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Abstract: In this study, the acoustic performance of the liner characteristics 
coupled with geometric discontinuities on the acoustic attenuation of a lined 
duct is investigated. The model is based on the computation of the scattering 
matrix. The liner is composed of a perforated plate with an air cavity backed by 
a rigid wall plate. The parametric study was conducted for six configurations, 
including cases of sudden or progressive narrowing and widening of the duct 
radius. The numerical results show the relative influence of the variation of 
each parameter, and of each type of radius discontinuities of ducts on the 
acoustic power attenuation. 
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1 Introduction 

Sound propagation in ducts systems is a problem of considerable practical interest for 
aero-engines. One of the problems treated in this field is the development of acoustic 
liners to reduce noise in these systems. The Helmholtz resonator is one of these acoustic 
liners. The absorbing mechanism of this liner is simple: the wave is propagated across the 
perforations and a part of the acoustic energy is dissipated by friction and heat exchanges 
with liner layers. The acoustic performance of Helmholtz resonator lined duct has been 
studied in several works as presented in Homentcovschi and Miles (2010), Xu and 
Cheuk-Ming (2012), Ni et al. (2017), Martin and Michael (2018) and Knobloch et al. 
(2018). The disadvantage of this liner consists in a narrow attenuation peak. Other 
concepts can provide broader noise attenuation band such as duct discontinuities that 
ameliorate the reflection of the sound wave. The acoustic behaviour of ducts with section 
changes has been treated by means of some matrices, such as the transfer matrix as 
presented in Peat (1988) and Sitel et al. (2006), the reflection matrix by Akoum and Ville 
(1998), the transmission matrix by Sitel et al. (2003) and the scattering matrix presented 
by Demir (2016, 2017) and Miles (1946). The multimodal scattering matrix allows, in 
high mode propagation conditions, the characterisation of geometric and impedance 
discontinuities because it is an intrinsic propriety of the duct element. Taktak et al. (2010, 
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2012, 2013) developed a numerical method to compute the multimodal scattering matrix 
using the finite element method of an axisymmetric lined duct in the cases with and 
without flow. Then, this method was improved to incorporate the temperature effect (Ben 
Jedidia et al., 2016). The effect of porous liner characteristics on the acoustic attenuation 
of lined duct was studied by Othmani et al. (2015) and the geometry effect on the 
acoustic behaviour of a porous lined duct was studied by Masmoudi et al. (2017) and 
Dhief et al. (2020). 

In this work, an extension of these previous works is presented: the effect of 
geometry and liner characteristics composed of a perforated plate with an air cavity 
backed by a hard wall plate on the acoustic power attenuation of various ducts 
discontinuities configurations is investigated, based on the use of a numerical model to 
compute the multimodal scattering matrix. Using this matrix, the acoustic power 
attenuation is computed. In the present paper, six configurations of cylindrical ducts are 
studied, presenting cases of narrowing and widening of a radius duct with sudden or 
progressive discontinuities. The paper is structured as follows: in Section 2, the 
description of the studied problem and the computation of the impedance of locally 
reacting liner are presented. Section 3 displays the numerical computation of the 
multimodal scattering matrix. Section 4 evinces the acoustic power attenuation 
computation. Finally, numerical results are presented and discussed in Section 5, which 
aims to evaluate the influence of geometry and liner characteristics on the acoustic power 
attenuation of each studied configuration. 

2 Description of geometries of studied ducts and normalised acoustic 
impedance of the liner 

The studied ducts are 1 m length ducts. They present a section change and partially lined 
by a Helmholtz resonator liner. Each duct is located between two axial coordinates zR and 
zL with the radius a = R= 0.075 m in the case of narrowing section [Figure 1(a)] and  
a = ρ = 0.055 m in the case of widening at these positions [Figure 1(b)]. The radius 
change is defined by e = R-ρ = 0.02 m. Six configurations of ducts are studied, which 
differs according to the type of variation of discontinuity and position of the liner: 

For the case of duct presenting radius narrowing [Figure 1(a)], three configurations 
are studied which differ with respect to the type of discontinuities and the position of the 
liner: 

A-1 ,
2
π=α  f = 0 sudden narrowing and the part c is lined, L = b + c + b with b = 0.35 

m and c = 0.3 m. 

