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Abstract: The iterated multifunction system (IMS) provides a primary way
of deriving a class of set-valued functions constructed on a complete
metric space. An exemplification of the generalisation of single-valued
function to set-valued function is the Hardy-Rogers type iterated function
system (HR-IFS). In this regard, set-valued functions show their efficiency
in various domains like robotics, preventive maintenance, control systems,
and energy. We extend the notion of HR-IFS to a class of Hardy-Roger
type iterated multifunction system (HR-IMS). Moreover, concentrating on
tremendous applicability of fixed point theory in real-life scenario, we have
obtained a fixed point of the newly constructed IMS with the aid of the
Hutchinson-Barnsley theory. In the main result, the attractor of the HR-IMS
is constructed in an unconventional way. Consequently, a common idea of
the Banach contraction principle, known as Nadler’s type result, is gleaned
for our HR-IMS.
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1 Introduction

An amalgam of topology and geometry produces a dazzling track in mathematics,
known as fixed point theory. The most rudimentary property of a norm is convexity,
and it is used for the earliest development of metric fixed point theory. One of the most
wanted environments in the fixed point theory field is to get a solution of a system of
equations, and a little bit of explanation about attaining the solution is given here.

Suppose we have a finite system of equations ψ̆i(x) = 0, i = 1, 2, . . . , n with
unknowns that is equal in the number of equations, in which each equation is a
continuous real-valued function of real variables, in the n-dimensional Euclidean space
Rn. If we take any element x in Rn so that

ϕ̆i(x) = ψ̆i(x) + xi, i = 1, 2, . . . , n

Then the entry x is a solution to the system.
A careful inspection, in the cases of the calculus of variations, partial differential

equations, optimal control, and inverse problems, reveals the usage of fixed point theory.
Moreover, fixed point theory has some deep roots in applied mathematics, physics,
chemistry, and other branches of sciences. Mathematics has a very effective branch
known as ‘fixed point theory’ in all aspects. The applicability of this field to real
scenarios is not bounded, specifically in nonlinear optimisation problem, economics,
geometry and topology manifolds, game theory, etc. Thus our paper initially moves on
the fixed point theorem in a complete metric space having a generalised contraction
called Hardy-Rogers type contraction. Several researchers get the inspiration to show
some extention and generalisation of the fixed point results in a variety of ways. The
works of Hussain et al. (2020) and Hammad et al. (2021) provides the evolution of
the fixed point theory with some novel non-expansive mapping and homotopy theory.
Recently, Goyal et al. (2021) have discussed the Hardy-Rogers type iterated function
system (HR-IFS) and showed the attractor for the same in metric space. Whenever
we hit with the word ‘fixed point theorem’, we undoubtedly get an idea of a peculiar
invariant point of a contraction defined on a complete metric space and it is identified
as Banach contraction principle.

A relaxation of the assumptions and the generalisation of the classical Banach
contraction principle is termed Nadler’s fixed point theorem in which a set-valued
contraction is used instead of point-valued mapping. A further generalisation of this
particular Banach contraction principle were commenced by Nadler (1969) and he
widens this concept from functions of one variable to set-valued contractive operations.
Also, several authors gave a generalisation of this result, see Du (2012) and Ćirić
(2009). Moreover, several self-similar phenomena are described by the term iterated
function system (IFS) that was introduced by Hutchinson (1981) and a deepening this
notion is known as an IMS. Construction of fractal sets using contractive maps either
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in deterministic nature or in probabilistic environment is IFSs. In general, iteration
theory shows its efficiency in computational mathematics, especially by imposing the
preceding output in the current iteration and a class of problems can be fathomed by a
sequence of approximate solutions with an initial value. In this direction, the theory of
dynamical systems makes use of the iterative methods in a wide sense for their valuable
application of the system’s reliability and stability. Moreover, the attractors gained by
considering an IFS have a computational aspect in probabilistic and geometric-measure
theoretic developments. A primary initiation of the existence of solutions for fixed point
equations is introducing the use of multifunction in fractal analysis. This was started
by Andres et al. (2005) and Andres and Fišer (2004). The idea of extending IFSs to
IMSs is raised in the field of image analysis. For reducing the issues of the inverse
problem for image approximation so many fixed point results were proved to convey
the importance of supplementation of IFS to IMS for instance, see Kunze et al. (2007).

In addition to this work, Petruşel et al. (2015) developed some fixed point theorems
for non-self-multivalued generalised contractions and the fixed sets. Further, some
properties given by them enrich the significance of IMS. Further, in some point of
view of IMS, Kunze et al. (2007) had implemented a continuity theorem for fixed point
sets as well as a generalised collage theorem for contractive multifunctions. Moreover,
as an application side, they provided the notion of the IMS through their result. The
problems of applicable mathematics and applied physics can be easily handled with
the background of IMSs besides the results proved for IFSs (Singh et al., 2009).
A tactful application of IFS theory can be encountered in economics and finance.
Moreover, it is meticulously applicable in fractal simulations of Brownian motions,
fractal approximations of distribution and density function, and stochastic processes.
As a general case of IFS, one can find the usage of IMS in the inverse problem of
approximation.

