Optimum distribution of heat exchanger inventory and optimum thermal capacitance rate matching for power optimisation of a regenerated closed Brayton cycle
by Lingen Chen, Fengrui Sun, Chih Wu
International Journal of Energy Technology and Policy (IJETP), Vol. 5, No. 1, 2007

Abstract: The power output of the cycle is taken as objective for performance analysis and optimisation of an irreversible regenerated closed Brayton cycle coupled to variable-temperature heat reservoirs. The analytical formulae about the relations between power output and pressure ratio are derived with the heat resistance losses in three heat exchangers, the irreversible losses in the compressor and turbine, the pressure drop losses in the piping and system, and the effect of the finite thermal capacity rate of the heat reservoirs. The power output optimisation is performed by searching the optimum heat conductance distribution among the three heat exchangers for the fixed total heat exchanger inventory, and by searching the optimum thermal capacitance rate matching between the working fluid and the heat reservoir.

Online publication date: Fri, 23-Feb-2007

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Energy Technology and Policy (IJETP):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com