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Abstract: There are several nonlinear and stiff mathematical models in
fields of science and engineering that have always remained a challenge for
numerical analysts and applied mathematicians. Various numerical methods
are proposed to deal with stiff models; however, it requires the model to
have strong stability characteristics to handle the stiffness in the model. This
paper develops a new family of L-stable block methods with a relative
measure of stability for the solution of stiff differential equations with
different characteristics. First, the theoretical properties of the proposed block
method in terms of local truncation errors, absolute stability, consistency,
convergence, and order stars have been analysed and investigated. Then,

Copyright © 2022 Inderscience Enterprises Ltd.



198 S. Qureshi et al.

seven illustrative stiff differential models have been solved to measure the
proposed method’s performance, suitability, effectiveness, and efficiency.
Finally, the error distributions and the precision factors are computed in the
comparison of several existing methods having similar properties as that of
the proposed L-stable block method.

Keywords: stiff systems; A-stability; local error; order stars; implicit stiff
solver; efficiency curves.
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1 Introduction

As per the scientific survey, the need for numerical methods with strong stability
characteristics to deal with nonlinear, stiff, singular, and singularly perturbed models
is on the rise. Based on which the present study has been carried out to develop a
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new family of L-stable block numerical methods having consistency, accuracy, stability
(particularly, L-stability), and convergence. The new method is equally applicable to
systems of ODEs as demonstrated. Comparison with a family of Radau type methods
and some block ones having an order of convergence larger than one developed in the
manuscript shows the latter’s superiority when tested upon various differential models
chosen from several fields of studies. In addition, this manuscript expands on the prior
research works as given in Skwame et al. (2012) and Akinfenwa et al. (2018).

The initial value problems (IVPs) in ordinary differential equation (ODEs) of the
following form are the most frequently used problems in several fields of science and
engineering:

v′(x) = g(x, v(x)), v(x0) = v0,

v : I → Rn and g : I × Rn → Rn with I = [x0, XN ],
(1)

where v0 represents the value of v at x = x0 and g is a continuously differentiable
function that satisfies Lipschitz’s condition and thus the given problem confirms the
existence of unique solution as described in Henrici (1962).

Many scholars in the field of numerical analysis have been working on problems
of the type (1) because these problems are commonly used to represent several real-life
situations. There are various applications of equation (1) in dynamic systems, electrical
networks, logistic growth, trajectory of a particle, and many more (Kandasamy et al.,
2005; Awoyemi, 2001). Numerous problems in the fields of mathematics, engineering,
computer science, and the physical sciences, such as mechanics, neuroscience, planetary
chemistry, and environmental sciences have been solved using numerical integrators
and modern high-speed electronic computers. There are other models, such as the SIR
model and Prothero Robinson oscillatory problem, highly stiff oscillatory problems, and
other related problems may all be represented in the form of a scalar equation or a
first-order system, as in equation (1). It is usually accepted that many first-order ODEs
of the type (1) do not have accurate solutions; therefore, numerical approximations are
required. A large number of scholars have used various ways to provide numerical
answers to the problem in equation (1), particularly the well-known multistep and
Runge-Kutta methods. Among them are Lambert (1991), Hairer et al. (2008, 1993),
Butcher (2016), Gragg and Stetter (1964), Skwame et al. (2012), Akinfenwa et al.
(2018), Qureshi and Ramos (2018), Qureshi and Yusuf (2020) and Fadugba (2020) to
mention a few. The main disadvantage of these approaches is their high computational
cost, which has an effect on the overall performance of the methods. Researchers have
developed numerical methods suitable for a particular kind of ODE based on several
types of ODEs, including nonlinear, autonomous, non-autonomous, stiff, singular, and
singularly perturbed. A fully sixth-order implicit block backward differentiation formula
with two off-step points (BBDFO(6)), for the integration of first-order ODEs that
exhibit stiffness, was proposed by Nasarudin et al. (2020). An almost L-stable BDF-type
method for the numerical solution of stiff ODEs arising from the method of lines was
proposed by Ramos and Vigo-Aguiar (2007). Rufai and Ramos (2020) developed a
one-step hybrid block method for solving boundary value problems, which was used to
solve classical one-dimensional Bratu’s and Troesch’s problems. They also investigated
the convergence analysis of the new technique, and also considered some improving
strategies to get better performance of the method. An implicit two-step hybrid block
method based on collocation and interpolation techniques for the solution of linear
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and nonlinear third-order boundary value problems in ODEs was proposed by Ramos
and Rufai (2020). See et al. (2014) proposed a three-step block method of Adam’s
type to solve nonlinear second-order two-point boundary value problems of Dirichlet
type and Neumann type directly. They also extended the proposed method for the
solution of the system of second-order boundary value problems with the same or
different two boundary conditions. Abdulganiy et al. (2021) constructed a functionally
fitted method via interpolating function consisting both trigonometric and exponential
types to solve first-order differential systems whose solutions present an oscillatory
behaviour with better accuracy. A hybrid second-derivative three-step method of order
seven generated from a single continuous scheme via interpolation and collocation
procedures for solving first order stiff differential equations was derived and proposed
by Akinfenwa et al. (2020). A new family of block methods known as self-starting
second-derivative Simpson’s type (SDSM) of uniform order p = 2k + 2 for step number
k ≤ 6 to solve system of stiff ODEs was successfully developed by Awari et al.
(2020). Ajayi et al. (2019), Qureshi et al. (2021), Shokri et al. (2020) and Shokri et al.
(2020) presented a family of stiffly stable (A-stable, L-stable, P -stable and A(α)-stable
second-derivative block methods (SDBMs) capable of solving first-order stiff ODEs.
Singla et al. (2021) and Ramos et al. (2021) considered an adaptive step-size formulation
of an optimised block method of embedded-type procedure for directly solving general
second-order IVPs of ODEs numerically. Sunday et al. (2015) developed a two-step
hybrid block method for the solution of stiff and oscillatory first-order ODEs. They
derived the method using the Laguerre polynomial as a basis function via interpolation
and collocation techniques. Ramos (2017) presented a two-step block method of hybrid
type obtained from a continuous approximation derived via interpolation and collocation
at different points for the direct solution of general first-order initial-value problems in
ODEs. Other applications and numerical methods with new approaches can be found
in Aliev et al. (2020, 2021), Argyros and George (2021), Gao et al. (2021), Rao
and Kalyani (2021), Heydari (2020), Mostafa and El Hawsh (2020), Khalsaraei and
Shokri (2020), Ashyralyev et al. (2020), Achchab et al. (2020), Iskenderov et al. (2016),
Musaev (2021), Onyejekwe (2018), Kumar and Verma (2021), Jena et al. (2022) and
Bavi et al. (2022). According to Lambert (1991), Nasarudin et al. (2020) and Wanner
and Hairer (1996), the IVP in equation (1) is said to be stiff in nature if it contains
widely varying time scales, i.e., some components of the solution decay much more
rapidly than others; the step size is dictated by the stability requirements rather than
the accuracy requirements; and explicit methods do not work, or work only extremely
slowly.

