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Abstract: The earliest economic production quantity models assumed that the
manufacturing process and the quality of produced items are perfect. While in a
real situation, non-conforming products are fabricated and machine failure
happens. Hence, the production systems are increasingly engaged in the
improvement of machines availability and products quality. In this regard, this
paper presents an integrated production and maintenance planning model under
monitoring multiple quality characteristics. To adapt to the real production
conditions, it is considered that quality characteristics are correlated.
Furthermore, to improve the power of process monitoring, a Shewhart control
chart is designed by considering both economic and statistical criteria. Due to
the complexity of the problem, the particle swarm optimisation algorithm is
employed to optimise the expected total cost per time unit, subject to statistical
quality constraints. Here, an industrial example is given to show applicability
of the presented mathematical programming. Furthermore, to demonstrate the
validation and effectiveness of the suggested approach, a comparative study is
presented. It confirms that the integration of production planning, maintenance
policy, and statistical process monitoring leads to a significant increase in the
cost savings.
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1 Introduction

Production planning, statistical production monitoring (SPM), and maintenance policy
are three primary and interdependent tools in any manufacturing system. Production
planning and scheduling preventive maintenance (PM) are mutually in a challenge.
Because of the interrelated between them often not optimal combination costs, therefore
their integration has been shown to be more economical. The PM activity ensured the
sustainability of the manufacturing process also decreased quality-related costs, with to
maintain equipment in good operating conditions through adequate maintenance
programs and to produce conforming items. Indeed, production planning and process
monitoring are strongly interrelated to each other. According to the notes mentioned
above, it is necessary to develop approaches that study the interdependence among three
principal aspects of the manufacturing processes.

In spite of the mentioned facts in the previous paragraph have been existing
researches in the literature that three concepts are often considered separately. In this
regard, there are many studies dealing with production planning such as
Chung and Hou (2003). They proposed a production model to determine an optimum
runtime for a deteriorating manufacturing system in which the shortages are allowed.
Also, Cheng et al. (2015) and Manna et al. (2017) are the other studies that have been
investigated in this context. Lee and Cha (2016) focused only on the maintenance issue
and investigated models of different types of periodic preventive maintenance policy that
minimise the long-run expected cost. More recent investigations about the maintenance
issue can be found in Zhou et al. (2016), Duan et al. (2019). Chen and Yang (2002)
investigated the statistical properties of the process and developed a model for economic
design control. Moreover, Lee et al. (2012), Nenes et al. (2015) conducted the study on
designing the control charts.

In recent years, many integrated models have been presented in the literature to
consider difference interactions between two of the three aforementioned basic concepts.
For example, Jafari and Makis (2016) suggested an integrated optimisation approach of
economic manufacturing quantity and maintenance policy for a deteriorating production
system. Shrivastava et al. (2016) designed a CUSUM control chart and determined the
optimal value of preventive maintenance interval, simultaneously. Rahim and Ohata
(2005), to determine optimum parameters of the inventory and control chart
simultaneously, proposed an economic model. Moreover, several other studies such as
Yin et al. (2015), Wu et al. (2015), Salmasnia et al. (2016), Cheng et al. (2017),
Yang and Lin (2018) and Salmasnia et al. (2018) were conducted in this context.
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The joint determination of production run length, maintenance policy, and SPM have
attracted the attention of some researchers in the past three decades. In this regard,
Ben-daya and Makhdoum (1998) proposed an integrated model of the three suitable
functions. They calculated the production costs and EPQ with applied the different
maintenance approaches and an X-bar chart. Pan et al. (2012) jointly optimised the
production rate and maintenance programming with employed a Shewhart X-bar chart for
a deteriorating manufacturing system. Lin et al. (2016) obtained the model for optimised
the number of inspection, the inspection intervals, and the economic production quantity
for an imperfect production system. Salmasnia et al. (2017a) integrated manufacturing
cycle length, maintenance policy, and control chart parameters in a unified model in the
production process of a product with a single quality characteristic. Moreover, Bouslah
et al. (2016), Gunay and kula (2016), Fakher et al. (2016), and Cheng et al. (2018) are the
other researcher’s efforts have been devoted to developing this context.