The enhancement of HR-type fixed point theorem is shown as follows to recognise
the history and development of this specific notion. A very well-known fixed point
theorem defined on a complete metric space (P, p) with usual contraction is named
as Banach contraction mapping principle. Whereas for self-maps like ϕ̆ : P → P, a
contractive condition given by

p(ϕ̆(x), ϕ̆(y)) ≤ λ[p(x, ϕ̆(x)) + p(y, ϕ̆(y))] (1)

for every x, y ∈ P and λ ∈ [0, 1/2) is used to prove the existence of fixed point theorem
by Kannan (1968). Futher, the restriction on contractive condition is intircated by a little
amount such as

p(ϕ̆(x), ϕ̆(y)) ≤ αp(x, y) + βp(x, ϕ̆(x)) + γp(x, ϕ̆(y)) (2)

for each x, y ∈ P and α, β, γ ≥ 0 with α+ β + γ = 1. This elaboration was done
by Reich (1971) and an exemplification was achieved by him to show that it was a
proper generalisation of Banach and Kannan fixed point theorem. Some more additional
works were established by several mathematicians (Chatterjea, 1972; Ciric, 1971) with
imposing the constraints on contractive conditions as follows:

p(ϕ̆(x), ϕ̆(y)) ≤ λ[p(x, ϕ̆(y)) + p(y, ϕ̆(x))] (3)
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for all x, y ∈ P and λ ∈ [0, 1/2) and

p(ϕ̆(x), ϕ̆(y)) ≤ αp(x, y) + βp(x, ϕ̆(x)) + γp(y, ϕ̆(y))

+ δ[p(x, ϕ̆(y)) + p(y, ϕ̆(x))]
(4)

for any x, y ∈ P, where α, β, γ, δ ≥ 0 with α+ β + γ + 2δ < 1. The mapping given in
(4) is called generalised contraction. In this order, a more general contractive condition
of all the preceding conditions was made by Hardy and Rogers (1973) and proved fixed
point theorem. Moreover, it is given by

p(ϕ̆(x), ϕ̆(y)) ≤ αp(x, y) + βp(x, ϕ̆(x)) + γp(y, ϕ̆(y))

+ δp(x, ϕ̆(y)) + µp(y, ϕ̆(x))
(5)

for every x, y ∈ P and α, β, γ, δ, µ are any non-negative reals with the condition that
α+ β + γ + δ + µ < 1.

Several predecessors analysed so many circumstances of metric and topological
fractals in the early enhancement of multivalued fractals. Also, this is considered as the
very beginning stage of the classical point-to-point to set-valued contractive mappings.
Further extensions of the standard IFS to IMS were covered in Kunze et al. (2007). A
few works that are made on the HR-type space is explored as below. Singh et al. (2009)
obtained a Hardy-Rogers type fixed point theorem in cone 2-metric spaces over Banach
algebras for a family of self-maps and a corollary was gained by Wang et al. (2015)
using the result obtained by the same authors above mentioned. Shukla et al. (2013)
enriched this field by giving some generalisations of Presic type contractions and also
exhausted a fixed point theorem for Presic-Hardy-Rogers type contractive conditions in
metric spaces.

In a 0-complete partially ordered partial metric space under HR-type contractive
condition, Nashine et al. (2012) proved a fixed point theorem for a monotone self-map.
This establishment enhances some results which are derived using weaker conditions.
Moreover, this work is considered as an extension and strengthening of a few results in
standard ordered metric spaces. Additionally, Arshad et al. (2015) developed some fixed
point results in the sense of Hardy-Rogers type condition in a complete metric space for
α-η-GF contraction.

Moreover, scholars are interested in doing research on different kinds of
Hardy-Rogers contractive conditions to gain novel fixed point theorems. One of the
works is done by Barman et al. (2020). In their article, they proved some common fixed
point theorems using T -Hardy-Rogers type contraction condition and F -contraction on a
complete 2-metric space. Also, Karapınar et al. (2019) used an interpolative approach to
recognise the Hardy-Rogers fixed point theorem in the class of metric spaces. However,
they gave a partial metric case, according to the result they obtained. In the recent days,
Georgescu et al. (2020) initiated the notion of HR-IFS.

By considering all the above works and in view of application of fixed point results
in various kinds of metric spaces, we focus on the HR-IMS. Moreover, we exhibited
with this notion for proving Nadler’s type result especially. Also, the elaboration of
IFS to IMS in Hardy-Rogers type space is done for the first time in this paper and
as a benefit of this result, we made the Nadler’s fixed point theorem for set-valued
contractive mappings.
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So we emphasise the concept of HR-IMS to retrieve the Nadler’s result. The present
paper is regularised as follows: Section 2 emphasises the basic ideas and results for
construction of our primary result. Also, it gives the perception of shift space. A key
finding of this article is given in Section 3. That is, it explores derivation of attractor
of HR-IMS. Finally, Section 4 exposes several consequences of the key result proved
in Section 3. At last, by considering a particular case of the main result, we give the
Nadler’s type result for HR-IMS.

2 Preludes and preparations

This section gives the notion of HR-type IMS and some results that support the existence
of Nadler’s result. We have made the following notations for the simplicity of some
long expansions. (P, p) is always referred as a metric space. The set of all closed and
bounded subsets of the metric space (P, p) is marked by CLB(P). The collection of
all closed subsets of (P, p) are given by CL(P). COM(P) denotes the class of all
compact subsets of the metric space (P, p). N ∪ {0} and R+ are the set of all positive
integers together with zero and the set of all positive real numbers, respectively. The
Hausdorff distance is defined as below.

Suppose (P, p) is a metric space and CLB(P) is the set of all closed and bounded
subsets of the metric space (P, p). Then the Hausdorff distance (denoted as HP)
between two elements A,B ∈ CLB(P) is a mapping from CLB(P)× CLB(P) to
[0,∞) given by

HP(A,B) = max
{
sup
a∈A

inf
b∈B

p(a, b), sup
b∈B

inf
a∈A

p(b, a)

}
for every A,B ∈ CLB(P). Also, the distance between a point a and a subset B in the
metric space (P, p) is defined by

p′(a,B) = inf{p(a, b)|b ∈ B}

The upcoming theorem shows the common form of the Banach contraction principle.

Theorem 2.1 (Pitchaimani and Kumar, 2017): A mapping ϕ̆ defined on a complete
ultrametric space (P, p) and having the set of all closed and bounded subsets of P as
the codomain, satisfying the inequality HP(ϕ̆(a), ϕ̆(b)) ≤ αp(a, b) for every a, b ∈ P
and 0 ≤ α < 1, has a unique fixed point in P.

