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Abstracts: The performance of data-driven algorithms in tool condition 
monitoring often depends on the combinations of different factors such as  
data quality, input dimensions, and model architecture. Several performance 
improvement techniques such as data denoising, feature selection, and 
regularisation techniques are known to enhance prediction accuracy. Moreover, 
selecting model architecture and tuning hyperparameters also significantly 
impact the prediction performance. Although the prediction accuracy of a  
data-driven method can be improved using these techniques, their importance is 
rarely discussed for tool condition monitoring. In this paper, the importance of 
various performance improvement techniques is extensively analysed by 
applying them to a CNC milling machine dataset for tool wear prediction.  
The investigation results and performance measurement metrics showed data 
denoising techniques, feature reduction techniques, and regularisation methods 
improved prediction accuracy up to around 55%. The selection of techniques 
for improving the accuracy depends on the nature of a dataset and applied 
algorithms. 
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1 Introduction 

A tool failure may occur at any time during machining. Tool condition monitoring is 
necessary to predict tool failure, improve product quality, reduce the unscheduled 
shutdown of a machine, and avoid damage to a machining centre. One of the most 
common types of tool failures is tool flank wear, which affects the surface quality of a 
workpiece (Dhanasekaran et al., 2010). Failures due to flank wear can be monitored by 
using a wide range of condition monitoring sensors. To determine an optimal tool 
changing time, optimisation methods (Su and Wang, 2014) or data-driven prediction 
analysis (Mosallam et al., 2016; Wu et al., 2018; Dey and Yodo, 2021) can be applied. 

Prognostics and health management (PHM) is an approach in condition monitoring 
through non-destructive assessment. A general PHM consists of several steps, such as 
sensor data collection, data processing, diagnostics for condition assessment, prognostics, 
and decision support (Das et al., 2011; Xu and Xu, 2011). In machining processes, PHM 
is widely applied to estimate tool wear as well as the remaining useful life (RUL) of a 
cutting tool (Cai et al., 2020; Wu et al., 2018). Generally, PHM methods can be 
categorised into three types: model-based method, data-driven methods, and hybrid 
methods (Peng et al., 2010). 

The model-based method uses the physical phenomena of cutting tools to develop a 
mathematical prediction model. A model-based method can predict tool wear accurately 
if the physical phenomena of a system are modelled precisely. Therefore, an in-depth 
understanding of the physical behaviour of a system is essential (Li et al., 2018). In data-
driven methods, different learning algorithms can be used to develop a mathematical 
model from historical sensor data to predict the cutting tool’s condition (Li et al., 2018). 
The development of a precise mathematical model depends on the characteristics of the 
datasets. A hybrid method combines the model-based method and data-driven method 
and aims to get advantages of both the above-described methods. Due to the current 
advancements in computing capacity, the data-driven approaches have several advantages 
over the model-based methods (Baraldi et al., 2013; Khumprom and Yodo, 2019). 

Many researchers have investigated various machine learning and deep learning 
algorithms for tool wear and RUL prediction. Aghazadeh et al. (2018) used a convolution 
neural network (CNN) for tool wear prediction of a milling machine with a hybrid feature 
extraction method. A support vector regression (SVR) model was approached by 
Benkedjouh et al. (2015) for tool wear and RUL prediction from seven sensors data of a 
milling machine. Gokulachandran and Mohandas (2015) compared the performance of 
the neuro-fuzzy logic technique and SVR for the RUL prediction of cutting tools and 
showed that the performance of the neuro-fuzzy logic technique is better compared to 
SVR. Li et al. (2017) applied v-SVR for tool condition monitoring of a turning operation. 
In the research, fourteen (14) time-domain statistical features were extracted from force  
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signals. Drouillet et al. (2016) and Mikołajczyk et al. (2018) implemented ANN for RUL 
estimation of end milling operation and turning operation, respectively. D’Addona et al. 
(2017) combined artificial neural networks (ANN) with deoxyribonucleic acid (DNA)-
based computing for tool wear estimation of a turning tool. Wu et al. (2016) proposed a 
random forest algorithm for tool wear prediction from dry milling data. An experimental 
study in the dry milling process showed that the random forest algorithm could predict 
tool wear with high accuracy. 

