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Abstract: As a major component of rotating machinery, rolling bearings are 
prone to failure because they usually work in harsh environment and are 
subjected to heavy cyclic loads. Meanwhile, the fault characteristics of bearings 
are easily submerged by noise and difficult to extract. To solve this problem, a 
fault diagnosis method based on variational mode decomposition (VMD)  
and degree of cyclostationarity (DCS) demodulation is proposed. First, the 
sparsity-based reconstruction factor can distinguish the sensitivity of VMD 
modes, and it is used to reconstruct all VMD modes to denoise the signal. 
Secondly, taking the advantage that DCS demodulation analysis can obtain 
more useful information, it is applied to the reconstructed signal to extract the 
fault characteristic frequencies. Finally, simulation studies show the 
effectiveness of combining VMD and DCS in fault diagnosis, and the 
advantages of the proposed method are verified through experiments with 
rolling bearing inner race, outer race and compound faults. 

Keywords: sparsity; DCS demodulation; rolling bearing; fault diagnosis; 
variational mode decomposition; VMD. 
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1 Introduction 

As a support component, rolling bearings are widely used in various rotating machinery 
and equipment to ensure the proper rotation of the rotor (Laha, 2017). However, because 
rolling bearing are often subjected to heavy alternating loads (Dhamande and Chaudhari, 
2018), the parts constituting the rolling element, such as inner ring, outer ring and rolling 
elements, are prone to pitting, peeling and other faults (An et al., 2016). Such faults of 
rolling bearing will reduce the performance of mechanical equipment, resulting in 
unnecessary downtime and maintenance cost (Li et al., 2017a). And the running state of 
the rolling bearing directly affects the proper operation of a machine (Li et al., 2021a). 
Monitoring its operating status, especially diagnosing its fault in time, is of great 
significance to the operation and maintenance of mechanical equipment (Yang et al., 
2018). 

Common rolling bearing fault diagnosis methods mainly include vibration analysis 
(Ding et al., 2018), acoustic signal analysis (Wang et al., 2021) and infrared analysis. 
Vibration analysis method is an effective method for condition monitoring and fault 
diagnosis of rotating machinery due to its characteristics of easy acquisition of vibration 
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signal, high signal-to-noise ratio (SNR), cost-effective vibration sensor and wide 
application areas (Khadersab and Shivakumar, 2018). 

Rolling bearing fault signal is nonlinear and non-stationary, its characteristics are 
often weak and easy to be submerged by interference components (Li et al., 2021b). 
These factors make it difficult to extract the features of rolling bearing. In recent years, 
based on vibration analysis, many scholars use time-frequency analysis methods to deal 
with fault signals. These methods include short-time Fourier transform (STFT) (Liu et al., 
2020), wavelet transform (WT) (Zhang et al., 2021a), Wigner-Ville distribution (WVD), 
empirical mode decomposition (EMD) (Zheng and Pan, 2020) and so on. They have been 
successfully applied to fault signal analysis, but they also have limitations (Yan et al., 
2018). For example, STFT cannot meet good time and frequency resolution at the same 
time. The decomposition effect of WT is closely related to the selection of wavelet basis 
(Hu et al., 2021). WVD has cross interference. Although EMD is adaptive, it has modal 
aliasing and endpoint effect (Li et al., 2017b). 

To solve the above problems, variational mode decomposition (VMD), a new 
adaptive time-frequency analysis method, was proposed by Dragomiretskiy and Zosso 
(2014). VMD determines the central frequency and bandwidth of the modal component 
by iteratively searching the optimal solution of the variational model, decomposes the 
non-stationary signal into several intrinsic mode functions (IMFs), whose frequency 
bands are closely around the central frequency band. The essence of VMD is multiple 
adaptive Wiener filter groups, therefore, it has a solid theoretical basis and effectively 
avoids the modal aliasing and endpoint effect of EMD. The noise interference of VMD in 
the decomposition process is much less than that of EMD, and the influence of sampling 
effect can be suppressed by controlling the convergence condition. Due to its good 
performance, VMD has been widely used in the field of rotating machinery fault 
diagnosis in recent years. Wang et al. (2015b) compared and analysed the performance of 
VMD, EWT, EEMD and EMD in extracting features caused by rotor friction. Zhang  
et al. (2018) used grasshopper optimisation algorithm to improve VMD and solved the 
problem that its input parameters are difficult to determine. At present, most VMD 
algorithms use some indexes to select the optimal IMF for reconstruction, so as to reduce 
the influence of Gaussian noises. 