Definition 2.1 (Miculescu and Mihail, 2019): Given a function ϕ̆ defined over a metric
space (P1, p1) with a possible codomain CLB(P2) (where (P2, p2) is a metric space),
we let

lip(ϕ̆) = sup
a,b∈P1, a ̸=b

HP2(ϕ̆(a), ϕ̆(b))

p1(a, b)
∈ [0,∞]. (6)

Such a mapping ϕ̆ is known as Lipschitz provided that lip(ϕ̆) <∞ and it is said to be
a contraction if lip(ϕ̆) < 1.



228 M. Priya et al.

Definition 2.2 (Miculescu and Mihail, 2019): Suppose we have a complete metric space
(P, p) and a finite number of contractive mappings ϕ̆i : P → CLB(P), i = 1, 2, . . . , n.
An iterated multifunction system, simply called as IMS, is a duplet S =
(P, (ϕ̆i)i∈{1,2,...,n})

Definition 2.3 (Georgescu et al., 2020): Take a complete metric space (P, p) and
consider a family of continuous functions (ϕ̆i)i∈I , ϕ̆i : P → P. Then a HR-IFS is
defined by:

1 There exists u, v, w ≥ 0 assures the following two properties:

a u+ v + w < 1

b p(ϕ̆i(a), ϕ̆i(b)) ≤ u p(a, b) + vMi(a, b) + wNi(a, b),

for each i ∈ I and every a, b ∈ P, where Mi(a, b) = p(a, ϕ̆i(a)) + p(b, ϕ̆i(a)) and
Ni(a, b) = p(a, ϕ̆i(b)) + p(b, ϕ̆i(a)).

2 There exists a1, b1, b2, c1, c2 ≥ 0 satisfying a couple of conditions:

a a1 + b1 + b2 + c1 + c2 < 1/2

b p(ϕ̆i(a), (ϕ̆i ◦ ϕ̆j)(b)) < a1 p(a, b) + b1Mj(a, b) + b2Mi(a, b) + c1Nj(a, b) +
c2Ni(a, b),

for every i, j ∈ I and every a, b ∈ P.

Focusing on our primary aim and based on Definitions 2.2 and 2.3, we give the idea of
HR-type IMS as below:

Definition 2.4: Let N be any positive integer. A finite collection of contractions
{ϕ̆n}Nn=1 of the form ϕ̆n : P → CLB(P) defined on a complete metric space (P, p) is
said to construct a Hardy-Rogers type iterated multifunction system (HR-IMS) if

1 There are some σ1, σ2, σ3 ≥ 0 such that for each n ∈ {1, 2, . . . , N}

a σ1 + σ2 + σ3 < 1

b HP(ϕ̆n(a), ϕ̆n(b)) ≤ σ1p(a, b) + σ2[p
′(a, ϕ̆n(a)) + p′(b, ϕ̆n(b))] +

σ3[p
′(a, ϕ̆n(b)) + p′(b, ϕ̆n(a))].

2 The following two conditions are satisfied by arbitrarily chosen
δ1, δ2, δ3, δ4, δ5 ≥ 0

c δ1 + δ2 + δ3 + δ4 + δ5 < 1/2

d HP(ϕ̆n(a), (ϕ̆n ◦ ϕ̆m)(b)) ≤ δ1p(a, b) + δ2[p
′(a, ϕ̆m(a)) + p′(b, ϕ̆m(b))] +

δ3[p
′(a, ϕ̆n(a)) + p′(b, ϕ̆n(b))] + δ4[p

′(a, ϕ̆m(b)) + p′(b, ϕ̆m(a))] +

δ5[p
′(a, ϕ̆n(b)) + p′(b, ϕ̆n(a))]

for each n,m ∈ {1, 2, . . . , N} and every a, b ∈ P.
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Such a system is denoted by (HR− IMS(P), (ϕ̆n)n∈{1,2,...,N}).

Definition 2.5: Given a HR-IMS(P) we implement a function Φ : P → CLB(P)
defined by

Φ(a) =
n∪

i=1

ϕ̆i(a)

for each a ∈ P. Such a mapping Φ is said to be the Hutchinson-Barnsley operator
generated by ϕ̆is.

Remark 2.1 (Miculescu and Mihail, 2019): The couple of metric spaces
(CLB(P),HP), (COM(P),HP) are complete while the metric space (P, p) is
complete.

Remark 2.2 (Miculescu and Mihail, 2019): If a sequence of sets {Pn}n∈N∪{0}
taken from CLB(P) converges with respect to P, where (P, p) is a complete
metric space, then lim

n→∞
Pn = {m ∈ P| for each n ∈ N ∪ {0}, there is some mn ∈

Pn such that lim
n→∞

mn = m}.

2.1 The shift space

Suppose Y be a non-empty set. By Λ(Y) we mean the set of infinite words ω̂ =
ω̂1ω̂2...ω̂nω̂n+1... having each alphabet from Y. The set Y{1,2,...,n} can be denoted
by Λn(Y) for each n ∈ N. i.e., any word with finite length ω̂ = ω̂1ω̂2...ω̂n belong to
Λn(Y). The length of any word is notated by L̄(ω̂). The set having a single word,
particularly the empty word λ̂ is given by Λ0(Y). The countable union of Λn(Y) will
be seen by

Λc(Y) =
∪

n∈N∪{0}

Λn(Y).