The mentioned papers in the previous paragraph often ignored two important issues in
designing the control charts. The first issue is the number of quality characteristics under
consideration in the process and the second is the economic statistical design (ESD) of
the control charts. This assumption that only a single quality characteristic affects the
process efficiency can be very misleading. Actually, nowadays in industry environments,
it is necessary that two or more correlated quality characteristics should be monitored
simultaneously. This issue is considered by Hotelling (1947), he proposed the T?
Hotelling chart to monitor multivariate processes. This chart is a development of the
univariate Shewhart control chart that it has been one of the simplest statistical process
control techniques to monitor multiple characteristics that have led to producing software
the T? Hotelling chart (Lowry and Montgomery, 1995). Montgomery and Klat (1972)
have been investigated the economic design of the T? Hotelling control chart.
Woodall et al. (2004) and Faraz and Saniga (2011) are other studies that employed the T?
Hotelling charts for monitoring the manufacturing systems. In the literature introduced
another various type of multivariate control charts such as multivariate EWMA chart,
multivariate CUSUM chart, multivariate Bayesian chart, and so on, have been developed
in the literature. For example, Chen et al. (2015) suggested a multivariate exponentially
weighted moving the average chart to monitor Poisson observation.

As mentioned previous paragraph another issue in the most integrated papers is the
economic design (ED) of the control charts. The objective of an economic methods
design is to minimise the expected cost that ignoring statistical properties. ED control
chart at the first time designed by Duncan (1956) for an X-bar control chart. He
minimised production cost according to the determination of three parameters, inspection
size n, inspection interval h, and control limit k. Chou and Chen (2006) developed a
model for the economic design of T2 Hotelling charts that the expected total cost is
minimised. However, Woodall (1986) investigated the ED efficiency that found it has
poor statistical performance. To modify the low statistical performance of the economic
design control chart, Saniga (1989) expanded the pure economic model by combining
additional statistical constraints. Afterward, other authors such as Yin and Makis (2011),
and Salmasnia et al. (2017b) applied the economic statistical design method for
optimising the control chart parameters. The properties of the proposed scheme in
comparative the existing researches in the literature are summarised in Table 1.

As an initiative to cover the existing research gaps, this paper integrates the concepts
of inventory, maintenance policy, and designing a control chart in a unified model. Also,
a T? Hotelling chart is developed to monitor several correlated quality characteristics in
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the imperfect manufacturing processes. It aims to minimise the expected total cost of the
imperfect production system subject to statistical constraints.

The remainder of this paper is organised as follows: At the end of this section, the
state-of-the-art properties are summarised in Table 1. In Section 2, the problem under
study will be explained in detail. Section 3 explains the designed mathematical model for
the optimisation of production run length, maintenance policy, and Hotelling control
chart parameters for multiple characteristics. In Section 4, the solution approach is
described. Section 5, is presented a numerical example to demonstrate the applicability of
the proposed model then a comparative study is given to show the validation of the
presented mathematical programming in comparison with-the-art. Finally, the
conclusions and some recommendations for improving function manufacturing systems
are laid out in Section 6.

2  Problem description

The traditional EPQ model balances the costs between setup and inventory holding with
this assumption that the production system is forever in an in-control state and that all
outputs are conforming. In reality, manufacturing processes suffers from deterioration,
because of the nature of the process, machine wastage and, etc. This research investigates
an imperfect production process that begins from the in-control state and after time may
occur an assignable cause that leads to shifts in the out-of-control state.

A T? scheme is applied to monitor multiple quality characteristics with an alert signal
to inform operators when process produces non-conforming items. A joint model of
production run length, statistical process monitoring, and maintenance in a unified model
is suggested. Also, to improve the process performance, the simultaneous economic and
statistical criteria in the design of the control chart are considered. In the proposed model,
the samples are taken with size n, at h time units in each inspection. In production cycle
the inspections are taken independently.

