A linear programming model for airline schedule recovery after disruption
by Jakob Kotas
International Journal of Operational Research (IJOR), Vol. 45, No. 3, 2022

Abstract: We present a decision support framework for optimal flight rescheduling on an airline's day of operations under unanticipated system disruption. We consider disruptions which add an unforeseen need to extend each aircraft's turnaround time on the ground, not necessarily uniformly across all flights or airports in the system. Our model optimally reschedules remaining flights of the day to minimise system delays and cancellations. The model is formulated as a mixed integer linear program. We prove that structural properties of the model allow it to be decomposed into a finite set of linear programs, and a computationally tractable algorithm for its solution is described. The model is solvable exactly and quickly, even for large airlines. Numerical simulations are presented for a case study of a winter weather event impacting Horizon Air, a regional airline based in the Pacific Northwest of the USA.

Online publication date: Wed, 23-Nov-2022

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Operational Research (IJOR):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com