For example, Dibaj et al. (2020) proposed the envelope spectrum weighted kurtosis 
index to select the sensitive mode. Xu et al. (2019) used the average kurtosis to select 
some IMFs whose kurtosis value is greater than the average kurtosis value to reconstruct 
the new signal. Yan et al. (2016) selected the IMFs containing the main fault feature 
information through the single failure feature amplitude energy ratio, and used it for 
subsequent analysis. Zhou et al. (2021) used the whale optimisation algorithm to 
determine the input parameters and reconstructed the modes greater than the average 
index. However, the information contained in other modal components is ignored when 
selecting the optimal mode reconstruction, which makes the reconstructed signal lack 
some detailed information contained in the original signal. Chen et al. (2009) used 
sparsity as an index to select effective components of EEMD, and explained the 
relationship between signal sparsity and energy. In view of the advantage of sparsity, this 
paper constructs a modal reconstruction coefficient by sparsity to measure the amount of 
useful information contained in different modal components, and all modes are 
reconstructed based on the reconstruction coefficient. 
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Because of the periodicity of the motion, the statistics of the early fault signals of 
rolling bearings are periodic time-varying and show cyclostationarity (Buzzoni et al., 
2018). Cyclostationarity analysis is a powerful tool to deal with second-order 
cyclostationarity signal (Antoni, 2018). Wang et al. (2015b) used the cyclic spectrum 
slice energy to diagnose the bearing fault, and pointed out that it can make up the defect 
of envelope demodulation analysis. Antoni et al. (2017) proposed a new fast calculation 
method of spectral correlation based on STFT, which improved the calculation efficiency 
of spectral correlation. Kankar et al. (2013) fused cyclic autocorrelation with WT, and 
used support vector machine and artificial neural network to detect local defects of 
rolling bearing. Because cyclic autocorrelation is a two-dimensional function, it is 
relatively difficult and complex to extract useful information from it, so degree of 
cyclostationarity (DCS) is used to replace the cyclic autocorrelation function (CAF) for 
demodulation analysis. DCS represents the minimum distance between the 
autocorrelation function of non-stationary process and stationary process. It is a 
univariate function whose value range is between 0 and 1 with simple form (Antoni, 
2009), and can fully express all the information of cyclic autocorrelation in the cyclic 
frequency domain. The modulation frequency can be extracted from the low frequency 
band of the DCS for the modulation signal, so as to obtain useful fault information and 
achieve the purpose of fault diagnosis. Chi et al. (2019) used DCS to diagnose the pseudo 
faults in rotor bearing system. Therefore, DCS demodulation is used to reveal the fault 
information contained in VMD reconstruction signal in this study. 

To sum up, in order to solve the problem of heavy background noises and difficult 
extraction of fault features in rolling bearing fault diagnosis, this paper proposes a fault 
diagnosis method based on the combination of VMD reconstruction and DCS 
demodulation, which reduces noise interference through VMD reconstruction strategy 
and obtains the modulation information contained in fault signal by DCS demodulation, 
so as to extract fault features. There are two main innovations in this paper. Firstly, to 
avoid the loss of fault information caused by ignoring some IMFs in VMD, a weight 
coefficient calculation method based on sparsity is proposed to reconstruct all IMFs, 
which can highlight the sensitive IMFs and reduce interferences from other IMFs. 
Secondly, DCS is proposed to extract the fault characteristic frequency in the 
reconstructed signal by VMD while further suppressing the interference components. Its 
effectiveness is validated with experimental data by comparing with conventional 
envelope analysis and Teager energy operator (TEO). The rest of the article is organised 
as follows: Section 2 investigates theoretical background, Section 3 introduces the 
process of the proposed method, Section 4 and Section 5 verify the proposed method by 
simulation and experiment and the conclusions are drawn in Section 6. 

