

International Journal of Information and Communication
Technology

ISSN online: 1741-8070 - ISSN print: 1466-6642
https://www.inderscience.com/ijict

Performance evaluation of SDWNs in cloud systems

Muhammad Salah ud din, Byung-Seo Kim

DOI: 10.1504/IJICT.2022.10051129

Article History:
Received: 29 January 2021
Last revised: 03 October 2022
Accepted: 25 July 2022
Published online: 26 October 2022

Powered by TCPDF (www.tcpdf.org)

Copyright © 2022 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijict
https://dx.doi.org/10.1504/IJICT.2022.10051129
http://www.tcpdf.org

 Int. J. Information and Communication Technology, Vol. 21, No. 4, 2022 445

 Copyright © The Author(s) 2022. Published by Inderscience Publishers Ltd. This is an Open Access Article
distributed under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Performance evaluation of SDWNs in cloud systems

Muhammad Salah ud din
Department of Electronics and Computer Engineering,
Hongik University,
Sejong, South Korea
Email: salah_udin@outlook.com

Byung-Seo Kim*
Department of Software and Communications,
Hongik University,
Sejong, South Korea
Email: jsnbs@hongik.ac.kr
*Corresponding author

Abstract: The bursty traffic conditions and fast mobility of consumers induce
significant delays in wireless networks. Taking the aforementioned factors into
account, designing cost-effective wireless solutions with efficient resource
usage and manageability is significantly challenging. Although cloud providers
undeniably offer high-performance scalable wireless networks, delays may
occur due to frequent packet losses as a result of weak signal strength, high
mobility, and congestion. There is a slight difference between a wireless
networking environment and typical wired networks, however, in practice,
various variables exist, making it impossible to fully implement the core
advantages of SDN such as rapid data processing, among others. To cope with
such situations, we propose software-defined wireless networking (SDWN), a
new means for wireless network virtualisation and programming capabilities.
Moreover, to evaluate the proposed system, Mininet-WiFi in SDWN is used
and conduct an experimental study in terms of packet transmission time and
mobility visualisation over distance.

Keywords: software defined networking; SDN; software-defined wireless
networking; SDWN; Mininet; Mininet-WiFi; controller; OpenFlow; emulator;
wireless network; cloud system.

Reference to this paper should be made as follows: Salah ud din, M. and
Kim, B-S. (2022) ‘Performance evaluation of SDWNs in cloud systems’,
Int. J. Information and Communication Technology, Vol. 21, No. 4,
pp.445–456.

Biographical notes: Muhammad Salah ud din received his MS degree in
Computer Science (Major in Wireless Communication) from COMSATS
University, Islamabad, Pakistan in 2016. He is currently pursuing his PhD in
Computer Engineering at the Department of Electronics and Computer
Engineering in Graduate School, Hongik University, South Korea. His major
interests are in the field of information-centric networking, intelligent ICN for
metaverse, vehicular edge/fog computing, wireless sensor networks, internet of
things, and underwater wireless sensor networks.

 446 M. Salah ud din and B-S. Kim

Byung-Seo Kim is working as a Professor at the Department of Software and
Communications, Hongik University, South Korea. His research field includes
future wireless network and machine learning, IoT, and edge computing.

1 Introduction

The core features of software-defined wireless networking (SDWN) are implemented
based on software defined networking (SDN), a next-generation network paradigm that
manages the network in a centralised manner so that network paths and traffic can be
operated and handled freely without human intervention. SDWN separates the hardware
from the software in a centralised environment, and the entire network is controlled by
the centralised controller. This results in efficient communication, rapid and secure
network operations through batch flow rule application, and technology to escape vendor
dependencies using Open Interface. To evaluate the performance of the aforementioned
networking paradigm, virtual network emulators are actively being used in the research
community. These network emulators eliminate the need for the development of real
testbed-based implementation for the evaluation. Network emulators support both
performance evaluation and debugging of the proposed protocols, and also support
various other network-related research problems. Moreover, a network emulator reduces
the cost associated with the development of a real testbed. A plethora of networking
emulators such as Mininet (Persia et al., 2021), ComNetsEmu (Xiang et al., 2021), etc.,
are available and among them, the Mininet emulator is widely being used for the
evaluation of SDN scenarios. The main advantage of the Mininet emulator is that the
developed code can directly be applied to real-world network situations without any
modifications and the deployment can be achieved through image files. Mininet-WiFi –
which is built on the top of Mininet emulator, is used for the evaluation of real-world
wireless network environments. For a cloud infrastructure (Jamil and Kim, 2021) to be
built, it is based on the virtualisation of servers or storage. SDWN technology is required
for these resources to be effectively connected within wireless networks.