In addition to the above-described research, Javed et al. (2012), Mosallam et al. 
(2016), and Gugulothu et al. (2017), implemented different methods for cutting tool RUL 
prediction. Many papers, including Zhao et al. (2017), Huang et al. (2019), Wang et al. 
(2015), and Cai et al. (2020), applied different data-driven prognostic methods for tool 
wear prediction of varying CNC machine tools. From the publications of related works,  
it can be observed that there is a continuous trend in developing advanced tool wear 
prediction methods for improving prediction accuracy. For this, researchers are still 
exploring different data-driven methods to utilise the advantages of these methods.  
The accuracy of tool wear and RUL prediction remains a challenge for many 
maintenance practitioners because of the nonlinear and stochastic relationships of tool 
wear with the extracted features from sensor signals. 

Both data-driven and hybrid methods used data collected by sensors or experiments 
for tool wear prediction. The collected data may consist of noise due to different sources 
of uncertainty such as measurement error, environmental instability, and natural 
randomness. In addition, sensor imperfections, signal wire noise, and irrelevant and 
redundant features are common data uncertainty sources (Dey and Yodo, 2022).  
As prediction accuracy largely depends on the quality of collected sensor data, it is 
recommended to reduce noise before using the collected data as inputs in a data-driven 
method (Dey and Yodo, 2020). A variety of denoising techniques has been primarily 
used for this purpose; for instance, Khemissi et al. (2017) and Dey and Yodo (2021) used 
empirical mode decomposition (EMD), Zhang et al. (2015) applied the Wavelet 
denoising technique, and Wu et al. (2018) applied ensemble EMD (EEMD). 

In addition to the uncertainty or noise in the collected sensor data, overfitting is a 
common problem in using the complex architecture of data-driven learning algorithms 
(Van der Aalst et al., 2010). Due to overfitting, an algorithm may fit well for training data 
but fails to predict for the test (unseen or new) data with good accuracy. The 
regularisation techniques are commonly applied to deal with the overfitting problem 
(Mustafa et al., 2013). In addition, the regularisation technique is used to increase model 
stability by penalising the model parameters. The dropout, L1 regularisation, L2 
regularisation, and dataset augmentation are some commonly used regularisation 
techniques (Phaisangittisagul, 2016; Jin et al., 2004; Mustafa et al., 2013). 

Generally, time-domain, frequency domain, and time-frequency domain features are 
extracted from sensor data to make a structured dataset in applying many data-driven 
methods. All extracted features may not be relevant to tool wear and RUL. Besides, 
prediction accuracy and computational efficiency decrease due to irrelevant features. 
Different methods, including principal component analysis (PCA), Pearson correlation 
coefficient, linear discrimination analysis (LDA), chi-square test, and Fisher score, can be 
employed to select relevant features and reduce input dimensions. The primary purposes 
of feature selection are to improve model performance, avoid overfitting, and reduce 
model training time (Jović et al., 2015; Vergara and Estévez, 2014). In addition, 
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hyperparameters, model architecture, and activation functions are also significant for 
prediction accuracy and computational efficiency. 

Model architecture, data quality, feature selection methods and regularisation are vital 
for improving prediction accuracy. For tool wear prediction, different model architecture, 
denoising techniques, and feature selection methods are applied in many published 
articles. In the best knowledge of the authors, the impacts of different performance 
improvement techniques and their combinations are rarely analysed to optimise the 
performance of a data-driven method. Different performance improvement techniques are 
applied to improve the prediction accuracy of neural networks. There are no specific rules 
to choose performance improvement techniques. The selection of techniques depends on 
data quality, model architecture, and other factors. Generally, different techniques are 
investigated by trial and error to choose the best combination. It is well-established that 
performance improvement techniques such as data denoising, feature selection, and 
regularisation techniques are crucial for increasing prediction accuracy. Therefore, along 
with applying advanced data-driven methods for tool wear prediction, it is vital to choose 
performance improvement techniques to improve prediction accuracy and obtain 
computational advantages. 

In this paper, the importance of data denoising techniques, feature selection 
algorithms, model architectures, and regularisations techniques on the performance 
improvement of neural networks are analysed. For analysing the importance of data 
denoising techniques, a collected raw signal data of a milling machine and the data 
denoised by EMD are used for prediction. Two feature selection techniques, PCA and 
Pearson correlation coefficient, are used for feature selection. In addition, dropout, 1L  
regularisation, and 2L  regularisation techniques are applied to reduce overfitting and 
increase model stability. Finally, different combinations of data denoising techniques, 
feature selection methods, and regularisation techniques are applied to train two 
architectures of neural networks. The performance of neural networks is compared by 
using three performance evaluation metrics, namely mean square error (MSE), mean 
absolute error (MAE), and 2R  value, and for this, the 2010 PHM data challenge dataset 
is used. The dataset was collected from a CNC milling machine by using sensors. A 
dynamometer, three accelerometers, and an acoustic emission (AE) sensor were used to 
collect force signals in three axes, vibration signals in three axes, and energy signals. 
Sensor signals may consist of noise due to data collection environment and devices 
uncertainty. For this, data denoising techniques can be applied. Further, as the sensor 
signals are used in this paper to train NN models, time-domain features are extracted 
from each sensor signals to generate a structured dataset. 