The present paper derives a new family of L-stable block methods with relative
measure of stability for the solution of equation (1).

The rest of the paper is outlined as follows: Section 2 presents the mathematical
formulation. Section 3 captures the theoretical analysis. Section 4 compares the
numerical simulations of the proposed L-stable block method with several existing
methods designed to deal with the stiff differential models. Concluding remarks with
future plans are presented in Section 5.



A new family of L-stable block methods with relative measure 201

2 Mathematical formulation

The purpose of this section is to develop a second-derivative one-step block method
with L-stability for solving the problems of type (1). It may be noted that the reason to
take second-derivative is to basically obtain the L-stable block method. The property of
L-stability is considered to be a favourable property to solve stiff differential models.
We assume n = 1 in equation (1) to simplify the method’s derivation. At later stage, the
derived method will also be made applicable to solve stiff and non-stiff systems while
using the component-wise approach. The local approximate solution v(x) is initially
assumed in the form of a polynomial basis p(x) over a generic sub-interval [xn, xn+1],
where xn+1 = xn +∆x and ∆x is the step-size.

v(x) ≈ p(x) =
5∑

j=0

ϕjx
j , (2)

where the symbol ϕj ∈ R stands for real unknown parameters. Double differentiation of
equation (2) produces the following results:

v′(x) ≈ p′(x) =
5∑

j=1

jϕjx
j−1, (3)

v′′(x) ≈ p′′(x) =

5∑
j=2

j(j − 1)ϕjx
j−2. (4)

Consider two intra-step points, xn+r = xn + r∆x, xn+s = xn + s∆x with 0 < r <
s < 1, to compute the approximate solution of the IVP (1) at the point xn+1,
assuming that vn = v(xn). To start the procedure, consider the approximation in
equation (2) determined at xn, and its first-order derivative determined at the points
xn, xn+r, xn+s, xn+1. By so doing, we obtain the following linear system of six
equations in six real unknown parameters ϕj , j = 0, 1, . . . , 5:

1 xn x2
n x3

n x4
n x5

n

0 1 2xn 3x2
n 4x3

n 5x4
n

0 1 2xn+r 3x2
n+r 4x3

n+r 5x4
n+r

0 1 2xn+s 3x2
n+s 4x3

n+s 5x4
n+s

0 1 2xn+1 3x2
n+1 4x3

n+1 5x4
n+1

0 0 2 6xn+1 12x2
n+1 20x3

n+1




ϕ0

ϕ1

ϕ2

ϕ3

ϕ4

ϕ5

 =


vn
gn

gn+r

gn+s

gn+1

γn+1

 . (5)

Solving the above linear system gives values of the six unknown coefficients ϕj , j =
0, 1, . . . , 5 which are not shown here for brevity. Putting these values in equation (2)
while using the change of variable x = xn + t∆x, we reach the following:

p(xn + t∆x) = ϕ0gn +∆x
(
η0gn + ηrgn+r + ηsgn+s + η1gn+1

)
+∆x2(ζ1γn+1),

(6)
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where

ϕ0 = 1,

η0 =

(
3/5 t4 + (−3/4 r − 3/4 s− 3/2) t3 + ((s+ 2) r + 2 s+ 1) t2

+((−3 s− 3/2) r − 3/2 s) t+ 3 sr)∆t

3sr
,

ηr = −
∆x t2

(
15 st2 − 12 t3 − 40 st+ 30 t2 + 30 s− 20 t

)
60 (r − 1)

2
(r − s) r

,

ηs =
∆x t2(15 rt2 − 12 t3 − 40 rt+ 30 t2 + 30 r − 20 t)

60 (s− 1)2(r − s)s
,

η1 = −

∆xt2
(
t
(
5r2

(
4s2 − 3st+ 6(t− 2)

)
+r
(
−15s2t+ 6s

(
2t2 + 5t− 10

)
− 24t2 + 80

)
+30s2(t− 2) + s

(
80− 24t2

)
+ 12t(3t− 5)

)
−60rs

(
r
(
s− 3

2

)
− 3s

2 + 2
))

60(r − 1)2(s− 1)2
,

ζ1 =

∆x2t2
(
20 rst− 15 rt2 − 15 st2 + 12 t3

−30 sr + 20 rt+ 20 st− 15 t2
)

(60 s− 60) (r − 1)
.

(7)

To get the one-step block method, we evaluate p(xn + t∆x) at the collocation points
xn+r, xn+s, and xn+1, that is, we take x = r, s, 1. This results in the linear system
containing three equations as shown below:

vn+r =
∆x2r2

(
−3 r3 + 5 r2s+ 5 r2 − 10 sr

)
γn+1

(60 s− 60) (r − 1)

+

((
−3 r4 + 5 r3s+ 10 r3 − 20 r2s− 10 r2 + 30 sr

)
gn

60 s

−
r
(
−12 r3 + 15 r2s+ 30 r2 − 40 sr − 20 r + 30 s

)
gn+r

60 (r − 1)
2
(r − s)

+
r2
(
3 r3 − 10 r2 + 10 r

)
gn+s

60 (s− 1)
2
(r − s) s

−

r2
(
−3 r4s+ 5 r3s2 + 6 r4 + 6 r3s− 30 s2r2 − 24 r3

+30 r2s+ 30 rs2 + 20 r2 − 40 sr
)
gn+1

60 (s− 1)
2
(r − 1)

2

∆x+ vn,

(8)
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vn+s =
∆x2s2

(
5 rs2 − 3 s3 − 10 sr + 5 s2

)
γn+1

(60 s− 60) (r − 1)

+

((
5 rs3 − 3 s4 − 20 rs2 + 10 s3 + 30 sr − 10 s2

)
gn

60 r

−
s2
(
3 s3 − 10 s2 + 10 s

)
gn+r

60 (r − 1)
2
(r − s) r

+
s
(
15 rs2 − 12 s3 − 40 sr + 30 s2 + 30 r − 20 s

)
gn+s

60 (s− 1)
2
(r − s)

−

s2
(
5 r2s3 − 3 rs4 − 30 s2r2 + 6 rs3 + 6 s4 + 30 r2s

+30 rs2 − 24 s3 − 40 sr + 20 s2
)
gn+1

60 (s− 1)
2
(r − 1)

2

∆x+ vn,

(9)

vn+1 =
∆x2 (−10 rs+ 5 r + 5 s− 3) γn+1

(60 s− 60) (r − 1)
+

(
(20 rs− 5 r − 5 s+ 2) gn

60 rs

− (5 s− 2) gn+r

60 (r − 1)
2
(r − s) r

+
(5 r − 2) gn+s

60 (s− 1)
2
(r − s) s

−

(
−40 r2s2 + 75 r2s+ 75 rs2

−30 r2 − 138 rs− 30 s2 + 56 r + 56 s− 24
)
gn+1

60 (s− 1)
2
(r − 1)

2

∆x+ vn.

