the part on the 3D printer’s platform, the amount of 
supportive material needed and the supportive material’s placement on the part to print 
properly and providing images of each layer of the part after the part has been printed 
(Shelton, 2019). These three uses of AI in AM have not been particularly effective with 
operators choosing a better point of contact for the part and operators choosing the 
amount of support material needed and its placement which is typically less wasteful than 
the computer’s support material suggested along with saving time by reducing the time 
needed to remove the excess material (Shelton, 2019). The images provided for each 
layer of the part does allow failure analysis post-process but does not monitor the part 
during the printing process (Shelton, 2019). 

The failure analysis is also a tedious process with the vast number of images that are 
produced and organised in chronological order of layer printed need to be analysed when 
a failure occurs (Shelton, 2019). To reduce the number of failures and re-printing of 
parts, a potential new application of AI in additive manufacturing could be used to 
analyse if a part can be successfully printed instead of having a human operator take a 
significant amount of time to assess the build and revise it if needed (Shelton, 2019). 
Instituting this technology would remove a stressful task for the operator and reduce the 
mental workload for the operator while potentially increasing the performance of the 
operator if the AI is effective in determining if a build is printable or not (Shelton, 2019). 
The current AI technologies in additive manufacturing need to be improved to meet the 
performance of a human to reduce the workload on the human in strenuous tasks such as 
3D build assessment. 
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4 Artificial intelligence case studies 

Artificial intelligence (AI) was first thought of by the philosopher Thomas Hobbes in the 
1650s with his philosophy on thinking consisting of symbolic operations that can be 
deduced mathematically (Badiru and Cheung, 2002). The development of the computer  
and its capabilities led to machine intelligence growing and methods for how this 
intelligence can be evaluated with tests such as the Turing test (Badiru and Cheung, 
2002). The Turing test tasks a human interrogator with asking questions to two parties (a 
male and female for the first portion of the test and a computer and human for the second 
portion of the test) through a computer with both parties responding through a separate 
computer in a different location (Badiru and Cheung, 2002). For both portions of the test, 
the human interrogator must interpret the responses of the two parties to distinguish 
which responses are coming from which party with one party responding truthfully to the 
human interrogator’s questions while the other party is attempting to fool the human 
interrogator (Badiru and Cheung, 2002). The results of the Turing test should indicate 
whether the computer shows signs of intelligence. If the human interrogator’s success 
rate in distinguishing between the two parties is lower for the computer and the human 
portion compared to the male and female portion, the computer is considered to be 
intelligent (Badiru and Cheung, 2002). The intelligence of computers and its 
programming only continued to grow, which eventually lead to the birth of the term 
‘artificial intelligence’ by John McCarthy in 1956 (Badiru and Cheung, 2002). 

After its origination, artificial intelligence began to rapidly grow with the invention of 
the general problem solver (GPS), LISP (list processing), the computer programming 
language with great memory organisation and control structure, neural networks, and 
modern- day expert systems (Badiru and Cheung, 2002). 

Herbert Shaw, Allen Newell, and Cliff Shaw introduced GPS, a system that uses 
means-end analysis to complete tasks such as solve theorems or play chess (Badiru and 
Cheung, 2002). Around the same time, John McCarthy developed LISP, a new computer 
programming language that organised its memory with interconnections between 
memory groups and then controlled its program by starting with a goal and determining 
the requirements for achieving that goal (Badiru and Cheung, 2002). A neural network is 
a network where all neurons in a layer are connected to all the neurons in the following 
layer (Bazrafkan and Corcoran, 2018). Data travels through these layers sequentially to 
eventually provide an interpretation of one feature of the input data structure (Bazrafkan 
and Corcoran, 2018). Lastly, expert systems that can mimic a human expert’s knowledge 
and reasoning as well as draw interfaces that normal computer programs cannot (Pandit, 
1994). These technologies have continued to develop since their inceptions and become a 
more integrated society. 

Today, AI is changing humans’ lives by increasing automation in both our personal 
and work environments (Calp, 2019). AI has affected numerous work environments from 
hospitals to manufacturing plants with its ability to assist problems involving issues such 
as classification or optimisation (Calp, 2019). The algorithms and mathematical models 
that are the basis for AI have led it solving highly advanced optimisation problems 
whether the optimisation is continuous or static (Calp, 2019). The use of mechanisms 
such as random walk, swarm intelligence, algorithmic flow, and heuristic and meta-
heuristic can be used to solve these optimisation problems (Calp, 2019). 