The rest of this paper is organised as follows. Data denoising techniques,  
feature selection methods, regularisation methods, and neural networks are introduced in 
Section 2. Section 3 consists of an experimental case study with data from the 2010 PHM 
data challenge to demonstrate the effectiveness of the proposed methods, including 
detailed results and discussions. Finally, the future research direction and conclusions are 
given in Section 4. 

2 Methods background 

The different combinations of performance improvement techniques are used to train 
neural networks for analysing the importance of applying data-driven methods. Empirical 
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mode decomposition (EMD) data denoising technique and two feature selection methods, 
principal component analysis (PCA) and Pearson correlation coefficient are applied for 
investigation. In addition, L1 regularisation, L2 regularisation, and dropout are three 
regularisation techniques applied during model training to avoid overfitting. Two neural 
network architectures for tool wear prediction are trained with different combinations of 
the three types of performance improvement techniques. Finally, three performance 
evaluation metrics, namely mean square error (MSE), mean absolute error (MAE) and  
R-squared (R2) value, are used to compare the prediction accuracy of neural networks for 
different combinations of performance improvement techniques. The methods used for 
analysing the importance of performance improvement techniques are discussed in this 
section. 

2.1 Data denoising 

The data denoising is a critical step in tool wear prediction as it is often known to 
improve the prediction accuracy. In this paper, the collected raw sensor data along with 
denoised data is used tool wear prediction from analysing the significance of data 
denoising, and the EMD approach is applied as the data denoising (preprocessing) 
technique. One of the advantages of EMD is it does not require any predefined 
mathematical model (Manjula and Sarma, 2012). The assumption of EMD is a signal that 
can be decomposed into different intrinsic mode functions (IMFs) by shifting process, 
and each IMF represents individual characteristic oscillations of a signal (Schlurmann, 
2001). An IMF must satisfy the following two criteria. 

1 For a given signal vector, the number of extrema and the number of zero crossings 
must either be equal to or differ at most by one. 

2 At any point, the mean value of the envelope defined by the local maxima and the 
local minima is zero. 

Some IMFs from all decomposed IMFs consists of noise, and the goal is to identify and 
subtract those IMFs from the original signal to get a noiseless signal. Before discussing 
the IMFs identification procedure, the signal decomposition algorithm to extract IMFs is 
given in Figure 1. 

The extraction of IMFs is stopped when one of the following two conditions is 
satisfied: (1) a predefined number of IMFs are being extracted, or (2) the residual 
becomes monotonic from which no more IMF can be extracted (Huang, 2014). In this 
paper, it is assumed that the predefined maximum number of IMFs extracted is n = 10. 

When all IMFs are extracted, the signal can be expressed as, 

( ) ( ) ( )
1

m

m
i

t t t
=

= +∑ ix IMF r  (1) 

where, m is the number of IMFs extracted from the original signal ( )tx . ( )m tr  is the 
residual obtained after extracting the mth IMF. 
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Figure 1 A flow diagram of EMD approach 

 

Consider the original signal ( )tx  is a collection of the noiseless signal ( )tx  and noise 
( )tη  as, 

( ) ( ) ( )t t t= +x x η  (2) 

The target is to estimate the denoised signal ( )tx  from the original signal ( )tx  by 
removing the noise ( ).tη  In the decomposed signal, the first IMF contains the high-
frequency terms, and the last IMF contains the low-frequency terms (Shang-yue et al., 
2015). It is also well-established and well-proven that high-frequency terms consist of 
more noise compared to low-frequency terms. 

Consider the first k IMFs consist of noise. Therefore, ( )tx  can be written as 

( ) ( ) ( )
1

k

i
i

t t t
=

= −∑x x IMF  (3) 

The value of k can be determined by the correlation coefficient, σ  that is defined as, 

( ) ( )
( ) ( ) ( ) ( )

t t

t t t t
σ

′
=

′ ′

x x

x x x x
 (4) 

Assume, the threshold value of σ  is .ρ  Then, the value of k can be determined by, 

{ }* maxk k σ ρ= ≥∣  (5) 

When, *k  has been determined, ( )tx  is further estimated from equation (3) by 
considering *k k= . Generally, the threshold value of σ  is assumed to be between 0.75 
and 0.85 (Shang-yue et al., 2015). In this paper, it considered that the threshold value σ  



   

 

   

   
 

   

   

 

   

    Performance improvement techniques for neural networks 113    
 

    
 
 

   

   
 

   

   

 

   

       
 

is ρ  = 0.8, and both, the denoised data by EMD and raw data are used for tool wear 
prediction by neural networks. 