2 Theoretical background 

2.1 Variational mode decomposition 

VMD (Jin et al., 2021) can adaptively decompose a complex signal into a series of IMFs, 
whose centre frequencies and bandwidths are determined by iteratively searching the 
optimal solution of the variational mode. In the frequency domain, IMFs are sparse, 
which can separate the intrinsic mode functions effectively. 
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The basic idea of VMD algorithm is to construct and solve the variational problem, 
decompose the complex signal into k IMFs. The constructed variational model can be 
described as follows: 
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where t∂  and (*) are partial derivative and convolution operations, uk and ωk represent 
the kth IMF and its centre frequency, ||·||2 is L2 norm. To solve the above variational 
problem, the constrained variational problem is transformed into an unconstrained 
variational one by introducing the quadratic penalty factor and Lagrange operator. The 
augmented Lagrange function is: 
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where α is the penalty factor, λ represents Lagrange operator; <·> means convolution. 
The alternating direction method of multipliers (ADMM) algorithm is used to solve the 
saddle point of the augmented Lagrange function. In this process, 1ˆn

ku +  and 1n
kω +  are 

updated by equation (3) and equation (4) respectively, so as to obtain the optimal solution 
of the variational problem. 
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2.2 Reconstruction denoising strategy 

Most of the early faults of rolling bearing are localised pitting defects on the outer ring, 
inner ring and rolling elements. In the signal from faulty rolling bearing, the local pitting 
often appears as a periodic pulse, which makes the fault signal sparse. Sparsity (Miao  
et al., 2020) is a statistic that characterises the sparsity of time-domain signals. For a 
signal, the expression of sparsity is given in equation (5). 
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When there are fewer Gaussian noise components and more impact components in signal, 
its power is concentrated in the pulse, and the amplitude has obvious multiple bulges. 
This signal shows strong sparsity. On the contrary, its power is dispersed into the 
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interference components and the amplitude distribution of the signal is more uniform, so 
the sparsity is weaker. Therefore, this paper uses sparsity to construct the weight 
coefficients of each mode. 

( ) ( ) ( )
k

c k s k s k=   (6) 

ˆ( ) ( ) ( )kk
x n c k u n=  (7) 

The signal is decomposed by VMD to get k IMFs, and the weight coefficient of IMF is 
defined as equation (6), where s(k) represents the sparsity of the kth IMF. Based on the 
sparsity of each IMF, the reconstruction coefficient is multiplied by each mode, and all 
processed modes are superimposed. The final expression of the weighted reconstructed 
noise reduction signal is shown in equation (7). 

2.3 Degree of cyclostationarity 

As a special case of non-stationary signal, the statistical characteristics of cyclostationary 
signals change periodically. According to different statistical characteristics of periodic 
cycle, they can be divided into first-order, second-order and high-order cyclostationary 
signals. And the second-order cyclostationary signal is a non-stationary signal whose 
autocorrelation function changes periodically. 

The early fault signal of rolling bearing shows amplitude modulation characteristics. 
Its autocorrelation function is periodically time-varying and belongs to second-order 
cyclostationary signal. For it, equation (8) of time-varying autocorrelation function is 
obtained by the statistical average of the signal’s time-delay quadratic transformation. 

*( , )
2 2x
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    
 (8) 

where E is mathematical expectation; (*) represents a conjugate operation. Since the 
time-varying autocorrelation function is a periodic function, it can be expanded by 
Fourier series as in equation (9). 

2( , ) ( ) j π t
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α
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where α = n / T is the cycle frequency, which is related to the fault characteristic 
frequency. The cyclic spectral density (CSD) (Cheng et al., 2021) ( )xR τα  can be obtained 
by Fourier transform (FT) of CAF as follows: 
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The CSD is a double spectrum diagram composed of cyclic frequency and spectrum 
frequency. In order to analyse the fault types of rolling bearings by using the cyclic 
frequency, the CSD is sliced along the direction perpendicular to the cycle frequency axis 
at each cycle frequency. And the DCS is defined as: 
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3 Proposed algorithm 

The fault signal of rolling bearing has the characteristics of low SNR, and its fault 
characteristics are easy to be submerged by complex interference components. To solve 
them, a fault diagnosis method using VMD reconstruction and DCS demodulation is 
proposed. The flowchart of the proposed algorithm is shown in Figure 1 and the 
operation details of this method are explained as follows: 

Step 1 The non-stationary vibration signal is decomposed into a series of IMFs by 
VMD. 