Artificial intelligence has started being used in additive manufacturing for a variety of 
purposes that have been well-documented and researched. The use of cognitive 
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ergonomics can assist decision-making on where to deploy AI technologies to 
effectively support the human operator. Table 1 outlines different forms of artificial 
intelligence that are being researched or used in additive manufacturing. 

Table 1 Artificial intelligent technologies in additive manufacturing 

AI Technology Task utilisation Citation 
Augmented reality (AR) Design assessment, real-time 

monitoring 
Malik et al. (2019) 

Bayesian networks (BN) Failure diagnosis Bacha et al. (2019) 
Convolutional neural network 
(CNN) 

Data acquisition, data processing, 
generating patches/labels, image 
segmentation 

Minnema et al. (2018) 

Ensemble-based multi- gene 
genetic programming (EN-MGGP) 

Prediction of surface roughness 
and waviness 

Garg et al. (2018) 

Evolutionary algorithms (EAs) Solving a variety of optimisation 
problems (e.g., machine set up and 
process planning) 

Simon (2013) and 
Leirmo and Martinsen 
(2019) 

Graphics processing unit (GPU) Manipulation of computer 
graphics, image processing, 
processing big data 

Ongsulee (2017) 

Machine learning (ML) Image processing, text 
classification, speech recognition 

Gardner et al. (2019) 
and Singh et al. (2016) 

Predictive analytics Predictive modelling, data mining, 
pattern recognition 

Ongsulee (2017) 

5 Cognitive ergonomics in additive manufacturing 

With technological advancements continually being made and implemented in 
manufacturing, more focus is needed on cognitive ergonomics that is constantly 
evaluated like physical ergonomics (Bommer, 2017). One of the most significant 
technological advancements in manufacturing is additive manufacturing with its ability to 
create a product based on a three- dimensional model made using software such as 
SolidWorks. Additive manufacturing, like many technology-driven processes, requires 
more analysis on the cognitive ergonomics compared to traditional manufacturing 
processes due to its constant use of a computer interface. Some research has been done on 
the cognitive workload that comes with additive manufacturing from the workload 
needed for the spatial design in the CAD (Dadi and Goodrum, 2014) to data organisation 
and analysis in lifecycle management (Muller et al., 2017), but there is a need for more 
specified research on the cognitive ergonomics in additive manufacturing. This section 
will cover some of the current studies completed on cognitive ergonomics in additive 
manufacturing and other studies conducted on cognitive ergonomics applicable to 
additive manufacturing processes. 

The current trend and changes in manufacturing have led to an increased cognitive 
workload for various process operators due to an emphasis on problem-solving and 
reasoning skills in manufacturing tasks and processes (Bommer, 2017). This is especially 
true in additive manufacturing which does not feature many traditional manufacturing 
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processes such as milling and drilling. Instead, most of the work processes in additive 
manufacturing are done through a human-computer interface, whether on a computer 
doing the 3D modelling of the product or setting up the 3D printer to print the 3D model 
part. Of those two human-computer interfaces, the most time-consuming element for the 
human is the 3D modelling, so understanding the cognitive workload of 3D modelling 
using CAD software is critical. Therefore, cognitive ergonomics can be applied to 
increase productivity for the human operator and ease the mental workload for CAD 
activities. 

One study helped frame the workload required in 3D modelling by analysing the 
cognitive workload needed for interpreting 2D drawings, a 3D CAD interface, and a 3D 
printed model by having a person looking at all three models of the product in one of six 
potential sequences (Dadi and Goodrum, 2014). In this study, mental workload was 
measured using the subjective measurement method, NASA-TLX (Dadi and Goodrum, 
2014). Of the three models, the 3D CAD interface had the highest mean for composite 
workload, mental workload, effort, and frustration, along with the lowest performance 
compared to the other two. The study also found that more training and experience in 
CAD helped reduce those workloads and increase performance (Dadi and Goodrum, 
2014). Ultimately, this study outlines the need for using cognitive ergonomics when 
designing CAD software and the need for training to approve the efficiency of humans in 
additive manufacturing (Dadi and Goodrum, 2014) while other research has provided 
insight on the cognitive workload that goes into the of lifecycle management in additive 
manufacturing (Muller et al., 2017). 

