Robust message authentication in the context of quantum key distribution
by Dillibabu Shanmugam; Jothi Rangasamy
International Journal of Information and Computer Security (IJICS), Vol. 18, No. 3/4, 2022

Abstract: Universal hashing-based message authentication code (MAC) is used as the de facto method to achieve information-theoretically secure authentication in quantum key distribution. We present a critical look at the most widely used type, namely Wegman-Carter MAC based on polynomial hashing and analyse its robustness against physical attacks exploiting side information. In particular, we mount a classical DPA attack on the hash part of the Wegman-Carter MAC which leads to a possible intercept-and-resend attack on the BB84-like QKD protocols. We illustrate this case with polynomial-evaluation MACs as their variants are used in commercial QKD systems. We show that our attack methodology is much simpler compared to that of Belaid et al. at ASIACRYPT 2014. Finally, we present an algebraic countermeasure so that the resulting MAC is not susceptible to the identified attack.

Online publication date: Mon, 05-Sep-2022

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Information and Computer Security (IJICS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com