The wireless channel may confront severe fluctuations and never remain stable all the
time due to frequent path losses, multipath fading and capture effect, etc., therefore, the
user’s request may fail to reach the potential destination. Due to a lack of requested
reception of requested content, the user may re-initiate the communication to fetch the
content. The frequent request transmissions may induce congestion, ignites delays, and
intensify the packet losses in the network.

To overcome the abovementioned issues designing cost-effective wireless solutions
with efficient resource usage and manageability is the need of time. Taking the intrinsic
Mininet feature and with the precise aim to increase the network performance within the
limited resource budget and satisfy the consumer requirements within the quality
constraints, we propose a state-of-the-art SDWN solution. The main contributions of the
proposed work can be summarised as follows:

1 We propose SDWN a new means for wireless network virtualisation and
programming capabilities to minimise the delays and network resource usage during
bursty traffic conditions.

 Performance evaluation of SDWNs in cloud systems 447

2 We evaluate the effectiveness of SDWN through extensive simulations in Mininet
emulator. Results revealed that SDWN outperformed in terms of packet transmission
time and resource utilisation.

The rest of this paper is organised as follows: Section 2 provides background knowledge
of SDNs, OpenFlow, emulators in general, Mininet emulator, and Mininet-WiFi
emulator. Section 3 conducts an implementation and performance evaluation of packet
transmission time and mobility visualisations over distance and finally, Section 4
concludes the paper with future work.

2 Background knowledge of SDNs and subtopics

2.1 Background knowledge of SDN

Software-defined networking (Ghaffar et al., 2021) is a network virtualisation approach
that is used to optimise the network resources and quickly enable the network to meet
business requirements, applications, and traffic, Younus et al. (2019) explained. SDN
separates the control plane from the data plane within the network and builds
infrastructure by employing software programs. In SDN, the centralised controller is
responsible for network orchestration, management, analysis, and automation. As these
controllers do not consider networking equipment, they can benefit from scalability,
performance, modern cloud computing, and the availability of storage resources. A
plethora of SDN controllers is being built by using open platforms and open APIs,
enabling orchestration, management, and control of network equipment purchased from
different vendors. The separation of control and transport layers increases flexibility and
speeds up the launch of new applications. Moreover, the ability of SDN to respond more
quickly to problems and outages increases network availability. For this feature
implementation, the SDN network structure is divided into three layers. Each layer then
communicates with the other through the Open Interface. The Network Control layer to
Infrastructure layer interface is called the Southbound API and includes OpenFlow. The
interface between the Network Control layer and the Application layer is called the
Northbound API. This simplifies the automation of network functions to reduce
operational costs, and Table 1 shows the difference between the SDN and the existing
network described earlier.

2.2 Background knowledge of OpenFlow

OpenFlow (Yan et al., 2022) corresponds to a communication protocol that resides
between the control and the data layer in an SDN environment which defines the content
of communication between controllers and hardware equipment and is the basis of SDN
technology. It is an open-source project jointly developed by Stanford and UC Berkeley,
aiming to separate the forwarding plane and control plane features of a network switch or
router and provide protocols for their communication. In addition, OpenFlow’s
controllers provide technology to determine the path of packets regardless of the vendor
of the network. Once the data path is established, OpenFlow provides programmability
for network equipment, which defines which network equipment will flow traffic into.
One of the reasons for SDN’s emergence is the flow of global companies supporting