According to the occurrence time of the shift is defined three scenarios for the
production process. Scenario 1, happens when the process remains in-control during the
implementation of the production cycle. In Scenario 2, the manufacturing system starts
from the in-control state after time at least one of the quality characteristics exceeds from
its target value during manufacturing cycle and control chart detects this deviation before
the end of the process. Scenario 3, is similar to Scenario 2 with this difference that shift
can’t be detected by control chart until the end of the production cycle. Also, at the end of
the production cycle in each scenario implement maintenance policy to restore the
process to the in control state and to as good as new condition. These three scenarios will
explain in the model description section in detail.

In this study, p correlated process variables are considered that follow a p-variate
normal distribution with in-control mean vector and variance-covariance matrix . The T?
control chart is employed for the detection changes quality characteristics that it signals
as soon as the statistic. In this paper, for the sake of simplicity, it is assumed that and are
known or are estimated from magnitude large enough samples.



383

Joint optimisation of production run length and maintenance policy

Summarised literature review

Table 1

SN NS NN

SN N NN

SN NS NN

SN

SN N NN

SN N N N N NN

SN NS NS N N NN

S

S

SN NN

SN NN

S

(eL107) Te 19 prUSsEWES
(9107) e UI'T

(Z107) "Te 10 ued

(8661) WNOpPYRN pue eAeq-uog
(9107) e 10 eARISEALIYS
(8107) ury pue Suex
(£107) Te 19 Suay)
(9107) SR pue Lreyef
(S107) Te e nM

(8107) 'Ie 10 e1USBWIES
(S107) Te 1R UIX

(9107) Te 10 BlUSBWIES
(S007) BIRYQ puE WIYEY
(ST0T) T8 19 seuaN
(T107) Te10 0]

(2007) Suex pue uoy)
(L107) 'Te 3 ueng
(9107) Te 30 noyz
(9102) ByD pue 297
(L107) 'Te 30 BUURIY
(S107) T8 19 Suay)
(€007) noy pue Suny)

asd ad

aduyny 213u1g

NS

UDUIUID AT

Odd

14Dy u3isap fo adA ]

$O11S141219D.40YD A31jpNb fo 42qUINN

§3d20u02 parp.a3ajuy

stadv g




A. Salmasnia and M. Kaveie

384

Summarised literature review (continued)

Table 1

SN NN

N

SN NN

S NN

/

SONONS NS NS N N N NS N NN NN

SN NS

/

/ 1oded sy,
(9L10T) Te 30 Blusewes

(1107) SPIeIN Pue UL

(6861) eSues

(9007) uayD pue noy)

(9661) ueoun(y

(S107) e 30 USYD

(0107) 'Te 10 Zeaeg

(S661) A1oWOSHUON pue A1m07]
(Lv61) Surfei0H

(8102) 'Te 32 Suey)

(9107) T8 % JoyRg

(9107) B0y pue Leunn

(9107) Te 32 yersnog

SN NN

asd aq

apdunpy 213uig

NdS

20UPUIUIDIN

Odd

140y u1sap Jo adA]

§o118142300.10Yd (1pNb J0 42quINN

§3d2ou00 pajp.a3aguy

s42dpg




385

Joint optimisation of production run length and maintenance policy

Notations

Table 2
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Notations (continued)
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Notations (continued)
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2.1 Notations

Before developing the proposed model mathematically, the notations used to formulate
the problem are presented in Table 2.

2.2  Assumptions

The underlying assumptions of aforementioned problem are described in the following:
a  The process starts in the in-control state with 1 = 1 in initial of each cycle.

b  Only One type assignable cause occurs that leads to the process mean vector
deviation from the target & = i to a known value 1 = 1. Hence, the values of the
variance-covariance matrix are stable.

¢ Ifatthe end of the K™ inspection interval, the process declared as an in-control state
preventive maintenance is implemented on the system at the end of the (K + 1)*
interval. An alert signal in the j* interval (0 < j < K), indicates that the process shifts
to the out-of-control state. From this moment, an investigation is carried out to
discover the assignable cause and eventually reactive maintenance is implemented to
restore the process to the as-good-as-new condition.

d  The in-control time of process follows a truncated exponential distribution in which
the probability density function (PDF) is given by equation 1.