A-2 ,
2
π<α  f ≠ 0 progressive narrowing and the part c is lined; L = b + f + c + f + b 

with b = c = f = 0.2 m. 

A-3 ,
2
π=α  f = 0 sudden narrowing and the part b2 is lined, L = c1 + c2 + c1 + c + b 

with c1 = c2 = c = b = 0.2 m. 
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For the case of duct presenting widening of the radius [Figure 1(b)], three configurations 
are studied which differ with regard to the type of discontinuities and the position of the 
liner: 

B-1 ,
2
π=α  f = 0 sudden widening and c is lined; L = b + c + b with b = 0.35 m and  

b = 0.3 m. 

B-2 ,
2
π<α  f ≠ 0 progressive widening and c is lined; L = b + f + c + f + b with  

b = c = f = 0.2 m. 

B-3 ,
2
π=α  f = 0 sudden widening and b2 is lined. The length of the duct will be as 

follows L = c1 + c2 + c1 + c + b with c1 = c2 = c = b = 0.2 m. 

Figure 1 Geometries of symmetric part of studied ducts 

 
 

(a) 

 
 
 

 
(b) 

The acoustic liner is composed of a perforated plate backed by an air cavity and a rigid 
wall plate. It is characterised by its acoustic impedance Z, which is supposed to be locally 
reacting. The acoustic impedance of the liner is expressed as: 

perforated plate cavityZ Z Z= +  (1) 
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Zcavity is the air cavity impedance expressed as: 

( )0 cothcavity cZ jZ kL= −  (2) 

Z0 = ρ0c is the characteristic impedance of the air, ρ0 is the density of air, c0 is the sound 
celerity in the air, k is the acoustic wave number and Lc is the air cavity depth. The 
acoustic impedance of the perforated plate is computed using the Elnady and Boden 
(2003) model: 

( ) ( )

( ) ( )

Re
2 2

Im
2 2

re
Perforated Plate

p D s p s p

im

p D s p s p

δik tZ
σ C F k d F k d

δik ti
σ C F k d F k d

   = +  ′   
   + +  ′   

 (3) 

with CD being the discharge coefficient, dp is the pore diameter, t is the plate thickness, σp 
is the plate porosity, δe and δim are correction coefficients given as follows: 

2 30.2 200 16000 0.2856re p p p im pδ d d d δ d= + + =  (4) 

( ) ( )
( )

( ) ( )
( )

1 1

0 02 2

2 2
2 1 2 1

2 2p p

s p s p
s p s pd d

s s p s s p

J k d J k d
F k d F k d

k J k d k J k d

′
′= − = −

′ ′
 (5) 

s s
iω iωk k
ν ν

− −′ = =
′

 (6) 

where 2.179 ην
ρ

′ =  is the kinematic viscosity. 

3 Numerical computation of the multimodal scattering matrix 

The multimodal scattering matrix S2N×2N of the duct element located between the  
axial coordinates zL and zR relates the outcoming pressure waves array 

2 00 ( ),..., ( ), ( ),..., ( )
Tout I I II II

N L mn L mn L mn L NP z P z P z P z− − + +=P  to incoming pressure waves array 

2 00 ( ),..., ( ), ( ),..., ( )
Tin I I II II

N L mn L mn R mn R NP z P z P z P z+ + − −=P  as follows (Taktak et al., 2010): 

2 2 2 2
out in
N N N N×= ×P S P  (7) 

I+ I
mn, mnP P −  and II+ II

mn, mnP P −  are, respectively, the modal pressure coefficients associated to the 

(m, n) mode travelling, respectively, in the positive and the negative direction in both 
regions I and II (Figure 1). m and n are, respectively, the azimuthal and the radial mode 
numbers. N is the number of propagating modes in both cross sections. The acoustic 
pressure p in the duct is obtained by solving the Helmholtz equation with the boundary 
condition, respectively, at ΓWD with rigid wall duct and at ΓLD with lined duct part, 
characterised by acoustic impedance: 
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( )
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Δ 0 (Ω)
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0 Γ

L D
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pZ iωρ p

n
p

n

 + =
 ∂ =

∂
 ∂ =
∂

 (8) 

Δ is the Laplacien operator, Ω is the acoustic domain inside the duct, nW and nL 
correspond to normal vectors of each wall and ω is the pulsation. 