Representation of the set of words consisting at most n letters with letters from the
alphabet Y is given by

ATMOSTn(Y) =
∪

i∈{1,2,...,n}

Λi(Y)

For any two integers n,m ∈ N and arbitrary words θ̂ = θ̂1θ̂2...θ̂n ∈ Λn(Y) and η̂ =
η̂1η̂2...η̂m ∈ Λm(Y) or η̂ = η̂1η̂2...η̂mη̂m+1... ∈ Λ(Y), the concatenation of the words
θ̂ and η̂, denoted by θ̂η̂, is taken as

θ̂η̂ = θ̂1θ̂2...θ̂nη̂1η̂2...η̂m

and respectively

θ̂1θ̂2...θ̂nη̂1η̂2...η̂mη̂m+1...
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A truncation of an infinite word ω̂ = ω̂1ω̂2...ω̂nω̂n+1... ∈ Λ(Y) upto n is

ω̂|n = ω̂1ω̂2...ω̂n

For any ω̂ ∈ Λ({1, 2, ..., n})− {λ̂}, by ω̂, we let ω̂ω̂ω̂...ω̂... Now define

pΛ(ω̂, θ̂) =

{
0 ω̂ = θ̂

2
1

min{i∈N|ω̂i ̸=ω̂i} ω̂ ̸= θ̂

where ω̂ = ω̂1ω̂2...ω̂nω̂n+1... and θ̂ = θ̂1θ̂2...θ̂nθ̂n+1... ∈ Λ(Y). Then pΛ is a metric on
Λ(Y) and (Λ(Y, pΛ)) is a metric space.

Remark 2.3 (Miculescu and Mihail, 2019):

1 The convergence property in (Λ(Y), pΛ) is a metric space.

2 (Λ(Y), pΛ) is complete.

3 Suppose Y is finite. Then (Λ(Y), pΛ) is compact.

1 and 2 are consequences of the convention that the Tyhonoff product topology is
induced by the metric pΛ.

Remark 2.4 (Miculescu and Mihail, 2019): Consider m ∈ N, (ω̂n)n∈N∪{0} ⊆
Λ({1, 2, ...,m}) and ω̂ ∈ Λ({1, 2, ...,m}) such that lim

n→∞
ω̂n = ω̂. Then for any s ∈ N,

we can choose a positive integer ns with the termination that ω̂n|s = ω̂|s for all
n ∈ N, n ≥ ns

Theorem 2.2: For each HR-type IMS (HR-IMS(P), (ϕ̆n)n∈{1,2,...,N}), we can find
a unique CP ∈ CLB(P) with Φ(CP) = CP. Further, lim

n→∞
Φ[n](C) = CP for all

C ∈ CLB(P).

Proof: Our aim is to prove that the HR operator Φ admits a unique fixed point
CP ∈ CLB(P) with the aid of Theorem 2.3 and Definition 2.6. The ultimate result
accompanies from Theorem 2.4 if we will show that the function Φ should follow:

HP(Φ(a),Φ(b)) ≤ ϕ̆(p(a, b)) for each a, b ∈ P

and for a suitable function ϕ̆. Certainly, we have

HP(Φ(a),Φ(b)) = HP

(
n∪

i=1

Φi(a),
n∪

i=1

Φi(b)

)
≤ max{HP(Φ(a),Φ(b))|i = 1, 2, ..., n}
≤ max{ϕ̆i(p(a, b))|i = 1, 2, ..., n}
:= ϕ̆(p(a, b))

Here, the function ϕ̆(s) := max{ϕ̆i(s)|i = 1, 2, ..., n}, s ∈ R+, is increasing, right
semi-continuous and ϕ̆(0) = 0, ϕ̆(s) < s, for every s > 0. Hence, the result arrives at
its conclusion from Theorem 2.4.
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Theorem 2.3: Suppose (HR-IMS(P), (ϕ̆n)1,2,...,N ) is an HR-type IMS. Then the
following results hold:

1 If each ϕ̆n is usc (respectively lsc) for each n, then Φ is usc (lsc).

2
n∪

i=1

ϕ̆i(E) =
∪

e∈E

n∪
i=1

ϕ̆i(e) for every E ∈ CL(P).

Proof:

1 The result follows from the conventional fact that finite union of usc (respectively
lsc) multivalued operators is an usc (respectively lsc) multivalued operator.

2 The relation follows from the uncomplicated expressions given below:

Φ(E) =
∪
e∈E

Φ(e) =
∪
e∈E

n∪
i

ϕ̆i(e) =

n∪
i=1

ϕ̆i(E).

Definition 2.6: Let (P, p) be an metric space and (HR-IMS(P), (ϕ̆n)1,2,...,N ) be an
HR-type IMS. Then a multivalued fractal of the HR-IMS system is the fixed point for
the HR operator Φ.

Theorem 2.4: Presume that (P, p) is a complete metric space and ζ̂ : P → CL(P) is
any function. If we have a special mapping ϕ̆ : R+ → R+ which is increasing and
usc from the right with the property that ϕ̆(0) = 0, ϕ̆(s) < s, for every s > 0 and
HP(ζ̂(a), ζ̂(b)) ≤ ϕ̆(p(a, b)), for each a, b ∈ P, then

1 The self-mapping ζ̂ defined on CL(P) assures the inequality

HP (ζ̂(A1), ζ̂(A2)) ≤ ϕ̆(HP(A1, A2)) (7)

for every A1, A2 ∈ CL(P)

2 Suppose additionally that ζ̂ : P → CLB(P). Then we have

ρ̂ : CLB(P) → CLB(P) and Fix(ρ̂) = {A∗}

3 Moreover if ρ̂ : P → COM(P) or suppose the inequality in (7) is strict, then
Fix(ρ̂) ̸= ∅.

Proof:

Claim 1: First we want to show that ρ̂ : CLB(P) → CLB(P). Certainly it is evident
that ρ̂(A) ∈ CL(P). Take A ∈ CLB(P), a, a0 ∈ A and b ∈ ζ̂(a), b0 ∈ ζ̂(a0). Then

HP(ζ̂(a), ζ̂(a0)) ≤ ϕ̆(p(a, a0)) ≤ p(a, a0)

≤ sup{p(a, a0)|a, a0 ∈ A}
(8)