(10)

We have several choices for the two parameters over the block [0, 1] and for each choice,
there will be a new implicit method that can be considered a member of the entire family
of methods. We have arbitrarily chosen two values r =

1

5
and s =

2

3
and therefore

obtained one of the new members of the family as given below:

vn+r = −8∆x2γn+1

3,125

+

(
5,941 gn
75,000

+
163 gn+r

1,200
− 783 gn+s

25,000
+

2,441 gn+1

150,000

)
∆x+ vn,

vn+s =
∆x2γn+1

81
+

(
gn
27

+
125 gn+r

324
+

gn+s

3
− 29 gn+1

324

)
∆x+ vn,

vn+1 =

(
gn
24

+
125 gn+r

336
+

27 gn+s

56
+

5 gn+1

48

)
∆x+ vn.

(11)

Using the extended Butcher Tableau, the newly formulated strategy as given in
equation (11) can be presented in the form of coefficients and considered to be a new
implicit block RK type method as follows:

c A Â
bT b̂T
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The structure given above is rewritten as follows:

0 0 0 0 0 0 0 0 0

1

5

5,941

75,000

163

1,200

−783

25,000

2,441

150,000
0 0 0 − 8

3,125
2

3

1

27

125

324

1

3

−29

324
0 0 0 − 1

81

1
1

24

125

336

27

56

5

48
0 0 0 0

1

24

125

336

27

56

5

48
0 0 0 0

3 Theoretical analysis

This section is designed to present abstract characteristics of the proposed block method
given in equation (11). These characteristics include analysis of the local truncation
errors, consistency, zero-stability, linear stability, convergence, and relative measure of
stability (order stars).

3.1 Local truncation error and consistency

The one-step optimised block method given in equation (11) can be rewritten using the
matrix notation as follows:

I0Vn+1 = C1Vn +∆x(DGn+1 + B0Gn +∆xB1Ḡn+1), (12)

where I0, B0, C1, D, and B1 stand for 3 × 3 matrices as given below

I0 =

1 0 0
0 1 0
0 0 1

 , C1 =

0 0 1
0 0 1
0 0 1

 , B0 =


0 0

5,941

75,000

0 0
1

27

0 0
1

24

 , (13)

B1 =


0 0

−8

3,125

0 0
1

81

0 0 0

 , D =



163

1,200

−783

25,000

2441

150,000
125

324

1

3

−29

324
125

336

27

56

5

48

 , (14)
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and

Vn = (vn−1+r, vn−1+s, vn)
T ,

Vn+1 = (vn+r, vn+s, vn+1)
T ,

Gn = (gn+r, gn+s, gn)
T ,

Gn+1 = (gn+r, gn+s, gn+1)
T ,

Ḡn+1 = (γn+r, γn+s, γn+1)
T .

(15)

We assume an associated linear operator χ for each of the formulas computed in
equation (11) as given below:

χ[J(x);∆x] =
∑

k=0,r,s,1

[γ̄kJ(xn + k∆x)−∆xη̄kJ
′(xn + k∆x)

−∆x2η̄kJ
′′(xn + k∆x)

]
,

(16)

for i = r, s, 1, where v(x) represents an arbitrary analytic function in the neighbourhood
of xn, and Gi corresponds to the right-hand sides of the each formula given in
equation (11) after the approximate values have been replaced with the exact values.

Definition 3.1: The difference operator in equation (16) and the corresponding associated
formulas of equation (11) are said to have order r if χ0 = χ1 = ··· = χr = 0, χr+1 ̸= 0,
where χr is the coefficient of the power ∆xi in the Taylor series expansion of
equation (16) as mentioned in Ramos and Rufai (2018).

After expanding the terms in equation (16) in Taylor series about the point xn in powers
of ∆x while assuming that v(x) is sufficiently differentiable, we obtain the order (r =
5) and the local truncation error of the main formula as follows

χ(v(xn+1);∆x) = − (∆x)6

108,000

d6

dx6
n

v(xn) +O(∆x7). (17)

The local truncation error determined above shows fifth-order accuracy of the proposed
block method (11), hence the method is considered to be consistent (see Rufai et al.,
2016).

3.2 Zero-stability and convergence

Zero stability is a kind of stability issue concerned with the behaviour of the difference
system in equation (12) when ∆x → 0. For ∆x → 0, the method in equation (12) gives
the system of equations

vn+r = vn, vn+s = vn, vn+1 = vn, (18)

which may be rewritten using the matrix formalism as I0Vn − C1Vn+1 = 0, with
Vn, Vn−1 and C1 as before, and I0 shows the identity matrix of the third-order.
The proposed block method is said to be zero stable when the roots λj of the
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first characteristic polynomial Ω(λ) given by Ω(λ) = |I0λ− C1| satisfy |λj | ≤ 1,
and for those roots with |λj | = 1 the corresponding multiplicity does not exceed
1 [see the work of Lambert (1973)]. Since Ω(λ) = λ2(λ− 1), the proposed block
method in equation (12) is zero stable. As discussed by Henrici (1962), the
convergence of the proposed block method given in equation (11) can be claimed since
zero-stability+consistency = convergence.

3.3 Linear stability

As we discussed earlier, zero-stability is a concept concerning the behaviour of the
numerical method for the step-size ∆x > 0. In order to determine whether a numerical
method will produce reasonable results with a given value of ∆x > 0, we need a notion
of stability that is different from zero-stability. In most numerical methods intended
for solving first-order problems, the linear stability properties are usually analysed by
considering the linear equation given by the Dahlquist’s test equation v′ = σv(x) for
Re(σ) < 0. Zero-stability depends just on the method but linear stability, in general for
finite ∆x > 0, depends on the problem also. We will determine the region in which the
numerical method reproduces the behaviour of the true solutions for the test equation.
After applying the method in equation (11) to the Dahlquist’s test equation, we obtain
the following recurrence equation:

Vn+1 = M(z)Vn, z = σ∆x, (19)

where σ is a complex parameter and M(z) is known as the stability matrix of the
numerical method, which can be expressed as:

M(z) = (I0 − zD − z2B1)−1(C1 + zB0), (20)

with B0,B1, C1, and D as defined before. The stability matrix M(z) in equation (20)
has the eigenvalues(

0, 0,
4 z3 + 63 z2 + 384 z + 900

z4 − 17 z3 + 129 z2 − 516 z + 900

)
.