To solve the system of equation (8), the finite element method is used. The 
corresponding weak variational formulation can be written as (Taktak et al., 2013): 

( ) 2

Ω Ω Γ

. Γ 0,
i

i
i

pq p d k qpd q d
n

∪

∂= − ∇ ∇ Ω + Ω + =
∂∏     (9) 

where q is the test function, dΩ and dΓi are integration elements through the duct domain 
and boundaries, respectively, and ∪Γi presents the whole boundary [i = (Lined part) LD, 
(left) L, (right) R]. For this, the domain (Ω) is discretised with triangular finite elements 
while edges are meshed by two-node finite elements. The computation of the integrals of 
equation (9) is made by the summation over the finite elements number of elementary 
integrals as presented in Taktak et al. (2012). 

The last integral of this formulation (9) is given by the following expression, by 
adding the modal incoming and outcoming pressures as additional degrees of freedom to 
the model: 

( ) ( )
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n q
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P P J χq r dn

+ −

+
∪

−

 − 
∂   = + ∂    + −

 
 
 
 
 
  


 


 


(10) 

where Jm is the Bessel function of the first kind of order m, χmn is the nth root satisfying 
the radial hard-wall boundary condition on the wall of the main duct (J′(χmn/a) = 0). 

For a fixed m, system (8) results in the following matrix system, by taking into 
account the boundary conditions (Taktak et al., 2010). 

[ ] [ ] { }
{ }
{ }
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1 2 1 2
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                  … … =              
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 
  
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where M is the node number in the domain Ω, {p} is the nodal acoustic pressure vector; 
K is a matrix relating the test function to the nodal pressures in the domain; E1, E2, F1 
and F2 are matrices relating the test function to the modal pressures on ΓL and ΓR; G1, G2 
and G3 are matrices relating the nodal acoustic pressures in Ω to different modal 
pressures on the boundary ΓL; H1, H2 and H3 are matrices relating the nodal acoustic 
pressures to different modal pressures on the boundary ΓR. From this matrix system the 
total scattering matrix of the studied ducts is obtained. 

4 Computation of the acoustic power attenuation 

The acoustic power attenuation Watt is defined as the ratio between the acoustic powers 
on both sides of the incoming waves Win and the outgoing waves Wout (Taktak et al., 
2010). It can also be deduced from the eigenvectors and eigenvalues of H: 

( )
2 2

2 2
10 10

1 1

( ) 10log 10log
N N

in out
att i i i

i i

W dB W W d λ d
= =

 
= =   

 
   (12) 

with di and λi are the components and the eigenvalues of the matrix H defined as: 

[ ] [ ]

[ ] [ ]

*1
2 2 2 22 2 2 2 2 2

1
2 22 2 2 2 2 2

( ) ( )

. ( ) ( )

T

N N N NN N N N N N

N NN N N N N N

diag XO diag XI

diag XO diag XI

−
× ×× × ×

−
×× × ×

 =  

  

H S

S
 (13) 

{ }20 0 0 0 2 2 22 2 { } Π
mn mn

T in
Nmn mn mn mn N N NXI N k ρ c k XO N k ρ c k d+ − ∗

×= = = U  

The acoustic power attenuation also depends on the scattering matrix of the duct element. 

5 Numerical results 

In this paper, the used liner is similar to the one used in Taktak et al. (2013). The 
parameters of this liner are as follows: plate thickness t = 0.8 mm, hole diameter  
dp = 1mm, porosity σp = 5%, air cavity depth Lc = 20 mm. The acoustic impedance of this 
liner is then used as an input for the computation of the numerical multimodal scattering 
matrix of each studied configuration and therefore the acoustic power attenuation is 

calculated over the frequency range is ka = [0–3.8] with ωka a
c

=  is the non-dimensional 

wave number. The effect of four geometrical parameters of the liner and two parameters 
of the section change is evaluated by varying one of these parameters at a time while 
keeping others fixed. 
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Figure 2 Effect of the length of the section change on the acoustic power attenuation of the three 
studied configurations (A-1), (A-2) and (A-3) of ducts having a radius narrowing 
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Figure 3 Effect of the thickness e of the radius change on the acoustic power attenuation of the 
three studied configurations (A-1), (A-2) and (A-3) of ducts having a radius narrowing 
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Figure 4 Effect of the plate thickness t of the liner on the acoustic power attenuation for ducts of 
the three studied configurations (A-1), (A-2) and (A-3) of ducts having a radius 
narrowing 
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5.1 Configurations of ducts having a radius narrowing 