 448 M. Salah ud din and B-S. Kim

SDN and OpenFlow. OpenFlow is a component of SDN and is a standard interface for
running communication between machines with control and network switches, but there
are no restrictions or requirements that must be used within the SDN category. In an SDN
environment, it is used to communicate control plane commands to the data plane as a
communication protocol between the control plane and the data plane, which can be seen
as defining the communication between the controller and the actual or virtual
equipment. In addition, policies such as control methods and routing of equipment are
defined, and all equipment delivered through this information is stored in the flow table
and all of which define the flow of data flow is defined. Flow table consists largely of
rule, action, and stats, and in the case of rule, it is an area that defines how and how
packets are handled. The flow table’s rule consists of 12 tuple, which handles packets
with 12 differentiators from layer 1 to layer 4. Action defines how to handle packets
defined by the rule. When using the forward command, packets are sent through the
specified port, but when using the drop command, packets are discarded. For stats, we
show how many packets were matched to the corresponding flow table and how large
Byte was transferred. Various transmission information can be found using this
information, which is sent to the controller.
Table 1 Differences between existing networks and SDN

 Existing network SDN
Network perspective Hardware centric Software centric
Configuration leadership Hardware supplied vendor User
Technology openness Closed structure Open structure
Interlock compatibility Independent protocol Standard protocol
Management efficiency Inefficient/high-cost operation Efficient/reasonable operation
The fairness of the market Monopoly form Fair competition
Embrace new technologies According to the need for a

venter
Acceptance based on user needs

2.3 Background knowledge of controller

SDN controllers are utilised to control the network. A control point of an SDN network
and an application that deploys intelligent networks by managing flow control over
applications and business logic. Typically, SDN controller platforms include modules
that can perform various network tasks. Some of the basic tasks, including the collection
of devices within the SDN network and the collection of each feature, network statistics,
etc., can be inserted to support various advanced features, such as improving
functionality, performing analysis, and running algorithms that coordinate new rules.
Casalicchio and Silvestri (2011) explained the protocols used by SDN controllers to
communicate with switches and routers commonly use OpenFlow protocol. Recently, as
more SDN networks have been deployed, tasks have been performed between SDN
controller domains using common application interfaces such as OpenFlow.

2.3.1 ONOS controller
ONOS controller was developed by ON. The lab is a non-profit research institute founded
in 2012. ONOS Controller was recognised as one of the open-source projects, with

 Performance evaluation of SDWNs in cloud systems 449

ONOS Project officially participating in the 2015 Linux Foundation. The initial version
was developed incorporating two prototypes where the first main target availability and
scalability, while the second mainly focused on improving performance. This led to the
establishment of the distributed structure of the ONOS controller. Fontes et al. (2015)
explained controller requires skills in resource management and delivery, independence
of user access, resource virtualisation, abstraction and programming interfaces at the
physical and hardware layers, security, and basic mounting of key applications and
services. Sameer and Goswami (2018) explained ONOS controller was designed and
developed to provide these core functions as a network OS, and as shown below, the
basic structure of the ONOS controller was designed for carriers or large network service
providers, and the structure of ONOS controller was shown in Figure 1.

Figure 1 ONOS controller structure (see online version for colours)

Source: Lab 08: Multi-Tenant Data Center Network – Part I (n.d.)

2.3.2 POX controller
POX controller is a network control platform that provides a high-level programmatic
interface for building network operations and control applications. It is composed of
Python languages and officially supports OpenFlow 1.0 version and is easy to use. It is a
widely used platform for training and research on SDN and network application
programming. The branch of the POX controller has two categories: active and release.
The active branch is a branch that continues to add new features, and the release branch is
a branch that is created when a new version is selected. As simple as configuration, POX
controller is a great advantage of being easy to use and has great access to OpenFlow. It
can accommodate most of the various applications and can be accessed easily by Python
compared to other languages.

2.3.3 Floodlight controller
Floodlight controller is an SDN controller developed by the community of Big Switch
Networks that uses the OpenFlow protocol to coordinate traffic flows in the SDN

 450 M. Salah ud din and B-S. Kim

environment. This controller is a community project originally started on the Big Switch
as part of the Opendaylight project and is still sponsored by the big switch network. The
Floodlight controller is advantageous for developers because it is written in Java and
provides easy software interworking and application development capabilities. The
following structure includes REST APIs (Indrawan et al., 2022) that facilitate the
programming of products and interfaces and provides coding examples to help
developers create products on the Floodlight Web site. As shown in Figure 2 of Saleh
Asadollahi and Goswami (2017) the Floodlight controller was tested with physical and
virtual OpenFlow compatible switches and supported by network groups of switches that
are operational in a variety of environments and that are OpenFlow compatible through
non-traditional OpenFlow switches. It is also compatible with OpenStack, which allows
the establishment and management of public and private cloud computing platforms and
can be run with OpenStack’s back end using REST APIs. Furthermore, the controller’s
performance is excellent because it is highly scalable and provides a simple module
loading system. It can be set up with minimal effort and can be processed by mixing
OpenFlow network and legacy network.