Step 2 The sparsity of each mode is calculated by equation (5), and the VMD 
reconstructed signal is obtained by equation (7). 

Step 3 Based on the CSD, the reconstructed signal is demodulated by DCS shown in 
equation (11) to obtain more fault related information. 

Step 4 Calculate the FFT of the signal and obtain the characteristic frequency of the 
fault signal. 

Step 5 The characteristic frequency is compared with the theoretical fault frequency of 
rolling bearing to judge whether the rolling bearing has fault. 

Figure 1 Flowchart of the method for extracting fault features of rolling bearing base on VMD 
reconstruction and DCS demodulation (see online version for colours) 
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4 Simulation verification 

When rolling bearing has a local pitting fault, there will be an impact on other parts in 
contact with the local pitting. With the rotation of the rolling bearing, the periodic pulse 
will be generated in the bearing fault signal, and there will be small sliding between the 
rolling element and the raceway. Therefore, a simulation signal from faulty rolling 
bearing is expressed as follows (Zhang and Shi, 2010): 

( )

0( ) ( ) ( )

( ) sin 2                 

i
i
βt

n

x t A h t iT τ n t

h t e πf t−

 = − − +

 =


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where A0 represents the amplitude and is set to 1, T denotes the interval of fault pulse, set 
to 1/70s, τi is the random slip caused by the ith impact, it is related to T, β, represents the 
attenuation coefficient, equal to 800, fs stands the sampling period, set to 10,000 Hz, t is 
the sampling time and is set to 1s, fc denotes the bearing failure frequency, equal to  
70 Hz, fn stands the resonant frequency, set to 2,000 Hz. Considering that the rolling 
bearing works in harsh environment, Gaussian noise is added to the simulation signal and 
the SNR of the resulting signal is –7 dB. 

Figure 2 Rolling bearing simulation signal, (a) raw signal (b) raw signal spectrum (c) noisy 
signal (d) noisy signal spectrum (see online version for colours) 

 

Figure 2(a) is a raw rolling bearing fault signal and Figure 2(c) shows the resulting signal 
after adding Gaussian white noise to it. In Figure 2(c), the regular periodic fault pulses 
are submerged by noises and there are many random shocks. The spectrum of the raw 
signal is shown in Figure 2(b). Figure 2(d) shows the spectrum with noise signal, in 
which the frequency components related to fault are submerged and are difficult to 
identify. It can be seen that the traditional signal analysis methods are invalid, so the 
diagnosis strategy proposed in this paper is applied to the simulated signal. 
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Firstly, VMD is applied to the simulation signal and modal reconstruction is carried 
out to suppress the noise. In this process, the number of modal components and penalty 
factor are closely related to its decomposition effect. The penalty factor of VMD 
determines the bandwidth of the modal component. When the penalty factor increases, 
the bandwidth of the mode decreases, on the contrary, the mode has a larger bandwidth. 
Zhang et al. (2021b) suggested that the penalty factor of VMD is 2,000, so the penalty 
factor in this paper is set as the same. If there are too few modal components, the 
decomposition is not complete. On the contrary, it will be over decomposed. Both of 
these situations will have an adverse impact on the decomposition effect, and they should 
be avoided as much as possible. In this paper, the central frequency method is used to 
determine the appropriate number of modes. 

Figure 3 The results of the simulation signal decomposed by VMD (time-domain waveforms of 
IMF1-IMF7) (see online version for colours) 

 

In this method, the number of IMFs is preset as 2, 3, …, 8, and the signal is decomposed 
to observe the centre frequency of adjacent IMF. Table 1 show the centre frequency 
difference of adjacent modes when the number of modes k takes different values. It can 
be found that when k is 6, the centre frequency between modal components 5 and 6 is too 
large, which is easy to cause incomplete decomposition. And if k is taken as 8, the centre 
frequency difference between modes 3 and 4 is 350 Hz, so over decomposition is easy to 
occur. Only when k is 7, the centre frequency of each mode is evenly distributed, so the 
VMD decomposition effect is the best. The number of modes is selected as 7 by using the 
centre frequency method and the decomposition results of VMD are shown in Figure 3. 
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Considering the amount of useful information contained in each IMF is different, all 
IMFs decomposed are reconstructed based on the modal reconstruction coefficient 
composed of signal sparsity. The expression of reconstructed signal is shown in  
equation (7). Figures 4(a) and 4(b) show the reconstruction coefficient of IMFs and the 
results of VMD reconstructed signal. Comparing the spectrum with noise signal, it can be 
found that some fault related frequencies in Figure 4(b), such as 3fc, 4fc, 5fc and 6fc, have 
large amplitudes. 
Table 1 The difference between the centre frequencies of adjacent modes when the number of 