Figures 2(a), 2(b), 2(c) show the effect of the section length change on the acoustic power 
attenuation, respectively, for configurations (A-1), (A-2) and (A-3) versus the 
dimensional wave number ka. These figures reveal that this parameter does not have a 
significant effect on the acoustic power attenuation in the range of ka = [0.6–1.8] as 
indicated in Figure 2(b) also for ka below to 2.8 and 2.6 with very small variations which 
do not exceed 0.5 dB in the range of ka = [0.6–1.5] and 1 dB in the range of  
ka = [0.6–1.8], respectively, as illustrated in Figure 2(b) and 2(a). For other values of ka, 
the attenuation increases when the section change length increases as shown in  
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Figures 2(b) and 2(a). Conversely, in Figure 2(b), the attenuation rises as c decreases. 
This is explained by the fact that the progressive discontinuity length f increases and, 
therefore, produces a partial reflection of sound waves since, in this configuration,  
c + 2f = 0.6 m is taken into account. These figures show that the acoustic power 
attenuation starts to increase at ka = 0.8, however, this increase is negligible (< 1.65 dB) 
and (< 2.5 dB), respectively, in configurations (A-1) and (A-2) and then it presents a peak 
at high frequencies. Moreover, another rise in the attenuation is observed in the range of  
ka = [0.8–2] in configuration (A-3), which increases with the increase of c to reach  
7.2 dB at ka = 1.2 for c2 = 0.3 m. It can be seen that the amplitude and the frequency of 
the resonance peak are almost identical, about 10.16 at ka = 2.7, when varying the section 
change in Figure 2(a), however, this amplitude increases and shifts to higher frequencies 
in Figures 2(b) and 2(c), when the section change increases. The maximum of attenuation 
and the corresponding frequency vary as follows: from 7 dB at ka = 2.75 to 10.67 dB at 
ka = 3.03 and (10.21 dB at ka = 2.75 to 13.9 dB at ka = 3.03 and 14.1 dB at ka = 3.6, 
respectively, in configurations (A-2) and (A-2) and (A-3). According to these results, it 
can be seen that configurations (A-1) and (A-2) yield a close value of a maximum 
attenuation and the configuration (A-3) provides higher attenuation compared to other 
configurations and therefore it is more efficient. Figures 3(a), 3(b) and 3(c) display the 
effect of thickness e on the acoustic power attenuation of the three studied configurations 
(A-1), (A-2) and (A-3) when varying this parameter from 0.016 m to 0.025 m. These 
figures show that this parameter does not have a significant effect in Figure 3(c), as well 
in Figure 3(b) with a small increase of the attenuation as the increase of e is only in the 
range of ka = [2.4–3.03] which does not exceed 2 dB (it passes from 7.6 dB to 9.1 dB at 
ka = 2.9) and for ka below 2.4 in Figures 3(a). It can be observed that the acoustic power 
attenuation in each configuration varies similarly with respect to the three configurations 
in Figures 2(a), 2(b) and 2(c). Furthermore, the resonance peak grows slightly as e 
increases in Figure 3(a) and the amplitude of this peak passes from 7.5 dB at ka = 2.7 to 
12.9 dB at ka = 2.8. Moreover, the maximum of attenuation is equal to 11.8 dB at ka =2.9 
in configuration (A-3). We conclude that the resonant frequency and the frequency band 
of these configurations remain identical regardless e. This implies that resonance 
frequency is related to the radius of ducts. It is noticeable that configuration (A-1) 
provides a higher attenuation peak; therefore, it is more efficient. Figures 4(a), 4(b), 4(c) 
show the effect of the thickness t of the liner on the acoustic power attenuation, 
respectively, for configurations (A-1), (A-2) and (A-3) versus ka. It is observed that the 
form of attenuation curves, in all studied configurations, are similar to that of the effect of 
thickness e in Figures 4. It is also noticed that the attenuation peak grows slightly when t 
increases in configuration (A-1) and it passes from (9.2 dB for t = 0.2 mm to 10.97 dB for 
t = 1.2 mm). Conversely, in Figure 4 (A-3) the maximum of attenuation passes from 
(11.1 dB for t = 1 mm to 12.5 dB for t = 0.4 mm) and it varies between 7.6 dB and 8.68 
dB in configuration (A-2). A maximum of attenuation is better in configuration (A-3) 
than configurations (A-1) and (A-2), therefore, it is the most absorbent. Results reveal 
that this parameter does have not an important effect on the amplitude of attenuation 
peak, however, it has an effect on the resonance frequency that leads to pushing the 
attenuation peak to lower frequencies when t increases: 