Figure 2 Floodlight controller structure (see online version for colours)

Source: Asadollahi and Goswami (2017)

2.3.4 Beacon controller

Beacon controller is an open-source project developed by Stanford University in early
2010. According to Erickson (2013), it has been used for several research projects,
networking classes, and test deployments, and has been demonstrated by powering more
than 100 virtual switches and 20 physical switches, running in experimental data centres.
It was developed based on Java and can run on a variety of platforms, from Linux servers
to Android phones. According to Siddiqui et al. (2022), Beacon controller’s code bundle
can start/stop/refresh/install runtime without interrupting other non-dependent bundles
(i.e., without disconnecting the switch and changing the running switch or application). It
is also easy to start and run, and Java and Eclipse simplify the development and

 Performance evaluation of SDWNs in cloud systems 451

debugging of applications. It is also multi-threaded, capable of identifying performance
benchmarks, optionally user-defined scalability with Jetty enterprise web servers, and
includes a UI framework. Beacon controller is based on a flexible Java framework, such
as Spring and Equinox (OSGi), and is configured as shown in Figure 3 (Erickson, 2013).

Figure 3 Beacon controller structure (see online version for colours)

Source: Erickson (2013)

Figure 4 Opendaylight controller structure (see online version for colours)

Source: Khattak et al. (2014)

 452 M. Salah ud din and B-S. Kim

Table 2 SDN controller comparison table

O

pe
n

so
ur

ce

Fi
rs

t
re

le
as

e
La

ng
ua

ge

su
pp

or
t

Pl
at

fo
rm

su

pp
or

t
Ac

tiv
ity

Re

st
AP

I
D

oc
um

en
ta

tio
n

G
U

I
O

pe
n

flo
w

ve
rs

io
n

C
lu

st
er

ed

de
ve

lo
pm

en
t

O
pe

n
sta

ck

N
O

X

Y
es

20

08

C/
C+

+
Li

nu
x

Lo
w

N

o
Lo

w

N
o

1.
0

Y
es

N

o
Be

ac
on

Y

es

20
10

Ja

va

Li
nu

x
Lo

w

N
o

M
ed

Y

es

1.
0

Y
es

N

o
Tr

en
ta

Y

es

20
11

C/

C+
+

Li
nu

x
M

ed

N
o

M
ed

N

o
1.

0
Y

es

Y
es

Po

x
Y

es

20
12

Py

th
on

Li

nu
x

Lo
w

N

o
Lo

w

Y
es

1.

0
N

o
N

o
O

pe
n

M
L

Y
es

20

12

C/
C+

+
Li

nu
x

Lo
w

N

o
H

ig
h

Y
es

1.

0,
 1

.3
, 1

.4

Y
es

Y

es

Ry
u

Y
es

20

12

Py
th

on

Li
nu

x
M

ed

N
o

M
ed

Y

es

1.
0,

 1
.2

, 1
.3

, 1
.4

, 1
.5

Y

es

Y
es

Fl

oo
dl

ig
ht

Y

es

20
12

Ja

va

Li
nu

x
M

ed

Y
es

H

ig
h

Y
es

1.

0
Y

es

Y
es

O

pe
n

da
yl

ig
ht

Y

es

20
13

Li

nu
x

M
A

C
Li

nu
x

H
ig

h
Y

es

H
ig

h
Y

es

1.
0,

 1
.2

, 1
.3

Y

es

Y
es

O
pe

n
co

nt
ra

il
Y

es

20
13

Li

nu
x

Li
nu

x
H

ig
h

Y
es

H

ig
h

Y
es

N

o
su

pp
or

t
Y

es

Y
es

O

N
O

S
Y

es

20
14

Li

nu
x

Li
nu

x
H

ig
h

Y
es

Lo

w

Y
es

1.