We notice whether that the stability of the approximate solution depends on the
eigenvalues computed above, and the stability features of the proposed block method
will be characterised by the spectral radius, ρ(M(z)). The absolute stability area S
is given as S = {z ∈ C : |ρ(M(z)) < 1|}. The proposed method’s stability region is
shown in Figure 1, where the entire left-half complex plane is covered. This proves
method’s A-stability. Furthermore, the proposed method is L-stable, since ρ(M(z)) →
0 for z → ∞. It is worthwhile to mention that the L-stable methods are found to be
promising candidates for solving stiff

3.4 Relative measure of stability

The relative measure of stability also known as the order stars are a powerful modern
tool for numerical methods. In a consistent framework, they provide critical information
such as order and stability conditions for the underlying numerical method. For the
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proposed L-stable block method (11), we had ρ(M(z)) given by a rational approximate.
This type of approximate has further attractive qualities. An order star can be used
to investigate the properties of a relative approximation in the complex plane. It is
important to remember that the study of approximate characteristics frequently arises
from our interest in a numerical method.

Figure 1 The plot of the absolute stability region for the L-stable block method given in
equation (11) (see online version for colours)

Let P and Q be possibly complex-valued polynomials of degree m and n, respectively,
and denote the quotient R(z) = P/Q by Rm

n
. Certainly, a zero of Q is a pole of the

rational function R(z). Let F(z) be a complex function. An order star ϱ(z) defines a
partition in the complex plane, namely the triplet {0+,00,0−}, where

0+ = {z : ϱ(z) > ξ},
00 = {z : ϱ(z) = ξ},
0− = {z : ϱ(z) < ξ}.

(21)

Fundamentally, there are two types of order stars, ϱ(z), that are usually considered in
the literature as follows:

|R(z)/F(z)| with ξ = 1, and Re(R(z)−F(z)) with ξ = 0. (22)

Some of the properties related to the order stars are stated below:

Property 3.2: (Order) R(z) is an order q approximation to exp(z) if z is connected
by q + 1 parts of 0+ and divided by q + 1 parts of 0+. With an asymptotic angle of
( π
q+1 ), all parts approach z.
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Bounded, related parts of0+ are commonly referred to as fingers, whereas similar
sections of 0− are referred to as dual fingers.

Property 3.3: (Enumeration) The number of R poles (zeros) in each bounded linked
part of 0+ (0−), multiplied by their multiplicity, equals the number of interpolation
points (i.e., such that R(z) = F(z)).

Property 3.4: (Unbounded)There are two unbounded associated parts, one of(0+) and
the other of (0−).

It is common practice to differentiate 0+ from 0− by shading the former. By doing
so, it becomes clear that the region of growth of relative stability is shown for the set
denoted by 0+ while, the region of contractivity lies under the set 0−. As a result,
the boundary between the relative stability region and the region of contractivity is
determined with 00. A set of the following three regions is obtained can be considered
by redefining the order star of ρ(M(z)). Since our major concern is the first type of
order stars, therefore we obtain the following sets:

0+ = {z ∈ C : |ρ(M(z))| > | exp(z)|} = {z ∈ C : | exp(−z)ρ(M(z))| > 1},
00 = {z ∈ C : |ρ(M(z))| = | exp(z)|} = {z ∈ C : | exp(−z)ρ(M(z))| = 1},
0− = {z ∈ C : |ρ(M(z))| < | exp(z)|} = {z ∈ C : | exp(−z)ρ(M(z))| < 1}.

The graphs of above sets yield some star-like (fingers) different from the one we are
familiar with (regions of absolute stability). In Figure 2, order stars are shown for the
proposed L-stable block method (11) where the shaded regions are for 0+. It may also
be noted that the intersection of 0+ with the imaginary axis is a null set including
no poles in the region where Re(z) < 0. It represents A-acceptable phenomena for the
rational stability function ρ(M(z)) or the proposed L-stable block method (11) with
z = σ∆x.

Figure 2 The plot of the order stars and the absolute stability region for the L-stable block
method given in equation (11), obtained as a relative comparison with 1
(see online version for colours)

4 Numerical simulations

This section discusses the numerical simulations of the proposed L-stable block method
given in equation (11) on the basis of accuracy via error distributions (absolute
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maximum global error = max1≤n≤N ||v(xn)− vn||, absolute error computed at the
last mesh point over the chosen integration interval = ||v(xN )− vN ||, norm =√∑

1≤n≤N (v(xn)− vn)2, and root mean square error =
√

1
N

∑
1≤n≤N (v(xn)− vn)2,

precision factor (scd = − log10 ||v(xN )− vN ||∞), and time-efficiency (CPU time
measured in seconds). Several numerical experiments are chosen in the form of
stiff differential models and subsequently solved with the proposed method including
following methods for the comparative analysis:

• L-stable: Proposed fifth-order block method given in equation (11).

• MHIRK: Multi-derivative hybrid implicit Runge-Kutta method appeared in
Akinfenwa et al. (2018).

• RadauI, RadauIIA and IRK: Fully-implicit RK type fifth-order methods appeared
in Butcher (2016). The Radau family is frequently used for solving stiff
differential systems.

• BSHM1 and BSHM2: L-stable block hybrid Simpson’s methods appeared in
Skwame et al. (2012).

• Laguerre: Laguerre polynomial hybrid block method of at least fifth-order
convergence appeared in Sunday et al. (2015).

Problem 1: A highly stiff IVP taken from Yu (2004) is given as follows:

v′(x) = −ε[v(x)− exp(−x)]− exp(−x), v(0) = 0, (23)

whose exact solution is: v(x) = exp(−x)− exp(−εx), where ε = 103.