modes k takes different values 

k u12 u23 u34 u45 u56 u67 u78 
2 1,183       
3 1,183 1,296      
4 1,032 420 2,036     
5 852 530 1,296 1,039    
6 753 735 559 840 1,004   
7 753 735 559 737 810 578  
8 538 833 350 559 737 810 578 

Figure 4 Reconstruction coefficient of each mode and spectrum of VMD reconstructed signal, 
(a) reconstruction coefficients (b) reconstruction signal spectrum (see online version  
for colours) 
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To illustrate the advantages of VMD reconstruction in noise reduction, two advanced 
signal denoising strategies are also used to process the simulation signal. Figure 5 is the 
root mean squared error (RMSE) and SNR indicators of the simulated signal after VMD 
reconstruction, EMD and WT threshold denoising. EMD selects the first two IMFs with 
the largest kurtosis for reconstruction, and the number of decomposition layers for 
wavelet threshold denoising is 3. When the denoising signal has a smaller RMSE and a 
larger SNR, the noise reduction effect is more significant. Figure 5 clearly shows that the 
proposed method has the smallest RMSE and the largest SNR, indicating that it has 
superior noise reduction performance. 

To evaluate the denoising effect of the proposed method, noises with different levels 
are added to the raw signal and the resulting signals are processed by the proposed 
method respectively. Figure 6 shows that although the SNR of signal is very low, a 
higher SNR can be obtained after denoising by VMD. For example, for the simulated 
signal with SNR of –21 dB, the SNR after denoising can reach –3 dB. 

Figure 5 RMSE and SNR of simulated signals processed by three different methods (VMD, 
EMD, and WT) (see online version for colours) 

 

Figure 6 The SNRs of denoised signals obtained by VMD reconstruction strategy for simulated 
signals with different noises (see online version for colours) 

 

Note that the fault characteristics in the spectrum of VMD reconstructed signal are 
actually not obvious, which is easy to lead to misjudgment. Therefore, DCS 
demodulation is applied to the VMD denoising signal to extract the frequency 
characteristics of fault signal more clearly and ensure the accuracy of fault diagnosis. The 
CSD of the noise signal is calculated according to equation (10), and then the noise signal 
is demodulated by equation (11). The demodulation result of the reconstructed signal is 
shown in Figure 7, which can clearly display the fault characteristic frequency and its 
multiplication (2fc, 3fc, …, 6fc). Through the DCS demodulation results, it can be judged 
that the bearing has outer ring fault, which is consistent with the fact. 
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Figure 7 The result of VMD reconstruction and DCS demodulation are applied to the simulation 
signal (see online version for colours) 

 

Figure 8 Test bench and fault parts, (a) rolling bearing test bench (b) rolling bearing outer ring 
fault (c) rolling bearing inner ring fault (see online version for colours) 

 
(a) 

(b) (c)

 
(b)     (c) 

5 Experimental study 

To further evaluate that the effectiveness of the proposed method for rolling bearing fault 
diagnosis, an experimental study is carried out. The rolling bearing test bench mainly 
includes an AC motor, a helical gearbox, a planetary gearbox and a DC generator, as 
shown in Figure 8(a). A vibration sensor is installed on the bearing seat of the drive end 
of the AC motor, and another one is mounted on the gearbox housing. The motor speed is 
set to 1,500 rpm. The length of bearing data collected in the test is 1,920,000, and the 
sampling frequency is 96 kHz. In this experiment, the types of bearing faults include 
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motor bearing outer ring fault and planetary gear bearing inner ring fault. These two 
faults are manufactured artificially and picture of the faulty bearings are shown in  
Figures 8(b) and 8(c). The fault characteristic frequencies of motor bearing (6206ZZ) and 
planetary gear bearing (6008) are calculated and presented in Table 2. 
Table 2 The fault characteristic frequencies of motor bearing and planetary gear bearing used 

in the experiment 

Bearing 
model 

Inner ring  
fault (Hz) 