2.2 Feature selection methods 

In this paper, eleven (11) time-domain features are extracted from raw and denoised 
sensor signals. The list of the extracted features with the mathematical formulas is given 
in Table 1, with x  represent the raw signal and denoised signal, and sN  is the number of 
sampling points. 

Table 1 Time-domain features extracted from data 

Features Formula Features Formula 

1. Mean 
1

1 sN

i
isN

µ
=

= ∑x  7. Crest factor ( )max i
cf rms

=
x

 

2. Standard deviation 
2

1
 ( )

1

sN
ii

sN
µ

σ =
−

=
−

∑ x
 8. Shape factor 

1

1 s
s N

ii

rmsf

N =

=
∑ x

 

3. Root mean square 2

1

1 sN

i
is

rms
N =

= ∑x  9. Impulse factor 
( )

1

max
1 s

i
i N

ii
s

f

N =

=
∑

x

x
 

4. Square mean root 
2

1

1 sN

i
is

smr
N =

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

∑ x  10. Marginal factor ( )max i
mf smr

=
x

 

5. Skewness 
( )

( )

3

1
3

 
1

sN
ii

sk
s

f
N

µ
σ

=
−

=
−

∑ x
 11. Peak to peak ( )ppf max i= x -min ( )ix  

6. Kurtosis 
( )

( )

4

1
4

 
1

sN
ii

k
s

f
N

µ
σ

=
−

=
−

∑ x
 

  

The feature selection techniques are applied in extracted features to select relevant 
features and reduce input dimensions. In this paper, two different feature selection 
techniques, PCA and Pearson correlation coefficient, are applied to investigate the 
importance of feature selection techniques. 

2.2.1 Principal component analysis 
Principal component analysis (PCA) is one of the most widely used dimension reduction 
techniques that capture the presence of significant variability in the dataset and minimise 
the loss of information. The goal of PCA is to reduce the number of features with 
minimum loss of information. PCA is an unsupervised statistical technique that identifies 
new features along with new directions, which are linear combinations of the original 
features and uncorrelated. In this paper, PCA is applied for two purposes: (1) to reduce 
the number of features, and (2) to convert the features into linearly independent features. 
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Reduced and uncorrelated features increase computational efficiency, model stability, 
and prediction accuracy. For this research, the dimension is reduced to the number of 
features that considered at least 95% variation. 

2.2.2 Pearson correlation coefficient 
Pearson correlation coefficient is a well-known feature selection technique to identify a 
linear correlation between two quantitative variables. Pearson correlation can be used for 
estimation the linear correlation between an input variable and a target variable and 
between two input variables. Here, the Pearson correlation coefficient is applied to 
estimate the correlation between input and the target variable. Pearson correlation 
coefficient lies between –1 to +1, where –1, 0, and +1 indicate a strong negative 
correlation, no correlation, and a strong positive correlation, respectively. In this paper, 
the used threshold value for the Pearson correlation coefficient is 0.8. 

2.3 Regularisation techniques 

The performance of a data-driven method may decrease due to overfitting and model 
instability (Reunanen, 2003; Van der Aalst et al., 2010). Overfitting occurs when a model 
learns well in the training data but cannot achieve good accuracy when the model is 
applied to test data. Small training data is one of the reasons leading to an overfitting 
prediction. A complex model with multiple hidden layers and a large number of neurons 
is also prone to overfit. Regularisation techniques are used to minimise the error in 
training and to reduce overfitting. In this paper, three regularisation techniques 1L  
regularisation, 2L  regularisation and dropout are applied to overcome the overfitting 
problem and improvethe prediction performance of neural networks. 

A neural network determines the relationships between inputs and output and predicts 
the output for new observations. One of the advantages of using data-driven algorithms is 
that it does not require any expert knowledge of a system for prediction. In this paper,  
the neural networks approach is a data-driven method used to analyse different 
combinations of performance improvement techniques. In neural networks, the 
parameters (weights) of the model are estimated by minimising the least square loss 
function. The least square loss function is defined as 

( ) ( )2

1

ˆ
n

sq i i
j

L w y y
=

= −∑  (6) 

where, jy  and ˆ jy  are the actual and the predicted value of jth observation, and n is the 
number of observations in training data. 