Table 1 The error distributions and the precision factor (scd) for Problem 1 with number of
steps = 102

MaxErr LastErr Norm RMSE scd

L-stable 9.209× 10−4 1.122× 10−20 9.210× 10−4 9.164× 10−5 3.036

RadauIIA 1.869× 10−2 2.064× 10−13 1.870× 10−2 1.860× 10−3 1.728

MHIRK 2.837× 10−3 2.179× 10−20 2.838× 10−3 2.823× 10−4 2.547

BSHM1 9.055× 10−2 6.434× 10−18 9.675× 10−2 9.533× 10−3 1.043

BSHM2 2.702× 10−1 3.973× 10−14 2.875× 10−1 2.833× 10−2 0.568

IRK 2.515× 10−1 3.928× 10−10 2.608× 10−1 2.595× 10−2 0.599

RadauI 8.517× 10−2 4.317× 10−13 8.539× 10−2 8.497× 10−3 1.070

Laguerre 4.574× 10−2 2.333× 10−18 4.756× 10−2 4.732× 10−3 1.340

The stiff IVP (23) is simulated over the integration interval [0, 0.5] while taking different
number of steps in powers of 10. The numerical results are shown in Tables 1–3
wherein computations for the accuracy and the precision factor are carried out with the
proposed and several other methods. It can be seen that the proposed L-stable method
performs better in both directions, namely, smallest errors and highest precision factors
are achieved with the method given in equation (11). The fifth-order accuracy is also
observed from the behaviour of last absolute error since the powers of 10 decrease by
magnitude 5 with every 1 order of magnitude increase in the powers of 10 in number
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of steps. The methods IRK and RadauI diverge for this stiff IVP as shown by the
computation of error distributions but maximum absolute global error whereas BSHM2
method does not converge for n = 100. Moreover, the efficiency curve given in Figure 3
reveals time-efficiency of the proposed L-stable method wherein the method RadauIIA
is observed to be the most expensive one.

Table 2 The error distributions and the precision factor (scd) for Problem 1 with number of
steps = 103

MaxErr LastErr Norm RMSE scd

L-stable 9.813× 10−8 1.629× 10−25 1.882× 10−7 5.950× 10−9 7.008

RadauIIA 1.482× 10−6 3.748× 10−18 2.844× 10−6 8.989× 10−8 5.829

MHIRK 2.626× 10−7 4.475× 10−25 5.037× 10−7 1.592× 10−8 6.581

BSHM1 5.667× 10−5 1.164× 10−23 6.362× 10−5 2.009× 10−6 4.247

BSHM2 4.122× 10−5 8.793× 10−20 5.921× 10−5 1.870× 10−6 4.385

IRK 1.805× 10−6 1.834× 10−15 3.463× 10−6 1.095× 10−7 5.744

RadauI 1.759× 10−6 4.141× 10−18 3.375× 10−6 1.067× 10−7 5.755

Laguerre 1.194× 10−6 2.200× 10−24 1.929× 10−6 6.096× 10−8 5.923

Table 3 The error distributions and the precision factor (scd) for Problem 1 with number of
steps = 104

MaxErr LastErr Norm RMSE scd

L-stable 1.057× 10−12 1.748× 10−30 6.423× 10−12 6.423× 10−14 11.98

RadauIIA 1.583× 10−11 3.931× 10−23 9.623× 10−11 9.623× 10−13 10.80

MHIRK 2.657× 10−12 4.406× 10−30 1.615× 10−11 1.615× 10−13 11.58

BSHM1 3.117× 10−10 4.300× 10−28 1.729× 10−9 1.729× 10−11 9.506

BSHM2 1.678× 10−10 7.159× 10−25 9.082× 10−10 9.081× 10−12 9.775

IRK 1.433× 10−11 1.667× 10−20 8.708× 10−11 8.707× 10−13 10.84

RadauI 1.611× 10−11 3.971× 10−23 9.790× 10−11 9.789× 10−13 10.79

Laguerre 2.436× 10−12 2.196× 10−30 6.537× 10−12 6.537× 10−14 11.61

Figure 3 Comparison of the L-stable block method given in equation (11) with several other
methods via efficiency curves of the absolute maximum global error versus CPU
time (sec) for Problem 1 while matching the absolute maximum global error to the
tolerance 10−i under each method, where i = 3, 6, 8 (see online version for colours)
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Problem 2: Consider another highly stiff IVP taken from Ramos and Rufai (2018):

v′(x) = −103v(x) + exp(−2x), v(0) = 0, (24)

whose exact solution is: v(x) = 1
998 (exp(−2x)− exp(−103x)).

The above stiff IVP is simulated over the integration interval [0, 5] while taking
different number of steps in powers of 10. The numerical results are shown in
Tables 4–6 wherein computations for the accuracy and the precision factor are carried
out with the proposed and several other methods. It can be seen that the proposed
L-stable method performs better in both directions, namely, smallest errors and highest
precision factors are achieved with the method given in equation (11). The fifth-order
accuracy is also observed from the behaviour of last absolute error since the powers of
10 decrease by magnitude 5 with every 1 order of magnitude increase in the powers
of 10 in number of steps. Moreover, the efficiency curve given in Figure 4 reveals
time-efficiency of the proposed L-stable method wherein the method RadauIIA is, once
again, observed to be the most expensive one.

Table 4 The error distributions and the precision factor (scd) for Problem 2 with number of
steps = 102

MaxErr LastErr Norm RMSE scd

L-stable 4.144× 10−5 9.657× 10−21 4.147× 10−5 4.127× 10−6 4.383

RadauIIA 4.267× 10−5 1.043× 10−15 4.271× 10−5 4.249× 10−6 4.370

MHIRK 1.858× 10−5 5.445× 10−21 1.858× 10−5 1.849× 10−6 4.731

BSHM1 1.915× 10−4 1.162× 10−17 2.591× 10−4 2.553× 10−5 3.718

BSHM2 1.526× 104 1.526× 104 1.964× 104 1.935× 103 −4.184

IRK 3.033× 10260 3.033× 10260 3.033× 10260 3.018× 10259 −260.50

RadauI 3.580× 10104 3.580× 10104 3.593× 10104 3.575× 10103 −104.60

Laguerre 7.182× 10−4 5.877× 10−11 1.049× 10−3 1.044× 10−4 3.144

Table 5 The error distributions and the precision factor (scd) for Problem 2 with number of
steps = 103

MaxErr LastErr Norm RMSE scd

L-stable 9.228× 10−7 5.396× 10−26 9.228× 10−7 2.917× 10−8 6.035

RadauIIA 1.872× 10−5 2.482× 10−19 1.873× 10−5 5.921× 10−7 4.728

MHIRK 2.843× 10−6 1.048× 10−25 2.843× 10−6 8.987× 10−8 5.546

BSHM1 9.073× 10−5 3.078× 10−23 9.694× 10−5 3.061× 10−6 4.042

BSHM2 2.707× 10−4 9.567× 10−20 2.881× 10−4 9.097× 10−6 3.567

IRK 2.520× 10−4 0.× 1079 0.× 1079 0.× 1077 3.599

RadauI 8.534× 10−5 0.× 10136 0.× 10136 0.× 10135 4.069

Laguerre 4.583× 10−5 1.125× 10−23 4.765× 10−5 1.506× 10−6 4.339
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Table 6 The error distributions and the precision factor (scd) for Problem 2 with number of
steps = 104