0,
 1

.2
, 1

.3
,

Y
es

Y

es

So
ur

ce
:

Sa
lm

an
 e

t a
l.

(2
01

6)

 Performance evaluation of SDWNs in cloud systems 453

2.3.5 Opendaylight controller
Opendaylight controller is an open source-based project run by the Linux Foundation and
is a module open platform for customising and automating networks of all sizes and
sizes. It is developed with a focus on network programming and is designed based on
commercial solutions that handle a variety of use cases in existing network environments.
Figure 4 (Khattak et al., 2014) shows the structure of the Opendaylight controller
‘HELIUM’ version. It has excellent visibility and control and can dynamically use the
network depending on the state, so it is optimised for traffic, topology, and equipment in
a near real-time state. Cloud infrastructure in an enterprise or service provider
environment is also highly capable of supporting a wide range of use cases. Table 2
(Salman et al., 2016) shows comparisons of SDN controllers.

2.4 Mininet and Mininet-WiFi

Mininet is a wired network emulator. Mininet is a network emulator that runs a collection
of end hosts, switches, routers, and links in a single Linux kernel. Operating system
virtualisation capabilities and processes can be used to scale up to hundreds of nodes.
Users can implement new network features or new architectures, test large-scale
topologies with application traffic, and then deploy the same code and test scripts to
real-world networks. Mininet was created at Stanford University to use network
technology as a tool for researching and teaching. Mininet provides visibility into virtual
SDNs consisting of OpenFlow Controller, OpenFlow-enabled Ethernet, Switch, and
Ethernet networks from multiple hosts connected to the switch. Mininet-WiFi is a
wireless network emulator. Mininet-WiFi developers expanded the capabilities of
Mininet, a traditional wired-based SDN emulator, by adding virtual WiFi stations and
access points (APs) based on standard Linux wireless drivers and 802.11_hwsim wireless
simulation drivers. We also support the addition of several wireless devices in the
Mininet network scenario and add classes based on AP-related location and mobile
station attributes evaluation. Mininet-WiFi extends the underlying Mininet code by
adding or modifying classes and scripts, adds new features to Mininet-WiFi, and supports
all common SDN emulation features in standard Mininet network emulators.

3 Implementation and performance assessment

3.1 Configuring a performance assessment environment

A composition diagram for the proposed system for performance evaluation of this
SDWN is shown in Figure 5. It installed VMware12 on its PC, operated the Ubuntu 14.04
LTS version as a virtual machine, and operated Mininet-WiFi within the Ubuntu 14.04
LTS version. Unlike conventional wired Mininet, a WiFi dongle was used to run
Mininet-WiFi for implementation in wireless environments. After running Mininet-WiFi,
the POX controller configures two stations and one AP to link the information to the Pox
controller through instructions.

 454 M. Salah ud din and B-S. Kim

Figure 5 Suggested system configuration (see online version for colours)

Figure 6 Packet transmission time over distance (see online version for colours)

Figure 7 Visualise station real-time mobility (see online version for colours)

 Performance evaluation of SDWNs in cloud systems 455

3.2 Performance analysis of wireless SDN in mobility environment

Figure 6 shows the packet transmission time according to the distance of the station. In
Mininet network scenarios, classes based on the attribute evaluation of mobile stations,
such as location and movement related to AP, are available as shown in Figure 7.
Mininet-WiFi extends the basic Mininet code by adding or modifying classes or scripts
and adds new features to Mininet-WiFi while supporting all common SDN emulation of
standard Mininet network emulators, making it easy to configure topology through
coding and performance evaluation, as shown in Figure 6. In addition, for highly mobile
stations, packet transmission time can be determined by distance.

4 Conclusions

Mininet-WiFi is a wireless network emulator that supports virtual SDWN research. When
sending packets to a highly mobile station, packet transmission time can be measured
over distance and mobility can be verified in real-time. It can virtually check the mobility
of stations through Mininet-WiFi without actual implementation, reducing the cost of
implementation and making it easy for anyone to use because of its high availability.
Connecting other high-performance controllers to Mininet-WiFi also facilitates
streaming, home network setup, and management as well as packets. We adopted the
Mininet emulator and analysed the performance of SDWN. The performance results
revealed that the proposed work showed high performance in terms of transmission
delays and resource usage. In the future, we aim to extend the SDWN by incorporating
deep Q-learning techniques and developing intelligent SDWN. We intend to include
various performance metrics such as throughput, bandwidth utilisation, congestion,
latency, etc. and provide a detailed comparison with the state-of-the-art existing schemes.