Outer ring  
fault (Hz) Roller fault (Hz) Cage fault (Hz) 

6206ZZ 130.99 89.33 62.42 9.93 
6008 65.17 49.25 33.60 4.10 

5.1 Rolling bearing with outer ring fault 

The time domain waveform and frequency spectrum of the rolling bearing with outer ring 
fault are shown in Figure 9. Due to interference of the background noise from the inside 
and outside of the equipment, the regular fault pulse cannot be found in the waveform of 
Figure 9(a), and the information related to the outer ring fault cannot be found in the 
spectrum of Figure 9(b). For diagnosing the fault of rolling bearing, the proposed 
diagnosis method based on VMD reconstruction and DCS demodulation is used to 
process the signal. 

Figure 9 Test signal from rolling bearing with outer ring fault, (a) time domain waveform  
(b) frequency spectrum (see online version for colours) 
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The experimental signal is firstly denoised by VMD. The number of modes is determined 
as 6 by the centre frequency method. In order to suppress noises, the reconstruction 
coefficient is calculated by equation (6) based on sparsity and the result is shown in 
Figure 10(a). The spectrum of the reconstructed signal is shown in Figure 10(b). 
Compared with Figure 9(b), the noise component in the figure is greatly reduced, 
especially the noise at low frequency is effectively suppressed, and partial harmonics of 
fault frequency, such as 3f0, 4f0, 5f0 and 6f0 are shown. However, the outer ring fault 
frequency and its second harmonic cannot be identified. 

Envelope demodulation and TEO demodulation are two common demodulation 
methods. Figures 11(a), 11(b) and 11(c) show the results of applying envelope 
demodulation, TEO demodulation and DCS demodulation method on the reconstructed 
signal, respectively. Although the fault frequency and its harmonics can be identified in 
Figure 11(a), there exist some interference components. In Figure 11(b), only the first 
five harmonics of the fault frequency can be observed, and some unknown interference 
components can also be observed. In the meantime, Figure 11(c), which uses the 
proposed method, can clearly observe the spectral lines at the outer ring fault frequency 
and its harmonics. fo and 2fo are successfully recovered, and the interference components 
in the spectrum are effectively removed. According to the fault characteristic frequencies 
in Table 2, it shows that the motor bearing used in the experiment has outer ring fault, 
which is consistent with the fact. In summary, DCS demodulation can obtain more fault 
related information than the other two demodulation methods. Moreover, due to the white 
noise does not have cyclostationarity, the DCS demodulation based on cyclostationarity 
analysis can also effectively suppress the noise interference component. 

Figure 10 (a) Reconstruction coefficient of each mode and spectrum of the VMD reconstructed 
signal (b) Spectrum of reconstructed signal (see online version for colours) 
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5.2 Rolling bearing with inner ring fault 

To further validate the effectiveness of the proposed method for bearing fault diagnosis, it 
is applied to diagnose the signal from a planetary gear bearing with inner ring fault. 
Figure 12(a) shows its waveform, in which it can be seen that the pulses related to the 
inner ring fault are flooded by background noises and random shocks. Because the 
planetary gear bearing has complicated frequency components, the spectrum analysis 
shown in Figure 12(b) appears powerless and cannot extract the fault frequency 
component. Therefore, the method proposed in this paper is used to process the inner ring 
fault signal for feature extraction. 