MaxErr LastErr Norm RMSE scd

L-stable 9.832× 10−11 7.826× 10−31 1.886× 10−10 1.886× 10−12 10.01

RadauIIA 1.485× 10−9 4.500× 10−24 2.850× 10−9 2.850× 10−11 8.828

MHIRK 2.631× 10−10 2.150× 10−30 5.047× 10−10 5.047× 10−12 9.580

BSHM1 5.678× 10−8 5.589× 10−29 6.374× 10−8 6.373× 10−10 7.246

BSHM2 4.131× 10−8 2.110× 10−25 5.933× 10−8 5.932× 10−10 7.384

IRK 1.809× 10−9 0.× 1095 0.× 1096 0.× 1094 8.743

RadauI 1.763× 10−9 0.× 10178 0.× 10333 0.× 10331 8.754

Laguerre 1.197× 10−9 1.057× 10−29 1.932× 10−9 1.932× 10−11 8.922

Figure 4 Comparison of the L-stable block method given in equation (11) with several other
methods via efficiency curves of the absolute maximum global error versus CPU
time (sec) for Problem 2 while matching the absolute maximum global error to the
tolerance 10−i under each method, where i = 5, 7, 8 (see online version for colours)

Next, we consider stiff systems of two- and three-dimensions, and carry out the
numerical simulations for the computations of different types of errors including infinity
norm, root mean square error, absolute average error, and the precision factor denoted
by scd. The number of steps chosen for every stiff system is chosen to be n = 2i, where
i = 6, 8, 10. It is observed from Tables 7–21 that the proposed L-stable block method
outperforms every other method under consideration in terms of not only accuracy but
in the precision as well. The three fifth-order methods denoted by BSHM2, IRK and
RadauI diverge in most of the cases thereby indicate the weak performance until a large
number of steps are used. The L-stable block method performs better than not only
fifth-order methods but also produces smaller errors than the Laguerre method which is
at least fifth-order. The efficiency curve in Figure 5 for the two-dimensional stiff system
given in equation (25) is plotted to show computational time-efficiency of the proposed
L-stable block method while the same advantage has been observed for remaining stiff
systems whose efficiency curves are not provided herein for the sake of brevity.
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Problem 3: Consider the following two-dimensional stiff system taken from Nasarudin
et al. (2020):

v′1(x) = 9v1(x) + 24v2(x) + 5 cos (x)− 1

3
sin (x), v1(0) =

4

3
,

v′2(x) = −24v1(x)− 51v2(x)− 9 cos (x) +
1

3
sin (t), v2(0) =

2

3
,

(25)

where t ∈ [0, 10]. The exact solution of the stiff system (25) with stiffness ratio of 13
is as follows:

v1(x) = 2 exp (−3x)− exp (−39x) +
1

3
cos (x),

v2(x) = − exp (−3x) + 2 exp (−39x)− 1

3
cos (x).

(26)

Table 7 The error distributions and the precision factor (scd) for Problem 3 with number of
steps = 26

Norm∞ RMSE Mean scd

L-stable 5.276× 10−11 4.079× 10−11 3.805× 10−11 2.274

RadauIIA 7.116× 10−8 5.905× 10−8 5.743× 10−8 1.558

MHIRK 1.510× 10−10 1.203× 10−10 1.147× 10−10 2.159

BSHM1 3.320× 10−9 2.362× 10−9 1.845× 10−9 0.656

BSHM2 2.002× 10−7 1.719× 10−7 1.690× 10−7 0.118

IRK 2.269× 10−6 1.793× 10−6 1.701× 10−6 −0.066

RadauI 8.434× 10−8 1.221× 10−7 1.175× 10−7 0.483

Laguerre 1.072× 10−9 1.061× 10−9 1.061× 10−9 0.823

Table 8 The error distributions and the precision factor (scd) for Problem 3 with number of
steps = 28

Norm∞ RMSE Mean scd

L-stable 5.788× 10−14 4.641× 10−14 4.441× 10−14 4.436

RadauIIA 1.225× 10−10 9.956× 10−11 9.596× 10−11 3.489

MHIRK 1.491× 10−13 1.204× 10−13 1.156× 10−13 3.911

BSHM1 1.173× 10−11 9.173× 10−12 8.637× 10−12 1.891

BSHM2 1.210× 10−10 1.057× 10−10 1.043× 10−10 1.770

IRK 1.744× 10−9 1.379× 10−9 1.308× 10−9 2.825

RadauI 9.007× 10−11 1.318× 10−10 1.267× 10−10 2.965

Laguerre 2.456× 10−13 2.440× 10−13 2.440× 10−13 2.965
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Table 9 The error distributions and the precision factor (scd) for Problem 3 with number of
steps = 210

Norm∞ RMSE Mean scd

L-stable 5.767× 10−17 4.653× 10−17 4.468× 10−17 7.293

RadauIIA 1.359× 10−13 1.102× 10−13 1.060× 10−13 6.417

MHIRK 1.452× 10−16 1.173× 10−16 1.127× 10−16 6.873

BSHM1 1.441× 10−14 1.149× 10−14 1.096× 10−14 4.545

BSHM2 6.279× 10−14 5.967× 10−14 5.959× 10−14 4.735

IRK 1.430× 10−12 1.131× 10−12 1.073× 10−12 6.065

RadauI 8.136× 10−14 1.184× 10−13 1.139× 10−13 6.060

Laguerre 5.948× 10−17 5.887× 10−17 5.887× 10−17 6.337

Figure 5 Comparison of the L-stable block method given in equation (11) with several other
methods via efficiency curves of the absolute maximum global error versus CPU
time (sec) for Problem 3 while matching the absolute maximum global error to the
tolerance 10−i under each method, where i = 8, 9, 12 (see online version
for colours)

Problem 4: Consider the following oscillatory stiff problem used in physics as the
torsion spring oscillator (Rufai and Ramos, 2020):

v′1(x) = 998v1(x) + 1,998v2(x),

v′2(x) = −999v1(x)− 1,999v2(x),

v1(0) = 1, v2(0) = 2, t ∈ [0, 5].

(27)

Analytical solution is: v1(x) = −5 exp(−103x) + 6 exp(−x), v2(x) = 5 exp(−103x)
−3 exp(−x).

Problem 5: The sinusoidal stiff system taken from Akinfenwa et al. (2020) is given
below:

v′1(x) = −2v1(x) + v2(x) + 2 sin(x),
v′2(x) = 998v1(x)− 999v2(x) + 999 cos(x)− 999 sin(x),
v1(0) = 2, v2(0) = 3, t ∈ [0, 2].