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korean Government (MSIT) (No. 2022R1A2C1003549).

References
Asadollahi, S. and Goswami, B. (2017) ‘Experimenting with scalability of floodlight controller in

software defined networks’, International Conference on Electrical, Electronics,
Communication, Computer and Optimization Techniques.

Casalicchio, E. and Silvestri, L. (2011) ‘Architectures for autonomic service management in cloud-
based systems’, 2011 IEEE Symposium on Computers and Communications, pp.161–166.

Erickson, D. (2013) ‘The beacon OpenFlow controller’, 2nd ACM SIGCOMM Workshop Hot
Topics Softw. Defined Netw., pp.13–18.

Fontes, R.R., Afzal, S., Brito, S., Santos, M. and Rothenberg, C.E. (2015) ‘Mininet-WiFi:
emulating software-defined wireless networks’, IEEE in CNSM, Barcelona, Spain.

Ghaffar, Z. et al. (2021) ‘A topical review on machine learning, software defined networking,
internet of things applications: research limitations and challenges’, Electronics, Vol. 10,
No. 8, p.880.

 456 M. Salah ud din and B-S. Kim

Indrawan, G., Gunadi, I. and Sandhiyasa, I. (2022) ‘REST API and real-time notification of
SIsKA-NG mobile for the academic progress information system’, Information and
Communication Technology for Competitive Strategies (ICTCS 2020), Springer, Singapore,
pp.193–201.

Jamil, F. and Kim, D. (2021) ‘An ensemble of a prediction and learning mechanism for improving
accuracy of anomaly detection in network intrusion environments’, Sustainability, Vol. 13,
No. 18, p.10057.

Khattak, Z.K., Awais, M. and Iqbal, A. (2014) ‘Performance evaluation of OpenDaylight SDN
controller’, 2014 20th IEEE International Conference on Parallel and Distributed Systems
(ICPADS), pp.671–676, doi: 10.1109/PADSW.2014.7097868.

Lab 08: Multi-Tenant Data Center Network – Part I (n.d.) cs42200:spring19:labs:lab08 [online]
https://courses.cs.purdue.edu/cs42200:spring19:labs:lab08 (accessed 7 May 2022).

Persia, S. et al. (2021) ‘Ns3 and Mininet codes to investigate complete 5G networks’, 2021 AEIT
International Annual Conference (AEIT), pp.1–6, DOI: 10.23919/AEIT53387.2021.9626924.

Salman, O., Elhajj, I.H., Kayssi, A. and Chehab, A. (2016) ‘SDN controllers: a comparative study’,
18th Mediterranean Electrotechnical Conference.

Sameer, M. and Goswami, B. (2018) ‘Experimenting with ONOS scalability on software defined
network’, Journal of Advanced Research in Dynamical and Control Systems, Vol. 10,
14-Special Issue, pp.1820–1830.

Siddiqui, S. et al. (2022) ‘Toward software-defined networking-based IoT frameworks: a
systematic literature review, taxonomy, open challenges and prospects’, IEEE Access, Vol. 10,
pp.70850–70901, DOI: 10.1109/ACCESS.2022.3188311.

Xiang, Z., Pandi, S., Cabrera, J., Granelli, F., Seeling, P. and Fitzek, F.H.P. (2021) ‘An open source
testbed for virtualized communication networks’, IEEE Communications Magazine, February,
Vol. 59, No. 2, pp.77–83, DOI: 10.1109/MCOM.001.2000578.

Yan, B. et al. (2022) ‘Flowlet-level multipath routing based on graph neural network in
OpenFlow-based SDN’, Future Generation Computer Systems, Vol. 134, pp.140–153.

Younus, M.U. et al. (2019) ‘A survey on software defined networking enabled smart buildings:
Architecture, challenges and use cases’, Journal of Network and Computer Applications,
Vol. 137, pp.62–77.