Additive manufacturing’s ability to quickly produce parts is a major benefit, but the 
short lifecycle that features multiple datasets with different data formats that have been 
gathered in manufacturing process makes it difficult to interpret the multitude of data 
points and draw correlations between product behaviour, product design, and process 
settings based on these data points (Muller et al., 2017). In a study done on the lifecycle 
design and management of additive manufacturing, a cognitive workload issue was 
identified and tested in the management of additive manufacturing technology with the 
organisation of millions of data points and the consolidation of these points into a single 
format to analyse the 3D printed prototype (Muller et al., 2017). Though this was 
believed to be an issue for the demonstrator of the AM process, the demonstrator was 
able to collect a large amount of data and organise it into a singular and easily accessible 
database (Muller et al., 2017). Even with the demonstrator’s ability to organise and 
consolidate the multitude of data points into a single format, there are questions on 
whether this is able to translate to an actual manufacturing environment and the security 
and safety of the data (Muller et al., 2017). 

The CAD software systems use the core principles that other human-computer 
interactions (HCI) use such as easy to learn, easy to remember, and pleasant to use to 
make humans more proficient in using the software (Muller et al., 2017). There are other 
factors that affect a human’s cognitive ability in an HCI, such as emotions (Liu et al., 
2014). A study was conducted on the emotions of a human working on a CAD system to 
discover if there is a correlation between the human’s emotions and associated CAD 
tasks (Muller et al., 2017). This research provides more insight into the mental workload 
involved in CAD- based work, such as additive manufacturing and the 3D modelling 
done in the process (Liu et al., 2014). The study provided a framework of psycho-
physiological analysis in engineering task analysis in CAD operation with the results of 
the study providing insight on how CAD software could be improved for better 
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performance such as a better interface for completing designs on CAD and separate 
dialogue boxes for requirements and available configurations (Liu et al., 2014). Along 
with these suggestions for improving CAD software’s interface and management of the 
additive manufacturing lifecycle, the interface for the 3D printer can also be approved to 
reduce mental workload by using findings from other research on computer-based 
procedure systems (Lee et al., 2005). 

As previously stated, most of the work done in 3D printing of a part involves HCI, 
whether it is when modelling the 3D part or setting up the 3D printer to print the 3D 
modelled part. The previous recommendations for the CAD interface can also be applied 
to the 3D printer interface (Liu et al., 2014) along with other suggestions such as 
navigation aid and embedded controls (Lee et al., 2005). In one study done on reducing 
cognitive workload for a computer-based system, it found that embedded controls 
produce a better performance time for humans and easier to use compared to separated 
controls but comes at the cost of limited information for operators and harder to develop 
and maintain (Lee et al., 2005). For designing the 3D printer’s interface, using embedded 
controls when an abundance of information is not needed for an operation and keeping 
the computer interface simplistic should reduce the setup time and improve the machine 
and human performance. 

6 Human-machine integration 

6.1 Design-Evaluate-Justify-Integrate (DEJI) model 
The DEJI model (Figure 1) is a systems engineering model of work design, evaluation, 
justification, and integration (DEJITM) (Badiru and Bommer, 2017) that encourages the 
practice of building relevance into a product in the beginning to increase the success of 
the integration of the system later (Badiru and Racz, 2018). Originally developed for 
product development, the DEJI model can be applied to numerous types of programs due 
to every program going through the four stages of the DEJI model: design, evaluation, 
justification, and integration (Badiru, 2012). Some of the applications that the DEJI 
model has been applied to include a product acquisitions life cycle (Badiru, 2012), 
distance learning (DL) in graduate programs (Badiru and Jones, 2012), and a design for 
quality engineering (Badiru, 2014). One of the factors that make the DEJI model an 
effective systems engineering model is its use of both qualitative and quantitative 
assessment techniques throughout the process such as Pareto analysis and process 
mapping used in the design stage (Badiru and Jones, 2012). Another component that 
separates the DEJI model from other systems engineering models such as the V Model or 
Waterfall Model is its emphasis on integration as the final step in the structure of the 
system (Badiru and Jones, 2012). 