/le—it
SUNK+DI = —=Gmn v

e The production cycle time ends either with a true alarm or after K+1 intervals.
f  The following three can be ignored due to those are the very negligible in
comparison with production cycle time:
a  the time of inspection
b  time to detect a false alarm

¢ the time to implement preventive and reactive maintenance.

3 Model description

In this section, the inspection, quality and the maintenance costs are investigated in
addition to the classic EPQ cost in each of the mentioned scenarios. Also, it is calculated
the production run length and the occurrence probability of each Scenario.

e Scenario 1: In this scenario, the assignable cause does not occur during K inspection
intervals. Nevertheless, the scheduled preventive maintenance will be carried out at
the (K+1)™ inspection interval. Production run length is equal to the expected
in-control time and E(7,,, |Sc;) is zero. As shown in Figure 1,

E(T;,|Sei) = (K +1)h @
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E(Tyu|Scr) =0 (€)

The occurrence probability of scenariol is equal to the occurrence probability of a
shift after at least (K+1)t inspection interval [equation (4)].

Pr(Sc;) =1- F((K +1)h) (4)

Figure 1 Graphical representation of scenario 1 in the production cycle time

Preventive
Control Chart Maintenance
|
UCL=k T
L n :
|
|
l ' " '
|
| | |
CL=0 . T i : :
|
| | |
Cycle starts | |
¢ N
first ith (i+1)th Kth (K+1)th
inspection inspection inspection inspection inspection
‘_»h in-control state

e Scenario 2: According to Figure 2, in this scenario, the manufacturing cycle begins
and stays in the in-control state until i inspection interval. After that, due to the
occurrence of an assignable cause at least one of the quality characteristics under
consideration at a time between the i and (i+1)™ inspection shifts to the
out-of-control state. Therefore, the mean vector of the quality characteristics shifts
from 4 to 1. Due to the weakness of the control chart, it cannot emit the alert signal
immediately. The process continues until the (i+1)™ inspection that the control chart
alerts a signal. In this condition, to discover the assignable cause and restore the
process to as good as a new situation, reactive maintenance is implemented.
Therefore, the expected in-control time in this scenario is:

E(T,[Ses) = '[OKhtX £(e|(K + Dy (5)

and the expected out-of-control time is the average time between the process mean
shift and the chart’s signal that is called average time to signal (AATS).

E(Tyu|Scy) = AATS (©)

Here, the AATS is calculated as follows:
AATS = ATS — < 7
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Figure 2 The relationship between AATS and ATS (see online version for colours)

Start of the Occurrence of Chart alert

process assignable cause signal
: |

In-control time | |

iod
perio K Adjusted Average Time to Signal >%

|
\
—A————A

it (i1 2)* i+ )"
inspection  inspection inspection

T \

ba_L |

< Average Time to Signal >

Figure 3  Graphical representation of scenario 2 in the production cycle time
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where that ATS is the average time to signal, it is the average time from the last
inspection before the occurrence of the shift to signal issued from the chart. It is
calculated by product the inspection interval and average run length (ARL) when the
process is in the out-control state.

ATS:L:thRLl (8

B ="Pr(T> <k|d #0)=Pr(;*(p,nd) < ))) )
Let be the expected time of assignable cause occurrence within an interval.

(i+1)h
J. te="dt
r=h (10)

(i+1)h
J‘ e Mdt
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Pr(Sc,) is computed by using the occurrence probability a shift before K™

inspection interval, given that the shift is detected before (K+1)™ inspection interval.
The probability of releasing an alarm signal when the process shifts to the
out-of-control state is called as Pr(sig) and is formulated as equation (12).

Pr(Se,) = F(Kh)x Pr(sig) a1
Pr(sig) =1- %! (12)

e Scenario 3: In Scenario3, the process begins in the in-control state and at a time
between the i and (i+1)” inspections, the mean process shift to the out-of-control
state. Because of the probability of type II error, the chart cannot discovers the shift,
so the process continues until end of the K™ inspection interval. Therefore, at the
(K+1)™ inspection interval, the process is identified in the out-of-control state, which
for restoring the process to in-control state, the scheduled PM has to be replaced by
RM. Figure 4 demonstrates the manufacturing cycle in Scenario 3. The expected
in-control time is formulated by equation 13.