(28)
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Analytical solution is: v1(x) = 2 exp(−x) + sin(x), v2(x) = 2 exp(−x) + cos(x).

Table 10 The error distributions and the precision factor (scd) for Problem 4 with number of
steps = 26

Norm∞ RMSE Mean scd

L-stable 5.385× 10−12 4.257× 10−12 4.039× 10−12 26.240

RadauIIA 8.064× 10−11 6.375× 10−11 6.048× 10−11 23.530

MHIRK 1.359× 10−11 1.074× 10−11 1.019× 10−11 25.310

BSHM1 1.124× 10−9 8.885× 10−10 8.429× 10−10 20.89

BSHM2 1.142× 106 1.142× 106 1.142× 106 −13.950

IRK 1.368× 10199 1.368× 10199 1.368× 10199 −458.5

RadauI 1.943× 1085 1.943× 1085 1.943× 1085 −196.4

Laguerre 5.436× 10−3 5.436× 10−3 5.436× 10−3 5.215

Table 11 The error distributions and the precision factor (scd) for Problem 4 with number of
steps = 28

Norm∞ RMSE Mean scd

L-stable 5.304× 10−15 4.194× 10−15 3.978× 10−15 33.160

RadauIIA 7.953× 10−14 6.287× 10−14 5.965× 10−14 30.450

MHIRK 1.329× 10−14 1.051× 10−14 9.969× 10−15 32.240

BSHM1 1.344× 10−12 1.062× 10−12 1.008× 10−12 27.620

BSHM2 7.092× 106 7.092× 106 7.092× 106 −15.77

IRK 5.073× 10397 5.073× 10397 5.073× 10397 −915.8

RadauI 0.× 10162 0.× 10162 0.× 10162 1

Laguerre 2.227× 10−15 1.760× 10−15 1.670× 10−15 34.030

Table 12 The error distributions and the precision factor (scd) for Problem 4 with number of
steps = 210

Norm∞ RMSE Mean scd

L-stable 5.191× 10−18 4.104× 10−18 3.893× 10−18 0.409

RadauIIA 7.786× 10−17 6.155× 10−17 5.839× 10−17 0.373

MHIRK 1.299× 10−17 1.027× 10−17 9.739× 10−18 0.391

BSHM1 1.379× 10−15 1.091× 10−15 1.035× 10−15 0.345

BSHM2 7.071× 10−16 5.590× 10−16 5.303× 10−16 0.3517

IRK 0.× 10268 0.× 10268 0.× 10268 1

RadauI 0.× 10384 0.× 10384 0.× 10384 1

Laguerre 5.436× 10−19 4.297× 10−19 4.077× 10−19 0.423
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Table 13 The error distributions and the precision factor (scd) for Problem 5 with number of
steps = 26

Norm∞ RMSE Mean scd

L-stable 5.267× 10−14 5.241× 10−14 5.241× 10−14 12.850

RadauIIA 3.938× 10−10 2.785× 10−10 2.005× 10−10 11.130

MHIRK 1.320× 10−13 1.319× 10−13 1.319× 10−13 12.450

BSHM1 1.538× 10−11 1.516× 10−11 1.516× 10−11 10.390

BSHM2 1.404× 10−6 9.929× 10−7 7.028× 10−7 5.853

IRK 2.191× 10128 1.549× 10128 1.097× 10128 −12.83

RadauI 7.531× 1037 5.315× 1040 3.762× 1040 −40.88

Laguerre 2.275× 10−13 1.669× 10−13 1.453× 10−13 12.510

Table 14 The error distributions and the precision factor (scd) for Problem 5 with number of
steps = 28

Norm∞ RMSE Mean scd

L-stable 5.130× 10−17 5.106× 10−17 5.106× 10−17 15.860

RadauIIA 2.859× 10−12 2.021× 10−12 1.434× 10−12 14.020

MHIRK 1.274× 10−16 1.273× 10−16 1.273× 10−16 15.460

BSHM1 1.417× 10−14 1.407× 10−14 1.407× 10−14 13.420

BSHM2 5.256× 10−13 3.736× 10−13 2.897× 10−13 11.900

IRK 3.248× 1042 2.297× 1042 1.626× 1042 −42.510

RadauI 0.× 102 0.× 104 0.× 102 1

Laguerre 5.891× 10−17 4.305× 10−17 3.715× 10−17 16.070

Table 15 The error distributions and the precision factor (scd) for Problem 5 with number of
steps = 210

Norm∞ RMSE Mean scd

L-stable 4.961× 10−20 4.953× 10−20 4.953× 10−20 18.870

RadauIIA 6.220× 10−15 4.398× 10−15 3.116× 10−15 16.890

MHIRK 1.241× 10−19 1.237× 10−19 1.237× 10−19 18.470

BSHM1 1.351× 10−17 1.348× 10−17 1.348× 10−17 16.440

BSHM2 2.067× 10−16 1.507× 10−16 1.294× 10−16 15.360

IRK 0.× 10−7 0.× 10−7 0.× 10−10 11.310

RadauI 0.× 1020 0.× 1022 0.× 1020 2

Laguerre 1.365× 10−20 1.001× 10−20 8.704× 10−21 19.660

Problem 6: Consider the following highly stiff three-dimensional linear system
mentioned in Sahi et al. (2012):

v′1(x) = −21v1(x) + 19v2(x)− 20v3(x),

v′2(x) = 19v1(x)− 21v2(x) + 20v3(x),

v′3(x) = 40v1(x)− 40v2(x) + 40v3(x),

v1(0) = 1, v2(0) = 0, v3(0) = −1, t ∈ [0, 1].

(29)
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The exact solution is available as:

v1(x) =
1

2

(
exp(−2x) + exp(−40x)

(
cos(40x) + sin(40x)

))
,

v2(x) =
1

2

(
exp(−2x)− exp(−40x)

(
cos(40x) + sin(40x)

))
,

v3(x) =
1

2

(
2 exp(−40x)

(
sin(40x)− cos(40x)

))
.