(A-1): ka =3.2 for t = 0.4 mm to ka =2.45 for t = 1.2 mm 

(A-2): ka =3.8 for t = 0.2 mm to ka =2.6 for t = 1.2 mm 
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(A-3): ka =2.7 for t = 0.4 mm to ka =3.5 for t = 1 mm). 

Figure 5 Effect of the perforation diameter dp of the liner on the acoustic power attenuation of 
the three studied configurations (A-1), (A-2) and (A-3) of ducts having a radius 
narrowing 
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Figure 6 Effect of the air cavity depth Lc of the liner on the acoustic power attenuation of the 
three studied configurations (A-1), (A-2) and (A-3) of ducts having a radius narrowing 
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Figure 7 Effect of porosity σp [%] of the liner on the acoustic power attenuation of the three 
studied configurations (A-1), (A-2) and (A-3) of ducts having a radius narrowing 
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The observed effect is elucidated by the fact that the mass of air contained in the 
perforation is more important when the plate is thicker and the frequency of resonance 
decreases. The acoustic resistance increases with t. This is explained by the fact that the 
thermal and viscous boundary layers in the perforations are present on a larger surface. 
The acoustic dissipation is, therefore, more important. Figures 5(a), 5(b) and 5(c) exhibit 
the effect of the perforation diameter of the liner on the acoustic power attenuation of 
configurations (A-1), (A-2 and (A-3), respectively. These figures show that the effect of  
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this parameter is important. It is noted, in each configuration, that the attenuation grows 
as a function of ka for diameter varying from 0.2 to 0.4 mm with drops observed in 
Figure (A-2) and fluctuations in Figure (A-3). It is noteworthy that the attenuation 
resonance phenomenon appears only for the wider diameter dp=1, 1.2, (dp>t) because the 
wave acoustic can be penetrated better inside the plate, which is contrary to small values 
diameter, where the wave acoustic cannot penetrate into the plate and therefore will be 
reflected. Decreasing dp from 1.2 mm to 0.2 mm generates an increase of the acoustic 
power attenuation in configurations (A-2) and (A-c) and only for ka below 2 in 
configuration (A-1) which presents a slight decrease in the amplitude of attenuation peak 
from 10.27 dB, ka = 2.75 to 10.8, ka = 2.6 for a diameter equal to 1 and 1.2 mm, 
respectively, as well as a very slight increase of the attenuation when dp increases from 
0.2 to 0.4 mm at ka above 2.6. The maximum of attenuation and the corresponding 
frequency vary in each configuration as; ((A-2): 7.95 dB at ka = 2.8 to 11.28 dB at  
ka = 3.03; (A-c): 10.6 dB at ka = 2.7 to 17.24 dB at ka =3.8). It can be noticed that 
configuration (A-3) is more efficient than other configurations, particularly at a higher 
frequency. Figures 6(a), 6(b) and 6(c) represent the effect of air cavity depth Lc on the 
acoustic power attenuation versus ka, respectively, for configurations (A-1), (A-2) and 
(A-3). These figures reveal that the attenuation behaviour in each configuration is similar 
to that of the effect of thickness t in Figures 5 (A-1), (A-2), and (A-3). It can be seen that 
the resonant frequency is reduced by increasing Lc and it varies in each configuration as 
follows: ((A-1): ka = 3.2 for Lc = 15 mm to ka = 2.46 for Lc = 25 mm; (A-2): ka = 3.34 
for Lc = 15 mm to ka = 2.6 for Lc = 25 mm; (A-3): ka = 3.5 for Lc = 25 mm to ka = 2.6 for 
Lc = 25 mm). Moreover, the amplitude of the resonance peak rises with the increase of Lc 
in configuration (A-1) and it passes from 9.1 dB for Lc = 25 mm to 11.2 dB for Lc = 15 
mm. Conversely, in Figure (A-c), this amplitude grows as Lc decrease and it passes from 
10.35 dB for Lc = 25 mm to 13.88 dB for Lc = 15 mm. However, the amplitudes of 
attenuation peaks in configuration (A-2) are close and they vary between 7.7 dB and  
9 dB. These results display that configuration (A-3) provide a good attenuation at a 
higher frequency, thus being the most efficient. Figures 7(a), 7(b) and 7(c) show the 
effect of the porosity σp on the acoustic power attenuation versus ka for the three studied 
configurations (A-1), (A-2) and (A-3). They display an important effect of this parameter. 
It can be observed that the attenuation presents a resonance peak in each configuration, 
whose amplitude of this peak slightly increases when σp increases, as shown in  
Figures 7(A-1) and (A-3), however, it varies inversely in Figure 7 (A-2). On the other 
hand, the resonant frequency rises with the increase of σp, as presented in figure 7 (A-1) 
and (A-2), and it varies inversely in Figure 7 (A-2). The maximum of attenuation and the 
corresponding frequencies pass from each configuration as follows: ((A-1): 9.2 dB,  
ka = 3.2 for σp = 7% to 11.75 dB for σp = 3%, ka = 2.14; (A-2): 8.1 dB, ka = 1.08 for  
σp = 1% to 6 dB, ka =2.1 for σp = 7% to 7.77 dB, ka = 3.4 for σp = 7%; (A-3): 9.6 dB,  
ka = 2.1 for σp = 7% to 11.6 dB, ka = 3.68 for σp = 3%). It can be seen that the resonance 
frequency increases as σp increases, as indicated in Figures 7(a) and 7(b), however, in 
Figure 7 (c), results show that configuration (A-3) yields a better attenuation at high 
frequencies region, while configuration (A-1) can be more efficient at a lower frequency. 
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Figure 8 Effect of the length of the section change on the acoustic power attenuation of 
configuration for ducts of the three studied configurations (B-1), (B-2) and (B-3) of 
ducts having a radius widening 
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Figure 9 Effect of the thickness e of the section change on the acoustic power attenuation of the 
three studied configurations (B-1), (B-2) and (B-3) of ducts having a radius widening 