2.3.1 L1 Regularisation 
In 1L  regularisation, the loss function is a combination of the least-square loss function 
and a regularisation term and is defined as below. 

( ) ( )
1

2
1

1

ˆ
n

l i i
i

L w y y λ
=

= − +∑ || w ||  (7) 
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where w is the parameter vector, and 1λ  is the regularisation parameter that controls  
the tradeoff between the least-square loss function and a regularisation term 
(Phaisangittisagul, 2016). The regularisation term is also called the penalty term. 

2.3.2 L2 regularisation 

The loss function for 2L  regularisation can be defined as 

( ) ( )
2

2 2
2 2

1

ˆ || ||
n

l i i
i

L w y y wλ
=

= − +∑  (8) 

2λ  is the regularisation parameter that controls the tradeoff between the least-square loss 
function and a regularisation term. 

2.3.3 Dropout 
Dropout is a regularisation technique applied for neural networks (NN) only. Srivastava 
et al. (2014) proposed a standard dropout technique to prevent overfitting and efficiently 
combine different NN architectures. In NN, a neuron of a layer is fully connected with all 
neurons of prior and post layers, as shown in Figure 2(a). The term dropout can be 
defined as deleting a neuron from networks along with all its associated connections 
(Figure 2(b)). 

Figure 2 (a) A standard NN and (b) a NN after applying dropout (see online version for colours) 

 
 (a) (b) 

The dropout decision is binary. It is whether a neuron is retained in a NN or is dropped 
out from a NN. If the dropout probability is p, then the probability of a neuron retained in 
the network is 1-p. Usually, dropout is applied to all neurons in a NN layer with the same 
probability. If the dropout is applied to q number of neurons, then the possible number of 
NN architecture is 2q . It is recommended to apply the dropout technique only in hidden 
layers as neurons drop off in the input layer results in loss of features. 

During training, the weights of the retained neurons are updated in each epoch, and 
the weights of dropped-out neurons remain unchanged. Dropout is applied randomly until 
a desired level of accuracy is obtained. After training NN with dropout, a fully connected 
network is further applied to predict for a new observation. And the final weight is 
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estimated as (1 – p) w for applying a fully connected network. In this paper, a total of 
eight ( )32 8=  different combinations of three described regularisation techniques are 
used to train the NN architectures. 

2.4 Prediction accuracy measurement metrics 

Evaluating the performance of any learning algorithm is an essential part of employing  
it in any application. Many metrics that are available to evaluate the performance of data-
driven methods. In this paper, mean square error (MSE), mean absolute error (MAE) and 
R-squared (R2) value metrics are used to quantitatively analyse the performance of the 
NN. The MSE is calculated as the average of the squared difference between the true and 
predicted values. The MAE is the average of the absolute difference between the true and 
predicted values. R-squared value is a measurement of the goodness of fit. 

In this paper, all combinations of the described performance improvement techniques 
are applied for training neural networks. The performance is compared using the  
above-introduced prediction accuracy measurement metrics. Here, two (2) types of 
datasets, 32 or 8  combinations of three regularisation techniques and two (2) feature 
selection algorithms are used. Therefore, a total of 32 ( )2 8 2× ×  combinations of 
performance improvement techniques are used to train the two NN models. The impacts 
of the performance improvement techniques are investigated in the following section 
using a CNC milling machine dataset as a case study. 

3 Case study 

This section demonstrates the performance of the different performance improvement 
techniques, namely data denoising, feature selection (PCA and Pearson correlation), and 
regularisation techniques. The NN-based data-driven approach with a milling machine 
dataset from the 2010 PHM Data Challenge (Society, 2010) is employed as the case 
study. 

3.1 Data description 

The data was collected from a high-speed CNC milling machine (Röders Tech RFM760) 
during a down milling operation on a stainless-steel workpiece. For the machining 
process, a 6 mm ball nose tungsten carbide cutter with three (03) flutes were used with 
constant values of the following machining parameters: the spindle speed of the cutter 
was 10,400 RPM; the feed rate was 1555 mm/min; the Y-axis depth of cut (radial) was 
0.125 mm, and the Z-axis depth of cut (axial) was 0.2 mm. The experimental setup is 
shown in Figure 3. 