E(T; |Ses) = j;K+l)ht><f(t|(K+l)h)dt (13)

Therefore, to compute the expected out-of-control time in this scenario, the expected
in-control time is subtracted from the production run length:

E(Tou|Ses) = (K +1)h— E(T,,|Sc3) (14)

The occurrence probability of Scenario 3 is equal to the probability of happening an
assignable cause before (K+1)” inspection interval while it is not detected until the end of

the cycle. Thus, Pr(Sc;) can be obtained as:

Pr(Sc;) = F((K +1)h)— F(Kh) Pr(sig) (15)

Figure 4 Graphical representation of scenario 3 in the production cycle time
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As a result, the expected time of the manufacturing cycle is computed by multiplying the
duration of the cycle in each scenario and the happening probability of each scenario, the
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occurrence probability of each scenario and the duration of the production cycle as shown
in equation (16) and (17), respectively.

(K +1Dh r=13
E(T]se )= jOKhtxf(z|(K+1)h)dt+AATS r=2 (16)
3
E(T)zZE(T|Sc,)Pr(Sc,) 17

r=1

3.1 Quality loss cost

The quality loss cost is imposed on manufacturer in both the in-control and the
out-of-control states because of producing the non-conforming items. Therefore, this cost
includes of the quality loss cost when the process is in the in-control state, and the quality
loss cost when the process is in the out-of-control state. Let ¢, (¢;) the quality loss cost

per unit when the process is in the in-control (out-of-control) state thus, according to the
mentioned explanation, it can be accounted so equations (18) for each of the three
scenarios. Finally, the expected quality loss cost can be computed according to
equation (19).

E(C S )_ cOXE(Z}n Sc,.) r=1 18
Q| )= cOXE(T},,|sc,)+cl><E(Tgut Sc,)r=2,3 (1%
3
)= E(ColSe,)Pr(sSc,) (19)
r=1

3.2 Inspection cost

The inspection cost in each scenario is calculated by product the average number of
inspections during of the production cycle in the summation of the fixed (c¢,) and
variable (c,) costs of each inspection. The average number of inspection in Scenarios 1

and 3 is equal to K, while it in Scenario 2 is obtained by summation of the expected
number of inspection in the in-control and out-of-control states. Therefore, for all three
scenarios, E(Cp,|C,) is formulated in equation (20). Eventually, the total expected

inspection cost per cycle time is calculated as equation (21).
(c/-+cvn)K r=13

E Cns S r) = i g ) 20)
(Cis Sc,) (cr +cvn)(E(E"|SC')‘;E(nm SC')) r=2 (

3

E(Clns) = ZE(CI;u

r=1

Se, )xPr(Sc,) (1)
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3.3 Maintenance cost

Maintenance cost includes of two parts:
1 the false alarm cost

2 planned preventive (PM) and reactive maintenance (RM) costs and depends on the
scenario that occurs.

To compute the false alarm cost the number of inspection in the in-control state must be
multiplied by the average run length when process is in the in-control state (ARL,) and

the cost of each false alarm (c,). Since in the Scenario 1 the average number of

inspection points in the in-control state is K and the PM cost is implemented to
manufacturer at the end of cycle. In the Scenarios 2 and 3 due to the production process
shifts to the out-of-control state it is less than K and can be calculated by equations (22)
and (23), respectively and the RM is conducted to the manufacturer at the end of cycle.
Based on the aforementioned descriptions, the expected maintenance cost in each
scenario is formulated by equations (25).

K-l
52= ) e = (K —1)e (22)
I=1
K
Sy = ze—llh _Ke—,l(l(+l)h (23)
I=1
ARLy =, a=Pr(T?>k|d=0) (24)
o
E.Cy +Cpm r=1
0
E(CM |Scr)= ASTZL.C_V + Com r=2 (25)
0
TRL Cy + Cm r=3
0

Finally, the expected total maintenance cost per manufacturing cycle is obtained
according to equation (26).