Then
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p(b, b0) ≤ HP(ζ̂(a), ζ̂(a0)) + {sup ζ̂(a0)|a0 ∈ A}
≤ sup{A}+ sup{ζ̂(a0)}
:= P < +∞

Now, if we take c, d ∈ ρ̂(A), then for an arbitrary ε̂ > 0 we can choose b1, b2 ∈
ζ̂(A) such that p(c, b1) ≤ ε̂, p(d, b2) ≤ ε̂ and p(b1, b0) ≤M, p(b2, b0) ≤M , for some
constant M . Then, we obtain p(c, d) ≤ 2M + 2ε̂ for each ε̂ > 0. Also, this can be
sup{ζ̂(A)} ≤ 2M and our Claim 1 follows. Now, we shall show that

HP(ζ̂(A1), ζ̂(A2)) ≤ ϕ̆(HP(A1, A2))

for each A1, A2 ∈ CLB(P).

Let us take A1, A2 ∈ CLB(P), a1 ∈ A1, a2 ∈ A2 and c ∈ ζ̂(b1). Then

inf{p(c, c1)|c1 ∈ ρ̂(A2)} ≤ inf{p(c, c1)|c1 ∈ ζ̂(a2)}
≤ HP(ζ̂(a1), ζ̂(a2))

≤ ϕ̆(p(a1, a2))

Consequently,

inf{p(c, c1)|c1 ∈ ρ̂(A2)} ≤ inf
a2∈A2

ϕ̆(p(a1, a2))

Assume that r := inf{p(a1, a2)|a2 ∈ A2}. We can detect a sequence (an) in A2 having
the effect that the sequence (p(a1, a2)) reduces to r. Because ϕ̆ is a special function
having its own property, we sequentially get:

ϕ̆(r) ≥ lim sup
n→∞

ϕ̆(p(a1, an)) ≥ inf
a2∈A2

ϕ̆(p(a1, a2))

with the aid of increasing property of ϕ̆, we can see

inf{p(c, c1)|c1 ∈ ρ̂(A2)} ≤ ϕ̆(inf{p(a1, a2)|a2 ∈ A2})

≤ ϕ̆(HP(A1, A2))

sup
c∈ζ̂(a1)

{inf{p(c, c1)|c1 ∈ ζ̂(A2)}} ≤ ϕ̆(HP(a1, A2))

sup
c∈ζ̂(A1)

inf
c1∈ρ̂(A2)

p(c, c1) ≤ ϕ̆(HP(A1, A2))

We can obtain an inequality of the last expression in a symmetric sense. That is

sup
c1∈ρ̂(A2)

inf
c∈ζ̂(A1)

p(c1, c) ≤ ϕ̆(HP(A1, A2))

max

{
sup

c∈ζ̂(A1)

inf
c1∈ρ̂(A2)

p(c, c1)

}
≤ ϕ̆(HP(A1, A2))

for all A1, A2 ∈ CLB(P).



An analogue of Nadler’s result in HR-IMS 233

Next our intend is to verify that Fix(ρ̂) = {A∗}. It is a consequence of the
Boyd-Wong fixed point theorem. Finally, we need to check (3).

Suppose ζ̂(m) is an arbitrary element in COM(P) for each m ∈ P. From the upper
semi continuity property of ζ̂, we can have that for every A ∈ COM(P), ζ̂(A) ∈
COM(P). This will imply that ζ̂ is a self-map on COM(P) and ζ̂(A) = ∪

a∈A
ζ̂(a).

Similar to the above part we can have a unique fixed point A∗ in COM(P) of
ζ̂. A consequent result of this and from Smithson (1971), we can show a fixed point
a∗ = ζ̂(a∗) for the contractive mapping ζ̂|A∗ : A∗ → COM(A∗).

From Wegrzyk’s theorem (Alsulami, 2013), we can see the same condition for the
other case.

Definition 2.7: The set CP obtained from Theorem 2.2 is known as the HR-IMS
attractor of the HR-type IMS (HR-IMS(P), (ϕ̆n)n∈{1,2,...,N}).

3 Main outcomes

Theorem 3.1: Suppose we have a HR-type IMS (HR-IMS(P), (ϕ̆n)n ∈ {1, 2, ..., N}),
u0 ∈ P, u1 ∈ ϕ̆1(u0), ..., um ∈ ϕ̆m(u0) and q ∈ (p, 1), where max

1≤n≤m
lip(ϕ̆n)

not
= p.

Then, we can select a family (xω̂)ω̂∈ΛC({1,2,...,m}) which are entries from P such that

1 xλ = u0, x1 = u1, . . . , xm = um.

2 xiω̂ ∈ ϕ̆i(xω̂)∀i ∈ {1, 2, . . . ,m} and ω̂ ∈ ΛC({1, 2, . . . ,m}).

3 For each n ∈ N and every ω̂1, ω̂2, . . . , ω̂m ∈ {1, 2, . . . ,m}

p
(
xω̂1ω̂2...ω̂nω̂n+1 , xω̂1ω̂2...ω̂n

)
≤ qp

(
xω̂2...ω̂n+1 , xω̂2...ω̂n

)
Moreover, we have

4 For each ω̂ ∈ Λ({1, 2, . . . ,m}), there is lim
n→∞

xω̂|n and it is notated by xω̂ .
With the aid of the notation Rn = {xω̂|ω̂ ∈ Λn({1, 2, . . . ,m})}, we obtain

5 HP(Rn, Rn+1) ≥ qnHP(R0, R1)∀n ∈ N ∪ {0}.

6 There survives A ∈ COM(P) so that lim
n→∞

Rn = A.