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

ka

A
tte

nu
at

io
n 

dB

 

 
e=0.025 m
e=0.022 m
e=0.02 m
e=0.018 m
e=0.016 m

(a) 

 

0 0.5 1 1.5 2 2.5 3 3.5 4
0
2
4
6
8

10
12
14

ka

A
tte

nu
at

io
n 

dB

 

 
e=0.025 m
e=0.022 m
e=0.02 m
e=0.018 m
e=0.016 m

(b) 

 

 
0 0.5 1 1.5 2 2.5 3 3.5 4

0
2
4
6
8

10
12
14

ka

A
tte

nu
at

io
n 

dB

 

 

e=0.016 m
e=0.018 m
e=0.02 m
e=0.022 m
e=0.025 m

(c) 

 

 

 

 

 

 



   

 

   

   
 

   

   

 

   

   94 R. Dhief et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 10 Effect of the thickness t of the liner on the acoustic power attenuation of ducts having a 
radius widening of the three studied configurations (B-1), (B-2) and (B-3) 
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Figure 11 Effect of the perforation diameter dp of the liner on the acoustic power attenuation of 
the three studied configurations (B-1), (B-2) and (B-3) of ducts having a radius 
widening 
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Figure 12 Effect of the porosity Lc of the liner on the acoustic power attenuation of the three 
studied configurations (B-1), (B-2) and (B-3) of ducts having a radius widening 
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Figure 13 Effect of the porosity σp of the liner on the acoustic power attenuation of the three 
studied configurations (B-1), (B-2) and (B-3) of ducts having a radius widening 
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5.2 Configurations of ducts having a radius widening 

