Adaptive differential evolution with linear population reduction for parameter estimation of solar cell models
by Zhen Yan; Wenyin Gong; Shuijia Li
International Journal of Automation and Control (IJAAC), Vol. 16, No. 6, 2022

Abstract: Parameter estimation of solar cell models is an important part of photovoltaic power generation system. However, it is still a challenging problem. In this study, an adaptive differential evolution with linear population reduction, called LRJADE, is developed to accurately estimate solar cell models parameters. In LRJADE, the linear population reduction strategy is employed to accelerate convergence speed. Additionally, the crossover rate repairing is also used. The performance of proposed LRJADE is verified by 13 benchmark functions and two solar cell model parameter estimation problems. Simulated results show that LRJADE not only obtains promising results in benchmark functions, but also achieves the very accurate solutions to solar cell model parameter estimation problems.

Online publication date: Tue, 11-Oct-2022

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Automation and Control (IJAAC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com