7 Rn+1 ⊆ Φ(Rn)∀n ∈ N ∪ {0}.

8 A = {xω̂|ω̂ ∈ Λ({1, 2, . . . ,m})}.

9 A specific function 3 : Λ({1, 2, . . . ,m}) → A identified by
3(ω̂) = xω̂∀ω̂ ∈ Λ({1, 2, . . . ,m}), is a surjective continuous mapping and
3(iω̂) ∈ ϕ̆i(3(ω̂))∀i ∈ {1, 2, . . . ,m} and ω̂ ∈ Λ({1, 2, . . . ,m}).

10 A ⊆ A∗, where A∗ is the attractor of HR-type IMS (HR-IMS(P),
(ϕ̆n)n ∈ {1, 2, ..., n}).
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Proof:

1–3 For the existence of a collection (xω̂)ω̂∈ΛC({1,2,...,m}) of components from P
gratifying the facts (1), (2) and (3), we will make use of the method of
mathematical induction on n = L̄(ω̂).

For n = 0, we regard xλ = u0 and in the case n = 1, we select
x1 = u1, . . . , xm. Thus (1) is true.

Suppose, as an induction hypothesis, that for any n ∈ N, we established a
family (xω̂)ω̂ ∈ ATMOSTn({1, 2, . . . ,m}) satisfies (1), (2) and (3).

Now we select ω̂ = ω̂1ω̂2 . . . ω̂nω̂n+1 ∈ ATMOSTn+1({1, 2, . . . ,m}). Suppose
xω̂2ω̂3...ω̂n ̸= xω̂2ω̂3...ω̂n+1 , as ω̂1 . . . ω̂n ∈ Λn({1, 2, . . . ,m}) we have
xω̂1...ω̂n ∈ ϕ̆ω̂1(xω̂2ω̂3...ω̂n), and so

p(xω̂1ω̂2...ω̂n , ϕ̆ω̂1(xω̂2ω̂3...ω̂nω̂n+1))

≤ sup
x∈ϕ̆ω̂1

(xω̂2ω̂3...ω̂n )

p(x, ϕ̆ω̂1(xω̂2ω̂3...ω̂nω̂n+1))

≤ HP(ϕ̆ω̂1
(xω̂2ω̂3...ω̂n

), ϕ̆ω̂1
(xω̂2ω̂3...ω̂nω̂n+1

))

< qp(xω̂2...ω̂n , xω̂2...ω̂nω̂n+1)

Thus we have p(xω̂1ω̂2...ω̂n , xω̂1ω̂2...ω̂nω̂n+1) ≤ qp(xω̂2...ω̂n , xω̂2...ω̂nω̂n+1) for
some xω̂1...ω̂nω̂n+1 ∈ ϕ̆ω̂1(xω̂2ω̂3...ω̂nω̂n+1). On the other hand, i.e., if
xω̂2ω̂3...ω̂n = xω̂2ω̂3...ω̂n+1 , we get xω̂1...ω̂n ∈ ϕ̆ω̂1(xω̂2ω̂3...ω̂n)

= ϕ̆ω̂1(xω̂2ω̂3...ω̂nω̂n+1) and we can select xω̂1ω̂2...ω̂nω̂n+1 = xω̂1ω̂2ω̂3...ω̂n .
In the ecbatic, the notation S not

= max{p(u0, u1), . . . , p(u0, um)} is followed.

4 Let ω̂ ∈ Λ({1, . . . ,m}). Then, with the reference of (3), we see

p(xω̂|n , xω̂|n+1) ≤ qnS, for each n ∈ N. (9)

∴ (xω̂|n)n∈N∪{0} is a Cauchy sequence and because (P, p) is complete,
lim

n→∞
xω̂|n exists.

5 Consider

HP(Rn, Rn+1)

= HP ({xω̂|ω̂ ∈ Λn({1, 2, . . . ,m})}, {xω̂|ω̂ ∈ Λn+1({1, 2, . . . ,m})})

= HP({xω̂|ω̂ ∈ Λn

(
{1, 2, . . . ,m})},

m
∪
i=1

{xω̂i |ω̂ ∈ Λn({1, 2, . . . ,m})}
)

≤ max
ω̂∈Λn({1,...,m})

HP ({xω̂}, {xω̂i |i ∈ {1, 2, . . . ,m}})

≤ max
ω̂∈Λn({1,...,m})

p(xω̂, xω̂i), i ∈ {1, 2, . . . ,m}

≤ qnS, by (9)
= qnHP(R0, R1)∀n ∈ N.

(10)
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6 Because Rn is finite for each n ∈ N ∪ {0}, we see that Rn ∈ COM(P) for
every n ∈ N ∪ {0}. Also, the sequence (Rn)n∈N∪{0} is Cauchy and it is
convergent from part (5) of this theorem and Remark 2.1, i.e.,

lim
n→∞

Rn = A for some A ∈ COM(P)

7 Now

Rn+1 = {xiω̂|i ∈ {1, . . . ,m} and ω̂ ∈ Λn({1, 2, . . . ,m})}

=
m
∪
i=1

{xiω̂|ω̂ ∈ Λn({1, 2, . . . ,m})}

⊆
m
∪
i=1

∪
ω̂∈Λn({1,...,m})

ϕ̆i(xω̂)

=
m
∪
i=1
ϕ̆i(Rn)

⊆ ϕ̆(Rn) ∀n ∈ N ∪ {0}

8 Observe that

A ⊇ {xω̂|ω̂ ∈ Λ({1, . . . ,m})} (11)

Also, for every ω̂ ∈ Λ({1, . . . ,m}), we obtain lim
n→∞

xω̂|n = xω̂ and
xω̂|n ∈ Rn∀n ∈ N ∪ {0}. Further, from Remark 2.2, we ave xω̂ ∈ A. But

A ⊆ {xω̂|ω̂ ∈ Λ({1, . . . ,m})} (12)

Certainly, suppose x ∈ A = lim
n→∞

Rn, then we can see ω̂n ∈ Λn({1, . . . ,m})
with lim

n→∞
xω̂n = x (by Remark 2.2). Also from Remark 2.3 (3), that

Λ({1, . . . ,m}) is compact, we can take out a convergent subsequence from the
sequence (ω̂nρ0)n∈N∪{0} ⊂ Λ({1, . . . ,m}), where ρ0 ∈ Λ({1, . . . ,m}) is fixed,
so we shall have ω̂ ∈ Λ({1, . . . ,m}) and (jn)n∈N∪{0} a strictly increasing
subsequence of N so that lim

n→∞
ω̂jnρ0 = ω̂.