Figure 11 The reconstructed signal is demodulated by different methods, (a) envelope 
demodulation (b) TEO demodulation (c) DCS demodulation (see online version  
for colours) 
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Figure 12 Vibration signal from an inner ring fault rolling bearing, (a) time domain waveform  
(b) frequency spectrum (see online version for colours) 

 
(a) 

 
(b) 

Figure 13 Reconstruction coefficient of each mode and spectrum of VMD reconstructed signal, 
(a) reconstruction coefficients (b) reconstructed signal spectrum (see online version  
for colours) 
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First of all, VMD reconstruction is applied on the signal to reduce noise. Figure 13(a) is 
the sparsity of the IMF after the fault signal is decomposed by VMD and Figure 13(b) 
shows the spectrum of VMD modal reconstruction based on the sparsity. It can be seen 
that the noise frequency is effectively suppressed, but fault characteristics still cannot be 
extracted yet. Next, DCS demodulation is applied to the reconstructed signal and the 
result is shown in Figure 14. In this figure, it can be found that the fault frequency and its 
harmonics (2fi, 3fi, …, 6fi) have been successfully identified. The experiment of inner 
ring fault of planetary gear bearing further shows the advantages of combining VMD 
reconstruction and DCS demodulation. 

Figure 14 The results of VMD reconstruction and DCS demodulation are applied to rolling 
bearing inner ring fault signal (see online version for colours) 

 

Figure 15 Vibration signal from a compound fault rolling bearing, (a) time domain waveform  
(b) frequency spectrum (see online version for colours) 
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5.3 Rolling bearing with compound fault 

In practice, a localised fault is likely to cause the evolvement of another type of fault, and 
hence multiple fault types may coexist on a rolling bearing. Such compound fault brings 
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further challenges to the fault diagnosis. To further validate the effectiveness of the 
proposed method, it is applied to an accelerated life test dataset of rolling bearing from 
Paderborn University Bearing Data Center (Lessmeier et al., 2016). The 6,203 rolling 
bearing which contain a compound fault on inner and outer rings is used for analysis. The 
fault characteristic frequency of outer ring and inner ring (fo and fi) are 76.76 Hz and 
123.24 Hz, respectively. Waveform and spectrum of the compound fault signal are shown 
in Figure 15. As can be seen, there are many pulses in the waveform and it is difficult to 
judge the fault type. The frequency components in the spectrum are complex and hence 
the fault type cannot be determined directly from the spectrum. Therefore, VMD-DCS 
method is used to analyse the signal. 

Figure 16 The results of VMD reconstruction and DCS demodulation are applied to rolling 
bearing compound fault signal (see online version for colours) 

 
(a) 

 
(b) 

Figure 16(a) shows the spectrum of compound fault signal reconstructed by VMD, which 
are rather complicated. The frequency components related to inner and outer ring faults, 
for example 2fo~6fo, 2fi, 5fi and 6fi, can be identified. In order to judge the type of the 
bearing fault more clearly, DCS demodulation is applied to the reconstructed signal, as 
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shown in Figure 16(b). The spectrum contains multiple frequency components but it is 
much easier to distinguish them in comparison with that in Figure 16(a). The significant 
frequency components include fault characteristic frequency and its harmonic 
components (1fo~5fo, 1fi~6fi) of bearing inner and outer ring, modulation components  
(fi – fr, fi + 2fr) and rotating frequency fr and its harmonics. This confirms the existence of 
compound fault on the inner ring and the outer ring of the bearing. The compound fault 
experiment again shows the superiority of the proposed method in suppressing 
background noises and extracting bearing fault related components. 

6 Conclusions 

Due to influence of background noise, the vibration signal acquired from rolling bearing 
can have low SNR, making it difficult to extract fault features. To address this problem, a 
diagnosis method combining VMD reconstruction and DCS demodulation is proposed in 
this paper, and the main conclusions are summarised as follows. 

1 Sparsity can well measure the amount of fault information of the modes decomposed 
by VMD. Based on the reconstruction factor consisting of sparsity, reconstructed 
signal containing less background noise can be obtained. In the simulation study, the 
advantage of VMD reconstruction in suppressing interference components is shown 
compared with EMD denoising and WT threshold noise reduction. 

2 By performing DCS demodulation on the VMD reconstructed signal, the rolling 
bearing fault characteristic frequencies can be clearly and accurately identified. It is 
proved that the demodulation capability of DCS is more powerful than envelope 
demodulation and TEO demodulation in that it can demodulate more information 
related to rolling bearing fault. 

3 The effectiveness of the proposed method is demonstrated by evaluating it on 
simulation signals, and the advantages of combining VMD and DCS in fault 
diagnosis are verified by three experiments with planetary gear inner ring fault, 
motor bearing outer ring fault and rolling bearing compound fault. 
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