Instance-based novelty detection in passive sonar signals Online publication date: Tue, 19-Jul-2022
by Victor Hugo Da Silva Muniz; João Baptista De Oliveira e Souza Filho; Eduardo Sperle Honorato
International Journal of Innovative Computing and Applications (IJICA), Vol. 13, No. 3, 2022
Abstract: In submarines, sonar operators have the main task of identifying potential threats, named as contacts in the military jargon. The principal tool exploited when dealing with such situations is the passive sonar system. Automatic contact classification models may relieve the huge sonar operator workload but require mechanisms capable of identifying any contact not considered during system development. This paper discusses the development of a hierarchical instance-based detector of unknown contact classes for passive sonar signals, focusing on practical strategies for its hyperparameter tuning and performance assessment. Experimental data exploited in system evaluation comprises the acoustic noise irradiated by 28 ships belonging to 8 classes. These ships were submitted to different operational conditions in several runs conducted in an acoustic range. The kNN algorithm has performed best, achieving a novelty detection rate of 78.0%, associated with an average known case identification rate of 95.0%, considering a five unknown class evaluation scenario.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Innovative Computing and Applications (IJICA):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com