Our next intension is to prove that x = xω̂ .

Claim 1: p(xω̂, xω̂ω̂1) ≤
qL̄(ω̂)

1−q S for every ω̂ ∈ ΛC({1, . . . ,m}) and
ω̂1 ∈ Λ({1, . . . ,m}).

Proof: Consider

p(xω̂, xω̂ω̂1)≤ p(xω̂ω̂1 , x(ω̂ω̂1)|n) + p(x(ω̂ω̂1)|n , xω̂)

≤ p(xω̂ω̂1 , x(ω̂ω̂1)|n)

+p(xω̂, x(ω̂ω̂1)|L̄(ω̂)+1
) + p(x(ω̂ω̂1)|L̄(ω̂)+1

, x(ω̂ω̂1)|L̄(ω̂)+2
)

+ · · ·+ p(x(ω̂ω̂1)|n−1
, x(ω̂ω̂1)|n)

≤ p(xω̂ω̂1 , x(ω̂ω̂1)|n)

+qL̄(ω̂)S(1 + q + . . .+ qn−1−L̄(ω̂)) by part (3)

≤ p(xω̂ω̂1 , x(ω̂ω̂1)|n) +
qL̄(ω̂)

1− q
S
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for each n ∈ N ∪ {0}, n > L̄(ω̂). Allowing n→ ∞, we have Claim 1.

Claim 2: p(xω̂ω̂1 , xω̂ω̂2) ≤
2qL̄(ω̂)

1−q S for all ω̂ ∈ ΛC({1, . . . ,m}) and
ω̂1, ω̂2 ∈ Λ({1, . . . ,m}).

Proof: By considering the triangle inequality for the three elements
xω̂ω̂1 , xω̂, xω̂ω̂2 we have Claim 2. Choose an ϵ̌ > 0 arbitrarily, but fixed.
Consider r0 ∈ N ∪ {0} such that 2qr0

1−q S <
ϵ̌
3 . With the reference of Remark 2.4

and since lim
n→∞

ω̂jnρ0 = ω̂, an element n0 ∈ N ∪ {0} can be selected with the
fact that

ω̂jnρ0 |r0 = ω̂|r0 ∀n ∈ N ∪ {0}, n ≥ n0

∴ p
(
xω̂, xω̂jnρ0

)
≤ 2qr0

1− q
S <

ϵ̌

3
, by Claim 2 (13)

for each n0 ∈ N ∪ {0}, n ≥ n0.

Further, since lim
n→∞

2qjn

1−q S = 0, there is some n1 ∈ N ∪ {0} such that
2qjn

1−q S <
ϵ̌
3 , thus

p
(
xω̂jnρ0

, xω̂jn

)
≤ 2qr0

1− q
S <

ϵ̌

3
, by Claim 2 (14)

for every n ∈ N ∪ {0}, n ≥ n1.

Through the convergent property of the sequence (xω̂jn
), we will have

n2 ∈ N ∪ {0} with

p
(
xω̂jn

, x
)
<
ϵ̌

3
(15)

for all n ∈ N ∪ {0}, n ≥ n2. Let us take n ≥ max{n0, n1, n2} and we have

p(x, xω̂) ≤ p(x, xω̂jn
) + p(xω̂jn

, xω̂jnρ0
) + p(xω̂jnρ0

, xω̂)

≤ ϵ̌ by (13), (14), (15)

Because ϵ̌ is arbitrary, we finalise that x = xω̂ .

9 A restatement of (8) as A = 3(Λ({1, . . . ,m})) shows that 3 is onto. To prove
continuity of 3, let us choose (ω̂n)n∈N∪{0} ⊆ Λ({1, . . . ,m}) and
ω̂ ∈ Λ({1, . . . ,m}) such that lim

n→∞
ω̂n = ω̂. Given ϵ̌ > 0 and belongs to symbol

r0N ∪ {0} such that 2qr0

1−q S < ϵ̌. Similar to the above case we can have

p(xω̂n , xω̂) ≤
2qr0

1− q
S < ϵ̌

with the aid of Remark 2.4 for every n ∈ N, n ≥ n0, so lim
n→∞

xω̂n = xω̂ , i.e.,

lim
n→∞

3(ω̂n) = 3(ω̂)

Subsequently, 3 is continuous. To show the third part of (9):



An analogue of Nadler’s result in HR-IMS 237

In view of (2) and (4) of this theorem, for each i ∈ {1, . . . ,m} and every
ω̂ ∈ Λ({1, . . . ,m}), we get

xiω̂|n ∈ ϕ̆i(xω̂|n)∀n ∈ N ∪ {0}

and

lim
n→∞

xiω̂|n = xiω̂.

By Remark 2.4, we predict that xiω̂ ∈ lim
n→∞

ϕ̆i(xω̂|n). Since ϕ̆i is continuous
and lim

n→∞
xω̂|n = xω̂ [by (4)], we have

lim
n→∞

ϕ̆(xω̂|n) = ϕ̆(xω̂)

As the above fact, we see xiω̂ ∈ ϕ̆i(xω̂), i.e., 3(iω̂) ∈ ϕ̆i(3ω̂).