E(CM):iE(CM |Sc, ) Pr(Sc;) (26)

r=1

3.4 Inventory holding and set up costs

According to the classical EPQ model, the expected inventory holding cost and the set up
cost are given by:
DxA  B(p'—D;)XE(T)

E(Cr)= X ET) + > @7n
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where that p’ is the production rate, D, demand rates, B the inventory holding cost per
unit per time unit, and the set up cost.

Finally, the expected total cost (ETC) and the economic production quantity (EPQ) can
be attained as equations (28) and (29).

ETC=E(C;)+E(Co)+E(Cps)+E(Cy) (28)

O'= ' E(T) (29)

3.5 Mathematical modelling

An integrated model of statistical process monitoring, economic production quantity, and
maintenance policy can be described as that the economic cost function is minimised
subject to the constrained minimum value ARL; as well as the maximum value of ARL, in
the production run length. The objective function with regard to the costs that were
explained in the previous paragraphs can be formulated as the following:

Min ETC (30)
Subject to :

ARL, > ARL, (30.1)
ARL, > ARL, (30.2)
11 < Bmaxs Hinin S A E ey , K 2 K, (30.3)
neZ*,KeZ* (30.4)

As aforementioned in equation (30), the objective function is equal to minimise ETC that
displays the total expected cost per production cycle time. Also, the necessary constraints
(30.1)~(30.4) should be incurred in the mathematical programming to make the model
more adapted to real industry situation. These constraints are as follows:

1. To decrease the number of false alarms per time unit without influencing the
performance of control chart, ARLo must be bigger than a pre-determined value of
ARL,, as illustrated in equation (30.1).

2. In order to increase the power of control chart to detect shift in the process, ARL;
must be lower than pre-determined value of ARL, as shown in equation (30.2).

3. Typically, in the practical conditions because of economic reasons, the inspected
sample size and the inspection interval must be limited between two certain upper
and lower limits as shown in equation (30.3). Also, this constraint guarantees that the
process continued, according to the number of inspection intervals in a perfect cycle
must be greater than K;.

4. The equation (30.4) ensures that the inspected sample size and the number of
inspection in a perfect cycle time to be a positive integer value.
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4 Solution approach

Since the mathematical model is non-linear and includes both continuous and discrete
decision variables, it falls under the category of NP-hard problems, which is difficult to
solve using exact algorithms.

Evolutionary algorithms (EAs) are very suitable to optimally solve problems where
there exists no known exact algorithm that can produce the outcome in polynomial time.
EAs are meta-heuristic approaches to solving optimisation problems by imitating the
biological nature of evolution such as genetic algorithm (GA), particle swarm
optimisation (PSO), and, etc. Because the integrated models of the production process,
maintenance policy, and control chart design contains complicated optimisation models,
various heuristic and meta-heuristic algorithms have been suggested in the literature to
obtain near-optimal solutions. For example, Safaei et al. (2012) designed an X-bar
control chart using Taguchi loss function with an economic-statistical approach using
multi-objective GA. Saghaei et al. (2014) applied GA for designed economic EWMA
control chart according to evaluation error. Niaki et al. (2012) used a PSO for optimising
the models of both the economic and the economic-statistical design problems of
MEWMA control charts. Also, Zhang et al. (2015), Liu et al. (2017),
Salmasnia et al. (2018), and Chalabi et al. (2016) applied of the PSO algorithm in their
studies.

Particle swarm optimisation (PSO) is used to optimise the suggested model due to
features of PSO algorithm that can be summarised as follows:

1 To use the performance index for search in the problem space lead to that it get
suitable dealing with non-differentiable objective functions.

2 Because of it uses probabilistic transition rules, this algorithm has high flexibility
and good capability in search a compacted and uncertain area.

3 One of the unique features of PSO is the balance between the global and local
exploration ability of the search space that leads to dominating the premature
convergence and increase the search capability.

4 The solution quality of PSO algorithm does not depend on the initial population.
When it starts anywhere in the search space, the algorithm still ensures the
convergence to the optimal solution.

5 It has good performance in optimising non-linear mathematical programming
models.

Also, PSO has been extensively used in various optimisation problems due to unique
features that mentioned in the previous paragraph. Barzinpour et al. (2013) displayed that
the particle swarm can lead the simplex-based Nelder—Mead algorithm to better results.