Table 16 The error distributions and the precision factor (scd) for Problem 6 with number of
steps = 26

Norm∞ RMSE Mean scd

L-stable 3.718× 10−14 3.035× 10−14 2.478× 10−14 5.515

RadauIIA 5.572× 10−13 4.550× 10−13 3.715× 10−13 4.348

MHIRK 9.328× 10−14 7.616× 10−14 6.219× 10−14 5.091

BSHM1 9.229× 10−12 7.535× 10−12 6.153× 10−12 2.813

BSHM2 5.396× 10−12 4.406× 10−12 3.597× 10−12 2.790

IRK 4.979× 10−13 4.065× 10−13 3.319× 10−13 4.196

RadauI 5.632× 10−13 4.599× 10−13 3.755× 10−13 4.246

Laguerre 2.501× 10−14 2.042× 10−14 1.668× 10−14 4.217

Table 17 The error distributions and the precision factor (scd) for Problem 6 with number of
steps = 28

Norm∞ RMSE Mean scd

L-stable 3.643× 10−17 2.974× 10−17 2.429× 10−17 8.463

RadauIIA 5.463× 10−16 4.461× 10−16 3.642× 10−16 7.288

MHIRK 9.116× 10−17 7.443× 10−17 6.077× 10−17 8.055

BSHM1 9.633× 10−15 7.865× 10−15 6.422× 10−15 5.894

BSHM2 5.012× 10−15 4.092× 10−15 3.341× 10−15 6.117

IRK 4.805× 10−16 3.924× 10−16 3.204× 10−16 7.295

RadauI 5.478× 10−16 4.473× 10−16 3.652× 10−16 7.261

Laguerre 6.106× 10−18 4.985× 10−18 4.070× 10−18 7.734

Table 18 The error distributions and the precision factor (scd) for Problem 6 with number of
steps = 210

Norm∞ RMSE Mean scd

L-stable 3.561× 10−20 2.907× 10−20 2.374× 10−20 11.460

RadauIIA 5.341× 10−19 4.361× 10−19 3.560× 10−19 10.290

MHIRK 8.903× 10−20 7.270× 10−20 5.936× 10−20 11.060

BSHM1 9.564× 10−18 7.809× 10−18 6.376× 10−18 9.000

BSHM2 4.830× 10−18 3.943× 10−18 3.220× 10−18 9.270

IRK 4.679× 10−19 3.820× 10−19 3.119× 10−19 10.330

RadauI 5.344× 10−19 4.363× 10−19 3.563× 10−19 10.280

Laguerre 1.491× 10−21 1.217× 10−21 9.937× 10−22 11.310
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Table 19 The error distributions and the precision factor (scd) for Problem 7 with number of
steps = 26

Norm∞ RMSE Mean scd

L-stable 7.435× 10−14 4.293× 10−14 2.478× 10−14 1.129

RadauIIA 1.114× 10−12 6.434× 10−13 3.715× 10−13 0.945

MHIRK 1.866× 10−13 1.077× 10−13 6.219× 10−14 1.581

BSHM1 1.846× 10−11 1.066× 10−11 6.153× 10−12 0.448

BSHM2 9.767× 103 5.639× 103 3.257× 103 −3.990

IRK 1.721× 10149 9.937× 10148 5.737× 10148 −14.92

RadauI 3.820× 1016 3.293× 1057 1.901× 1057 −57.76

Laguerre 6.811× 10−7 3.932× 10−7 2.270× 10−7 0.005

Table 20 The error distributions and the precision factor (scd) for Problem 7 with number of
steps = 28

Norm∞ RMSE Mean scd

L-stable 7.286× 10−17 4.206× 10−17 2.429× 10−17 1.922

RadauIIA 1.093× 10−15 6.308× 10−16 3.642× 10−16 1.229

MHIRK 1.823× 10−16 1.053× 10−16 6.077× 10−17 2.462

BSHM1 1.927× 10−14 1.112× 10−14 6.422× 10−15 0.678

BSHM2 1.002× 10−14 5.826× 10−15 3.730× 10−15 0.079

IRK 9.870× 10126 5.699× 10126 3.290× 10126 −12.70

RadauI 0.× 1012 0.× 1022 0.× 1012 0

Laguerre 1.221× 10−17 7.050× 10−18 4.070× 10−18 0.701

Table 21 The error distributions and the precision factor (scd) for Problem 7 with number of
steps = 210

Norm∞ RMSE Mean scd

L-stable 7.121× 10−20 4.111× 10−20 2.374× 10−20 4.099

RadauIIA 1.068× 10−18 6.167× 10−19 3.560× 10−19 2.711

MHIRK 1.781× 10−19 1.028× 10−19 5.936× 10−20 3.432

BSHM1 1.913× 10−17 1.104× 10−17 6.376× 10−18 1.616

BSHM2 9.660× 10−18 5.577× 10−18 3.220× 10−18 1.385

IRK 0.× 107 0.× 107 0.× 103 0

RadauI 0.× 1020 0.× 1045 0.× 1020 0

Laguerre 2.981× 10−21 1.721× 10−21 9.937× 10−22 2.438

Problem 7: Finally, we consider another three-dimensional linear stiff system discussed
in Wu (1998):

v′1(x) = −0.1v1(x)− 49.9v2(x), v′2(x) = 50v2,

v′3(x) = 70v2(x) + 120v3(x),

v1(0) = 2, v2(0) = 1, v3(0) = 2, x ∈ [0, 20].

(30)

The exact solution is available as: v1(x) = exp(−50x) + exp(−0.1x), v2(x) =
exp(−50x), v3(x) = exp(−50x) + exp(−120x).
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5 Concluding remarks with future plans

In this paper, a new family of block methods with robust L-stability characteristics
for the numerical solution of IVPs of stiff differential equations with different nature
has been constructed efficiently. At the same time, the main computations are carried
out with one of the family members for a suitable choice of the two intra-step points.
From the analysis of the properties, the proposed method was consistent, linearly stable,
zero-stable, and thus convergent. Furthermore, the relative measure of stability (order
stars) was carried out to identify the poles. Highly stiff differential equations of different
characteristics were solved via the proposed and other existing methods, while the
former performed far better in accuracy and efficiency. The methodology can further
be applied to nonlinear, highly stiff delay differential models emanated from real-life
situations. Finally, the approaches will be devised in the future to obtain an optimal
member of the proposed L-stable family.
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Appendix

Algorithm 1 Pseudo-code for the proposed one-step L-stable block method

Data: x0, XN (integration interval), N (number of steps), v00, v10, v20,
(initial values), g, dg

dx

Result: sol (discrete approximate solution of the IVP (1))
Let n = 0, ∆x = XN−x0

N
1
Let xn = x0, vn = v00, v

′
n = v10, v

′′
n = v202

Let sol = {(xn, vn)}.3
Solve equation (11) to obtain vn+k, v

′
n+k, v

′′
n+k, where k = 0, r, s, 14

Let sol = sol ∪{(xn+k, vn+k)}k=0,r,s,15
Let xn = xn +∆x, vn = vn+1, v

′
n = v′n+1, v

′′
n = v′′n+16

Let n = n+ 17
if n = N then8

go to 139
else10

go to 4;11

End12