The seven sensors’ signals, force_x, force_y, force_z, vibration_x, vibration_y, 
vibration_z, and acoustic emission (AE), were installed to collect data for tool condition 
monitoring and tool wear prediction (Li et al., 2009). The signals were captured by a NI 
DAQ PCI 1200 board with a 12 kHz frequency. Seven channels of signals were captured 
by the DAQ card with an accumulated sampling rate of 12 kHz 7 84 kHz× = . 
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Figure 3 Experimental setup for data collection (see online version for colours) 

 
Source: Cai et al. (2020) 

The sensor data for six cutters were collected in the experiment. The sensor data of three 
cutters (C1, C4, and C6) were used in this paper as the values of the target variable, tool 
flank wear, are given for sensor signals of the three cutters. For each of three cutters, the 
data of 315 cycles were collected, and the tool flank wear was measured in 310−  mm for 
each cycle. The milling cutters have three flutes. Tool flank wear was measured for each 
flute, and the average is considered as the target variable in this paper. Cai et al. (2020) 
and Zhao et al. (2017) predicted tool flank wear of cutter C1, C4, and C6. Both 
publications have got the least prediction accuracy for the tool flank wear prediction of 
the cutter C6. In this paper, tool flank wear of cutter C6 is predicted for all combinations 
of performance improvement techniques based on collected historical data of 1C  and 4C . 

3.2 Neural network (NN) models 

A neural network, a mathematical model, has been used to develop the unknown 
relationship between input variables and a target variable based on several known 
observations. An NN is a collection of neurons (units), and the neurons are arranged in 
different layers, as shown in Figure 2(a). A layer is an aggregation of neurons. The 
simplest form of one NN has at least one input layer and one output layer. The other 
layers, known as hidden layers, perform different transformations on their inputs. A 
neuron of a layer is fully connected with all neurons of prior and post layers. The number 
of neurons in the input and output layers equals the number of features and the number of 
target variables, respectively. 

After applying PCA and Pearson correlation coefficient on the dataset, the number of 
features will be obtained. On the other hand, the only target variable in this dataset is tool 
flank wear. Therefore, the output layer has only one neuron in NN models. The number 
of hidden layers and the number of neurons in a layer depends on data complexity. The 
dataset does not fit well without hidden layers as the relationship between input features, 
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and tool flank wear is not linear. Besides, the use of a complex NN architecture may 
result in overfitting. 

As the dataset used in this paper is small and has fewer features, the neural network 
with one or two hidden layers would work well. In this paper, two NN architectures with 
one and two hidden layers are used. There is no rule of thumb to choose the number of 
neurons in a hidden layer. Generally, a trial-and-error process is applied to determine the 
number of neurons in hidden layers. But, as a starting point, it is considered that the 
number of neurons in the first hidden layer is less than the number of features.  
The number of neurons is recommended to keep decreasing in subsequent hidden layers. 
In this paper, the above-described rules are followed to choose the number of hidden 
layers and the number of neurons in each hidden layer. 

Prior to applying the neural networks, 11 time-domain features listed in Table 1 are 
extracted from raw and denoised data. For data denoising, the maximum 10 IMFs are 
extracted from a sensor signal or less than 10 IMFs if the residual becomes monotonic 
before extracting 10 IMFs. For IMF selection, the threshold value of the correlation 
coefficient is 0.8. A total of 77 features (11 from each signal data) are extracted from the 
denoised signals. Similar to the denoised data, 77 features are also extracted from the 
collected sensor signal (raw data) without denoising. The Pearson correlation coefficient 
and PCA are applied to reduce the number of features from the two datasets obtained 
after extracting features from the raw data and denoised data. 

For Pearson correlation coefficient between features and tool flank wear, the used 
threshold value is 0.8. Therefore, a feature will be selected for training neural networks if 
the absolute value of the Pearson correlation coefficient is not less than 0.8.With the 
threshold value, the selected features for the raw data and denoised data are 20 and 19, 
respectively. The selected features are used for further analysis. 

Along with the Pearson correlation coefficient, PCA is also applied to reduce data 
dimensions and generate independent features. For both datasets, the dimension is 
reduced to the number of features that considered at least 95% variation. The reduced 
dimensions of the raw data and denoised data obtained by applying PCA are 21 and 23, 
respectively. The reduced datasets are used to train neural networks. Four datasets are 
obtained after applying Pearson correlation coefficient and PCA on raw data and 
denoised data. 

All datasets are normalised before training the NN models. The one hidden layer NN 
model has one hidden layer with 18 neurons. The two hidden layers NN model consists 
of two hidden layers with 16 and 10 neurons. The activation function for all hidden layers 
is the exponential linear unit (ELU) for both NN architectures. The backpropagation 
method is applied to determine the gradient of loss function for the weights of NN.  
Adam optimiser that iteratively minimises the loss function with a learning rate of 0.001, 
exponential decay control parameters of 0.99 and 0.999 is used to update the weights of 
the NN models. The details of the Adam optimiser are not included in this paper since it 
has been well-documented. Readers interested in learning more about Adam optimiser 
are recommended to read Kingma and Ba (2014). 