The first stage of the DEJI model is the work design phase. In the design phase, 
activities such as planning, organising, and coordination of work elements take place to 
guide work designers into strategic thinking about work elements with a futuristic 
mindset instead of a mindset solely focused on the present needs of the system (Badiru 
and Bommer, 2017). The design stage uses two different product states to track the point-
to-point transformations of the design: product state and produce state space (Badiru, 
2014). The product state is a set of conditions that describe the product at a specified 
point in time, while the product state-space is the set of all possible states of the product 
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lifecycle (Badiru, 2014). Product state can be measured by analysing the input and 
expected output of the system (Badiru, 2014). Product state-space can be measured by 
using mathematical models that use potential product state variables such as cost or 
operational efficiency (Badiru, 2014). The quantitative metric that can be used for the 
state-space is seen below (Badiru, 2014): 

Z = f (z, x); Y = g (z, x) (1) 

Z = intermediate vector relating x to y 

f = vector-valued function 

z = output 

x = input 

g = vector-valued function 

Y = output vector 

For a product that transitions from one state to another, a driving function that creates a 
transitional relationship is seen below (Badiru, 2014): 

Ss = f (x | Sp) + e (2) 

Ss = subsequent state 

f = given action(s) applied to product 

x = state variable 

Sp = the preceding state 

e = error component 

The first mathematical model for state-space that can analyse which actions are needed to 
achieve the next desired product state while the second mathematical model allows one to 
see the effect of state variables on the product from going from one state to next which 
can be expanded into greater detail if needed (Badiru, 2014). The next mathematical 
model is used if a product (P) is described by state variables (si) where the composite 
state of the product can be represented at any time by the vector (S) containing P 
elements seen below (Badiru, 2014): 

S = {s1, s2, …, sP} (3) 

Lastly, the DEJI model includes a mathematical model that can be used to monitor state-
by-state transformations using the mathematical model below (Badiru, 2014): 

Sn = Tn (Sn–1) (4) 

Sn = final state 

Tn = transformation 

All these quantitative models are further investigated in the next stage of the DEJI model, 
the evaluation stage. 

Work evaluation evaluates the intended purpose of the work and its various work 
elements being done in the organisation (Badiru and Bommer, 2017). Like product state 
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variables, the evaluation of a product can be done based on the cost, quality, schedule, 
and/or meeting requirements (Badiru, 2014). Another identified technique for product 
evaluation is learning curve productivity due to the measurement being based on the 
concept of growth and decay, which factors in half-life properties (Badiru, 2012). After 
the evaluation(s) has been concluded, justification of the program and its work element is 
needed (Badiru, 2014). 

Figure 1 Design-evaluate-justify-integrate (DEJI) model (see online version for colours) 

 
Source: Badiru and Bommer (2017) 

The third stage of the DEJI model requires rigorous justification of the program and its 
work elements (Badiru and Bommer, 2017). The work justification stage is necessary to 
assure that errant and non-value added work elements are not added into the 
organisational pursuits (Badiru and Bommer, 2017). An important note for work 
elements is that a value-added work element does not just include work elements that 
generate physical products, but also adds value to the worker’s well-being (Badiru and 
Bommer, 2017). The value of these work elements can be shown as a deterministic vector 
function to designate the value of both tangible and intangible attributes that characterise 
the project seen below (Badiru, 2014): 

V = f (A1, A2, …, Ap) (5) 

V = assessed value 

A = quantitative measures or attributes 

The basis of the justification stage is that all the work elements are necessary and not 
hampering the organisation’s pursuits (Badiru and Bommer, 2017). The last stage of the 
DEJI model is the integration phase and without the integration phase, a system will be 
isolated and potentially worthless (Badiru, 2012). 

The integration stage attempts to incorporate all the work elements that have been 
justified in the product system (Badiru and Bommer, 2017). All justified work elements 
of a system then must be properly integrated to align with the system’s functional goals 
to remain sustainable for the organisation (Badiru, 2014). The DEJI model assures that 
sustainable work elements are the ones that fit within the flow of the organisation’s 
operations (Badiru and Bommer, 2017). Without the integration of a new work element 
within the flow of the organisation’s operations, the new work element will have short 
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longevity (Badiru and Bommer, 2017). With the DEJI model, the model’s structure 
makes it essential for the work elements to be associated with the organisation’s end 
goals. 