Figures 9(a), 9(b), 9(c) show the effect of the section change length on the acoustic power 
attenuation, respectively, for configurations (B-1), (B-2) and (B-3) versus ka. These 
figures reveal that the form attenuation curves change and are disturbed for higher 
frequency in all three studied configurations compared to Figures 3(a), (b), and (c) (in the 
case of the narrowing of radius in duct). It can be seen that the attenuation is nil for ka 
below 0.5 and then it shows a peak with larger band in figures (b) and (c). Besides, in 
Figure 9(a), the attenuation presents a peak in ka = [0.5–1.5] with narrower band and then 
it decreases to reach 2.83 dB at ka =2.8 where it slightly rises and again decreases. By 
increasing the section change length the attenuation peak increases in three 
configurations, however, there is no significant effect for ka = [1.5–2.4] in Figure 9(a) 
and for ka below 2 in Figure 9(c). The maximum of attenuation and the corresponding 
frequency differ in each figure and they are about 8.3 dB, ka =1.1; 12.93 dB, ka=2.3; 12.2 
dB, ka = 2.4, respectively, for configurations (a), (b) and (c). Based on these results, 
configuration (B-1) is good in low frequency and configurations (B-2) and (B-3) are 
better in medium frequency, while configuration (A-3) of duct, having narrowing radius, 
is the most efficient, particularly, at higher frequency. The effect of the variation of 
thickness e on the acoustic power attenuation for three configurations of ducts, having 
widening radius, is presented in Figures 10(a), 10(b) and 10(c). They show there are no 
significant effect of e in Figures 10 (a) and (c) and a small increase of the attenuation as e 
increases in the range of ka = [1–1.6], which does not exceed 2dB in Figure 10 (a). It can 
be observed that the attenuation behaviour in Figures 10 (c) is similar to Figure 3 (c) in 
the case of ducts having narrowing radius, as well as in Figures 10 (b), however, the 
attenuation peaks are shifted to ka = 2.2. On the other hand, the attenuation behaviour of 
Figures 10 (a) is similar to effect of the length c in Figure 9 (a). A maximum of 
attenuation and the corresponding frequency are about 7.4 dB, ka =1.2; 13.8 dB, ka =2; 
14 dB ka =3.03, respectively, for configurations (a), (b) and (c).Therefore, configuration 
(B-3) is the most efficient, particulary, at high frequency compared to all studied 
configurations. Besides, configuration (B-2) is quiet good at medium frequency.  
Figures 11(a), 11(b) and 11(c) present the effect of thickness t , in the case of ducts 
having a radius widening. Figures 11(a), 11(b) and 11(c) display the effect of the 
thickness t, in the case of ducts having a radius widening. They show that the attenuation 
starts to increase at ka = 0.6 and present a perturbation at higher frequencies. Figure 11 
(a) reveals that the attenuation presents a peak with a narrow band for ka varying from 
0.5 to 1.5, then it decreases very slightly to reach 2 to 3 dB. It is observed that the 
frequency of the peak attenuation grows for ka varying from 1.3 to 1.6, when thickness t 
passes from 0.2 mm to 0.8 mm, being located at ka =1.7 for t = 1, 1.2 mm. Figures 11(b) 
and 11(c) demonstrate a significant increase of attenuation peaks, which shifts towards 
higher frequencies as well as an increase in the frequency band where ka varies from 0.5 
to 3, compared to figure (a). Moreover, the frequency of attenuation peak grows as t is 
reduced and it passes from ka =1.8, t = 1.2 mm to ka =2.8, t = 0.4 mm. A maximum of 
attenuation peak is about 9.1 dB; 13.1 dB; 10.7 dB, respectively, for configurations (B-1), 
(B-2) and (B-3). The attenuation peak performance is better in configuration (B-2). 
Figures 12 (A-1), (A-2), and (A-3) show very interesting results with regards to the effect 
of the diameter in the three studied configurations of ducts, having a widening radius. It 
can be seen that the effect of dp in Figure 12 (B-3) is similar to that of Figure 5 (B-3). 
Figure (B-2) show that the attenuation presents a resonance peak with large frequency 
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band for ka varying from 0.6 to 3.03, except that for dp = 0.2 which rises to final point 
when ka increases. The resonant frequency shifts to higher frequency with the decrease of 
dp. However, Figure (B-1) exhibits an increase of the attenuation when ka increases, to 
reach a maximum and then it decreases with small drops observed at ka = 1.9 and  
ka = 2.9, except for dp = 1, 1.2 mm, which presents a peak. Moreover, the attenuation 
rises when dp decreases and it varies in each configuration as follows: ((B-1) 8.2 dB,  
ka = 2.3 to 7.6 dB, ka =1.7; (B-2): 9.7 dB, ka = 2 to 16.5 at ka = 2.1; (B-3): 9.1 dB to 
14.05 at ka = 1.8 and 5 dB to 18.2 dB at ka =2.9). Accordingly to these results, 
configuration (B-2) with dp = 0.4 mm provides better performance of attenuation peak 
and a larger frequency band, thus it is the most efficient. Figures 13 (a), (b) and (c) 
display the effect of Lc in the case of ducts having a radius widening for the three studied 
configurations. It can be seen that the variation of attenuation is similar to that the 
thickness t in Figures 10 (a), (b) and (c). The amplitudes and the positions of the 
attenuation peaks are different compared to those of the three configurations of ducts 
having narrowing radius in Figures 5 (a), (b) and (c): the more the cavity is thin, the more 
the attenuation peak is shifted to the higher frequencies. Moreover, it is observed that the 
amplitude of the attenuation peak grows when Lc is reduced, as shown in Figures (a) and 
(b), however, it remains almost in the same level in Figure (c). The amplitude and the 
frequency of attenuation peak vary in each configuration as follows: ((B-1): 3.4 dB,  
ka = 0.9 for Lc =25 mm to 8.2 dB, ka =1.76 for Lc =15 mm; (B-2): 10.36 dB, ka =1.8 for 
Lc = 25 mm to 15.04 dB, ka =2.6 for Lc =15 mm; (B-3): 10.1 dB, ka =1.8 for Lc =25 mm 
to 10.25 dB, ka =2.2 for Lc =15 mm). Thus, it is concluded that configuration (B-2) is the 
most efficient. The effect of σp on the acoustic power attenuation for the three studied 
configurations of ducts having radius widening are plotted, respectively, in Figures 14(a), 
14(b) and 14(c). They show that the frequency of attenuation peaks are slightly shifted 
towards lower frequency with small perturbations, observed for higher frequency, when 
compared to the three configurations of the case of narrowing ducts. The frequency of 
resonance peak increases when σp increases and it varies in each configuration as follows: 
((B-1): ka =0.87 for σp =3% to ka = 1.66 for σp = 7%; (B-2) ka =1.5 for σp =3% to ka =2.6 
for σp =7%; (B-3): ka =1.5 for σp = 3% to ka =2.5 for σp = 7%). Moreover, the maximum 
of attenuation rises as σp increases in Figure (a) and it passes from 5 dB for σp =3% to 
7.1dB for σp =7%. However, it is almost closer in configurations (B-2) and (B-3), having 
a maximum of attenuation equal to 12.26 dB and 10.35 dB, respectively. It can be noticed 
that configuration (B-2) provides a greater attenuation compared to all studied 
configurations and, therefore, it is the most efficient. 