For training two NN models with the four datasets of the cutters 1C  and 4C , a total of 
8 combinations of three regularisation techniques are applied. Therefore, 64 NN models 
are trained for both NN architectures. The performance of models is compared by using 
three evaluation metrics, MSE, MAE and 2R  value for the data of cutter 6C . For both  
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1L  and 2L  regularisation techniques, the assigned regularisation parameter is 0.001 
( )1 2 0.001λ λ= = . For the dropout regularisation, the dropout is applied in only the 
hidden layers for both NN architectures, and the applied dropout rate is 0.1 ( )0.1p = . 
The results for the tool wear prediction by NN models are analysed in the following 
subsection. 

3.3 Results and discussions 

The MSE, MAE and 2R  value of tool wear prediction for cutter C6 obtained from the 
two NN models are analysed in this subsection. The prediction accuracy of all 
combinations of performance improvement techniques is compared, and the best 
combination is identified from all analysed combinations for tool wear prediction. 

The first NN model has one hidden layer with 18 neurons, and the used activation 
function is ELU. First, the MSE, MAE and 2R  value for cutter 6C  by the one hidden 
layer NN is summarised in Table 2.The smaller values of MSE and MAE and the greater 
value of R-squared are preferable for the NN model. For this, the combination of 
performance improvement techniques with the lowest values of MSE, lowest values of 
MAE, and the highest value of 2R  will be the best combination that may predict tool 
wear with high accuracy. 

There is a significant difference in MSE, MAE, and 2R  values for the different 
combinations of data denoising, feature selection, and regularisation techniques.  
It indicates that the data denoising, feature selection, and regularisation techniques 
significantly improve the prediction accuracy. In Table 2, the ranges of MSE, MAE, and 

2R  values are from 0.031 to 0.168, from 0.136 to 0.311, and from 0.832 to 0.969, 
respectively. The worst prediction performance is obtained when EMD and Pearson 
correlation coefficients are applied, respectively, for data denoising and feature selection. 
On the other hand, the highest prediction accuracy is achieved when EMD, Pearson 
correlation coefficient and L1 & L2 regularisation are applied to improve data quality, 
reduce data dimensions and minimise overfitting. It is visible that the regularisation 
techniques are significant as the EMD and Pearson correlation coefficient are common 
techniques for both the best and worst prediction accuracy. The combination of L1 & L2 
regularisations with EMD and Pearson correlation coefficient is the best to improve the 
prediction accuracy. 

For the one hidden layer NN, the best and worst cases estimation of tool wear for the 
test data (cutter 6C ) are demonstrated in Figure 4. In Figure 4(a), the deviation of the 
predicted values from true values for the test dataset is significant. This worst-case 
prediction is obtained from NN with the EMD data denoising and Pearson correlation 
coefficient feature selection techniques. On the other hand, the deviation is comparatively 
low for the best case that is obtained with one hidden layer NN with denoised data, 
Pearson correlation coefficient, and 1L  & 2L  regularisation as shown in Figure 4(b). The 
deviation in both figures is an indication that the performance improvement techniques 
are significant for increasing the prediction accuracy. 

Similar to the one hidden layer NN model, the two hidden layers NN architecture is 
trained by using the cutter 1C  and 4C  datasets for all 32 combinations of performance 
improvement techniques. All trained models are used to fit the test data of the cutter 6C , 
and the measured MSE, MAE, and 2R  values for all combinations are given in Table 3. 
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Table 2 Prediction performance of the one hidden layer NN architecture 
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Figure 4 The results of tool flank wear prediction by the one hidden layer NN (a) worst-case  
and (b) best-case (see online version for colours) 

 
 (a) (b) 

It is shown that the minimum prediction accuracy is obtained for the raw data when 
Pearson correlation is applied to reduce data dimensions, and 2L  regularisation is used to 
train the model. The best prediction performance is obtained for denoised data with 
Pearson correlation coefficient as feature selection technique and 1L  & 2L  regularisation 
method. The best and worst values for MSE are 0.028 and 0.139 and for MAE are 0.139 
and 0.292, respectively. And, the best 2R  value is 0.972, and the worst 2R  value is 
0.861. 