6.2 Implementation strategy for DEJI model in human factors for additive 
manufacturing 

The strategy for implementing the DEJI model in human factors for additive 
manufacturing can follow similar applications of the DEJI model covered in the past. 
Like previous applications of the DEJI model, the start will be with the design phase by 
defining the product’s state at specified points in time, and in this case, one would start 
with looking at the state of the operator during various parts in the 3D printing process 
(Badiru, 2014). The specified points in time for the human operator in the additive 
process would include the conceptualisation of the 3D model, the review, revision, and 
finalisation of the 3D model, the setup for printing of the 3D model, monitoring the 
product during the printing stage, cleaning the 3D printer and organising excess powder 
after the product has completed, filtering of the excess powder, and the post-process 
analysis of the product. With each of these specified points, the next step would be 
analysing the input and the expected output on each of these specified points using 
equation (1) to understand the state of the product with these state variables: product 
cost, final product due date, output quality, throughput, resource utilisation, and 
operational efficiency (Badiru, 2012). 

Using equation (2) to measure the transitional relationship from one product state to 
another (Badiru and Racz, 2018), the state inputs include planning, defining, designing, 
revising, finalising, preparing, printing, and filtering, cleaning, machining, and analysing. 
The analysis of these state inputs will provide needed actions to advance to the next 
product state (Badiru, 2012). Next, equation (3) can describe the potential states of a 3D 
printed part from a 3D modelled part, and metal powder/plastic to a 3D printed part if 
more in- depth product analysis is needed (Badiru, 2014). 

Following this potential product analysis, the last mathematical model used would be 
equation (4) to monitor state by state transformation using the state inputs previously 
listed and these outputs: product specifications, problem statement, 3D part layout, 
revised 3D part layout, final 3D part layout, machine setup, fabrication, reusable material, 
prepared machine, finalised part, and product complete (Badiru, 2014). After these design 
stage equations have been set up and calculated, the evaluation stage follows. 

For human factors in additive manufacturing, the evaluation stage should include 
evaluating the operator’s efficiency in successfully printing a quality part, and time 
needed to complete all tasks within the 3D printing process. An evaluation on these two 
metrics would allow for an analysis of the performance and mental workload of the 
human operator to see how the additive manufacturing process currently affects an 
operator and identify human factors issues in additive manufacturing and what tasks are 
having causing these issues to arise. An analysis of these will allow for additive 
manufacturing to explore solutions to these problems and how tasks can be adjusted to 
alleviate these issues, such as using more effective AI. Following this evaluation, these 
tasks require justification to assure that these are value-added activities. 

The justification dimension of the DEJI model starts with justifying each task in the 
3D printing process and making sure each task adds value, either tangible or intangible 
(Badiru and Racz, 2018). Using equation (5) to assess the value of these tasks by using 
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quantitative measures such as operator efficiency, reliability, and part quality (Badiru, 
2014). The other justification needed for human factors in additive manufacturing is the 
various precautions used in the 3D printing process, such as the PPE used to reduce static 
and oxygen monitoring for the room and filtration process (Shelton, 2019). These two 
justifications are needed to validate the implementation of DEJI model for human factors 
in additive manufacturing and continue onto the last stage of the DEJI model, the 
integration stage. 

The integration of the DEJI model for human factors in additive manufacturing 
should be seamless with all the safety precautions already used in additive 
manufacturing. The system of 3D printing parts also revolves around the operator’s 
ability to effectively design a 3D model that can successfully print and properly set up the 
3D printer to make a fully functional replica of the 3D model, so maximising the human’s 
performance is of the utmost importance. Some of the previous quantitative metrics used 
to do an effective assessment of the product state, such as cost and resource utilisation 
(Badiru, 2012). Following this strategy for implementing the DEJI model for human 
factors for additive manufacturing will help assure the additive manufacturing process is 
safe, user-friendly, and effective for human operators. 

7 Conclusion 

An overview of the literature to advance human-machine integration for improving the 
performance output in the additive manufacturing process was presented in this paper. 
This work begins with introducing the topics of additive manufacturing, cognitive 
ergonomics, and artificial intelligence. Then, it examines human considerations in the 
additive manufacturing process and how cognitive ergonomics support artificial 
intelligence techniques. Finally, case studies for the integration of human factors, 
cognitive ergonomics, and artificial intelligence are discussed. Also, the D-E-J-I systems 
engineering model for human-machine integration is examined. It is anticipated that the 
contents of this review paper will pave the way for further research into the integration of 
human factors and cognitive aspects in the future wave of AI in additive manufacturing. 
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