6 Conclusions 

This study was conducted to identify the influential parameters of the liner and 
geometries as well as their acoustic performance on the acoustic power attenuation of 
lined ducts with various configurations by using the scattering matrix method. This work 
is realised for six configurations of ducts discontinuities which differ on type 
discontinuity and lined-part position. The following primary conclusions are drawn from 
the results of this study: 
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• The liner parameters are highly influenced by the type of section change on each 
lined duct. In the case of ducts having a narrowing radius, configuration (A-3) yields 
a better performance of liner characteristics on the attenuation peak and the 
frequency band; however, it is slightly disturbed. In the case of ducts having a 
widening radius, evanescent modes are generated at the level of discontinuities in the 
case of ducts having a widening radius and even if they are quickly attenuated in 
some frequency, their effects cause disturbances for higher frequencies. 
Configuration (B-2) provides a better performance of liner characteristics on the 
attenuation peak and the frequency band. Furthermore, it is noticeable that 
configuration (B-1) is good at low frequency, configuration (B-2) is better at medium 
frequency and configuration (B-3) is the best choice for higher frequency, as well as 
the case of narrowing radius of duct. 

• The plate thickness t, the porosity σp and the length of cavity Lc strongly influence 
the resonance frequency and therefore allow fixing their position. However, the 
diameter dp has an influence on the maximum of attenuation. 
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