The best and worst cases of tool wear prediction for the two hidden layers of NN 
architecture are demonstrated in Figure 5. For this NN architecture, the deviation of the 
predicted values from the true values is high for the worst case compared to the best case. 
Again, the best-case prediction is obtained with EMD, Pearson correlation coefficient, 
and 1 2&L L  regularisation techniques, whereas the worst case of prediction is obtained 
with Pearson correlation coefficient and 2L  regularisation techniques. 

In Tables 2 and 3, the combinations of performance improvement techniques are 
different for the worst prediction accuracy. Besides, the MSE, MAE, and 2R  values are 
different for the same combination of performance improvement techniques with one and 
two hidden layers NN architectures. Therefore, it can be concluded that NN architecture 
is significant along with other performance improvement techniques. 

In addition, from Tables 2 and 3, it can be concluded that the data denoising 
technique, EMD, is vital for the dataset as the best prediction performance is achieved for 
both NN architectures with the denoised dataset. It is recommended to use data denoising 
techniques for sensor signals as they may have noise due to the data collection 
environment, data collection equipment, and data collecting and processing devices' 
uncertainty. The prediction accuracy is the highest for the combinations of EMD, Pearson 
correlation coefficient, and 1L  & 2L  regularisation in both NN architectures. The highest 
prediction accuracy is achieved for two hidden layers NN between the two NN models 
with the same combination of other performance improvement techniques. Although, the 
best values of all performance evaluation metrics are very close for both NN models. 
Hence, it can be said that NN model architecture is less significant compared to the other 
performance improvement techniques discussed. 
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Table 3 Prediction performance of the two hidden layers NN architecture 
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Figure 5 The results of tool flank wear prediction by the two hidden layers NN (a) worst-case 
and (b) best case (see online version for colours) 

 
 (a) (b) 

The best-case predictions for one hidden layer NN and two layers NN are shown in 
Figures 4(b) and 5(b), respectively. For both best cases, the deviation of the predicted 
values from the actual values is high from 270th to 290th cycles. The prediction accuracy 
is high between 160th and 260th cycles for one hidden layer NN as shown in Figure 4(a). 
On the other hand, Figure 5(b) shows that the prediction deviation is minimum from 
115th to 260th cycles. These results are also reflected in the values of performance 
measurement metrics as the MSE, MAE, and 2R  values are slightly better for two hidden 
layers NN. 

Overall, for this dataset, among the total of 64 combinations of performance 
improvement techniques, the combination of EMD, Pearson correlation coefficient, 

1 2&L L  regularisations, and two hidden layers is recommended as the best values of 
MSE, MAE, and 2R  values are obtained for the combination. It may not always be true 
that a definite combination of performance improvement techniques improves 
performance for all datasets and model architectures. The different performance 
improvement techniques work for different datasets based on several factors such as data 
noise, model architecture, irrelevant features, and redundant features. The selection of 
performance improvement techniques is challenging as sometimes performance 
improvement techniques may deteriorate prediction accuracy. Although there is no rule 
of thumb to select the performance improvement techniques for a dataset, it is  
well-established that the techniques significantly impact on the performance of data-
driven methods. Many deep learning algorithms can automatically extract features  
(Hao et al., 2016). For these deep learning algorithms, manual feature extraction and 
selection do not require. Other performance improvement techniques work well for deep 
learning algorithms as well. 

4 Conclusions 

In this paper, the impact of different performance improvement techniques and their 
combinations on the prediction accuracy of neural networks are analysed. For this 
dataset, the data denoising technique, EMD, significantly impacts neural network 
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performance. The minimum MSE, MAE, and maximum R2 values are obtained in both 
model architectures for the denoised dataset. It indicates that the collected sensor signals 
have noise. It is recommended to reduce noise in a dataset to improve the performance. 
Besides, the Pearson correlation coefficient as feature selection techniques and the 
combination of L1 & L2 regularisation techniques are applied to achieve the maximum 
prediction accuracy. The combination of these techniques works well for this dataset.  
It should be noted that the same combination may not necessarily have the same impacts 
when applied to other datasets. But, it is clear that different performance improvement 
techniques significantly impact the prediction accuracy of NN models. The selection of 
performance improvement techniques is critical in applying data-driven tool wear 
prediction or other condition monitoring applications. Exploring different techniques 
based on datasets, application areas, and expert opinions are recommended as no rules of 
thumb for performance improvement technique selection. In the future, frequency-
domain and time-frequency domain features will be explored to improve prediction 
accuracy. Additionally, the impacts of other performance improvement techniques on the 
prediction performance of deep learning algorithms will be analysed for tool condition 
monitoring. 
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