Experimental and numerical investigation of co-axial rotor interaction to thrust
by Ahmet Soydan; Hürkan Sahin; Barıs Biçer; Sebnem Sarıözkan; Mehmet Sahin
Progress in Computational Fluid Dynamics, An International Journal (PCFD), Vol. 22, No. 5, 2022

Abstract: The experimental and numerical computational investigation of co-axial rotor performance has been increased over the past decade in order to understand complex interactions in co-axial rotor flows to improve design of unmanned-aerial vehicles. Nevertheless, the issues related rotor aerodynamic performance, wake interactions, etc. are not well understood. In the current work, aerodynamic interactions in co-axial rotor have been investigated with both experimental and numerical methods in hover flight by varying tip diameters, rpm, axial distance, etc. In order to calculate the co-axial thrust efficiency, in-house test bench has been created. On the numerical side, the three-dimensional unsteady Navier-Stokes equation is solved using a pressure-based, segregated, compressible and time-accurate solver of OpenFOAM. A sliding mesh interface procedure is utilised to link rotating regions and SST k - ω model is employed for the turbulence modelling. The computational results indicate relatively good agreement with in-house experimental data.

Online publication date: Tue, 27-Sep-2022

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the Progress in Computational Fluid Dynamics, An International Journal (PCFD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com