10 Using the third part of (9), we will have

A ⊆ Φ(A), so A ⊆ Φ[n](A) (16)

for every n ∈ N. Take x ∈ A. Then x = lim
n→∞

xn, where xn = x ∈ Φ[n](A) for

all n ∈ N, so by the usage of Remark 2.4, gives x ∈ lim
n→∞

Φ[n](A) = A∗. Thus
A ⊆ A∗.

4 Final remarks

Remark 4.1: Due to our construction of main result, we obtain

xω̂ = 3(ω̂) ∈ ∩
n∈N

(A∗)ω̂|n ,

for every ω̂ ∈ Λ({1, 2, ...,m}). Subsequently, we have

3(ω̂) ∈ (A)ω̂|n ⊆ (A∗)ω̂|n ⊆ (A∗)ω̂|n

for every n ∈ N, so we arrive that 3(ω̂) ∈ ∩
n∈N

(A∗)ω̂|n . Also, the following inclusions
hold

A∗ ⊇ (A∗)ω̂|1 ⊇ (A∗)ω̂|2 ⊇ ... ⊇ (A∗)ω̂|n ⊇ (A∗)ω̂|n+1
⊇ ...

for every n ∈ N.

Remark 4.2: Suppose the space Λ({1, 2, ...,m}) is imposed with the metric described
by 3q(ω̂, ω̂1) = 0 for ω̂ = ω̂1 and

3q(ω̂, ω̂1) = qn
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for ω̂ ̸= ω̂1, ω̂|n = ω̂1|n and ω̂|n+1 = ω̂1|n+1

then the mapping 3 : Λ({1, 2, ...,m}) → A is Lipschitz. Therefore, we have

p(3(ω̂),3(ω̂1)) ≤
2ŝ

1− q
pq(ω̂, ω̂1),

from the proof of Claim 2 of (8), for each ω̂, ω̂1 ∈ Λ{1, 2, ...,m}, so 3 is Lipschitz
with lip(3) ≤ 2ŝ

1−q .

Remark 4.3: Notice that in the construction of main result, in particular by part (9), we
get

3(ω̂′) ∈ ϕ̆ω̂1(ϕ̆ω̂2(...(ϕ̆ω̂n(3(ω̂′)))))

for every ω̂ = ω̂1ω̂2...ω̂n ∈ Λn({1, 2, ...,m}), where n ∈ N. This interpretation shows
that 3(ω̂′) is a fixed point of ϕ̆ω̂ for every ω̂ = ΛC({1, 2, ...,m})\{λ̂}.

Definition 4.1: Let Ĉ be a compact Hausdorff topological space. Suppose a finite set of
continuous functions ϕ̆1, ϕ̆2, ..., ϕ̆m : Ĉ → Ĉ, where m ∈ N, and a surjective continuous
function 3 : Λ{1, 2, ...,m} → Ĉ such that the picture

Λ({1, 2, ...,m}) τi−→ Λ({1, 2, ...,m})
3 ↓ 3 ↓

Ĉ
ϕ̆i−→ Ĉ

commutes for every i ∈ {1, 2, ...,m}, where

τi(ω̂1ω̂2...ω̂nω̂n+1...) = i ω̂1ω̂2...ω̂nω̂n+1...

for each ω̂1ω̂2...ω̂nω̂n+1... ∈ Λ({1, 2, ...,m}). Then the set Ĉ is called a topological
self-similar set. The pair (Ĉ, {ϕ̆i}i∈{1,2,...,m}) is said to be a topological self-similar
system.

Taking as a prelude this definition, we make the following notation:

Definition 4.2: Consider an HR-type IMS (HR-IMS(P), (ϕ̆n)n∈{1,2,...,m}). A mapping
r̂ : Λ({{1, 2, ...,m}}) → A∗ is known as a self-similar section of HR-type IMS if r̂
assures the following conditions:

1 r̂ is continuous

2 r̂(i ω̂) ∈ ϕ̆i(r̂(ω̂)) ∀ i ∈ Y and every ω̂ ∈ Λ({{1, 2, ...,m}}).

From the subdivisions (ix) and (x) of the main result, we see that 3 is a self-similar
section of (HR-IMS(P), (ϕ̆n)n∈{1,2,...,m}). Further, suppose the continuous
contractions ϕ̆i in the P containing precisely one element (i.e., HR-IMS(P), is an
IFS), then the couple (A, {ϕ̆i}i∈{1,2,...,m}) is a topological self-similar system.

Remark 4.4: A generalisation of Nadler’s theorem in Hardy-Rogers space can be stated
as follows and it takes the value m = 1 in our main result:
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If (P, p) is a complete metric space, and for a mapping ϕ̆ : P → CLB(P) we can
see m ∈ [0, 1) so that HP(ϕ̆(r), ϕ̆(s)) ≤ ap(r, s) for each r, s ∈ P, b ∈ (a, 1), u0 ∈ P

and u1 ∈ ϕ̆(u0).
Then there is some sequence of elements (xn)n∈N∪{0} from P which is convergent

and its limit is denoted as x so that

1 x0 = u0; x1 = u1

2 xn+1 ∈ ϕ̆(xn)

3 p(xn+1, xn) ≤ bnp(x1, x0) ∀n ∈ N ∪ {0}

4 x ∈ ϕ̆(x).

5 Conclusions

Uneven physical and natural scenarios can be regularised by a mathematical potential
called fractal. One of the most common ways of generating fractals is the IFS.
Since a sufficient framework for classifying and describing fractals is IFS, several
mathematicians enlarged this theory to a more general case, known as IMS. As an
impact of this situation, we have defined the notion of HR-IMS and the corresponding
Hutchinson-Barnsley operator for the IMS. By proving the existence of a unique fixed
point of the HB operator, we assured the survival of the attractor of the HR-type IMS.
Moreover, several remarks are given based on the main result. The attractor of this
IMS is constructed in an unconventional method that is non-identical with the existing
procedures. Utilisation of this significant outcome conveys some crucial facts and one
of the particular consequences is Nadler’s result.
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