4.1 Particle swarm optimisation

The PSO algorithm has been based on the metaphor of the social behaviour of birds and
fish procession that firstly proposed by Kennedy and Eberhart (1995). This algorithm
employs collaboration among a population called particles, to find optimum decision
variable values particle moving within a multidimensional space. Unlike other heuristic
methods, PSO has increasingly engaged a flexible and well-balanced mechanism which
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to enhance global and local exploration abilities. Generation of initial PSO is generated
with a population of random particle with random positions and velocities inside the
problem space.

This algorithm subsequently searches for an optimal solution by updating consecutive
particles based on the force of inertia and the two ‘‘best’” values. The first value is the
best value experienced by the i ™ particle which is called personal best (pbest). Another
“‘best’” value is best solution observed so far which is called global best (gbes?). It means
that, in this iterative process, the behaviour of a particle is a compromise among three
possible alternatives:

1 following its current velocity
2 going towards its personal best
3 going towards the global best.

In each iteration, after finding the two best values, the particle will update its velocity and
position.

4.1.1 PSO Notations:

In this section, as can be observed in Table 3, the notation used to explain PSO algorithm
is shown.

Table 3 PSO notations

PSO notations Description

N The number of particle in the swarm

xt =[n,h,k K] Position decision variables of the i  particle in iteration ¢
phest"” Personal best of the i ™ particle in iteration ¢

ghest! The best solution founded until iteration ¢

bio (b)) The lower (upper) boundary for decision variables

V! Velocity of the i # particle in iteration ¢

ci,e2 Cognition and social learning factors

w Inertia weight

Wdamp Fixed factor less than 1

4.1.2 Velocity update

According to pbest and gbest, the i # particle velocity with respect to the ¢ # iteration is
updated by the following equation:

vi =wyi +ar, (pbestt™ — x7) + cir, (gbesti™ — xi™) 3D

where 7, and r, are uniformly random numbers selected from the interval [0,1]. The
inertia weight’s value (w) controls the impact velocity and changes in each iteration. Its
value in the first iteration is a predetermined value between 0 and 1, then in each
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iteration, it is decreased to W *w qump. Also, the summation of ¢; and ¢, values with regard
to Kennedy et al. (2001) is generally investigated equal to 4.

4.1.3 Position update

Actually, the initial value of continuous variables are generated randomly from a uniform
distribution: x; ~U (b,[,,bl,p) . The particle position updating is formulated based on the

value of velocity updating and particle position in the previous iteration. It can be
obtained as following:

xt= x4 vt 32)

4.1.4 Termination condition

The searching is a repeat process until conditions to terminate is met. Generally, there are
two stop criteria for PSO algorithm that one of the conditions is the maximum iteration
number reached and the other is a solution with the smallest fitness function value found.
Figure 5 is illustrated a Summary of the computational method in the PSO algorithm.

Figure 5 Complete computational procedure of the PSO algorithm

| Let iteration t =1 |

| Generate the initial value of each particle position, |

randomly
| Let, iteration t = t+1 l—'l Assess the ETC of each particle in swarm |
|Update position and velocity of each particle in swarm| | Select the personal best particles |

| Select the global best particles |

Is the expiry condition true?

Yes
L1

Let, optimal solution = global best particle

Source: Dos Santos Coelho (2009)

4.2 Application of PSO in the proposed model

The solution representation for the presented model consists four-dimensional particles
that each dimension refers to a certain decision variable. In the presented model, the
inspected sample size and the number of inspection in a perfect cycle time (n,K) are an
integer, while the other decision variables (%,k) are real numbers. As mentioned earlier, to
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generate the initial value of each continuous decision variable, a uniformly distributed
random value is produced between the lower and upper limits of the considered decision
variable. Therefore, to generate an initial value for discrete decision variables, a random
value from a uniform distribution in the interval [0, 1] is generated. The values of
discrete, i.e., the sample size (1) and the number of inspection in a perfect cycle time (K),
decision variables in the proposed model are computed based on equations (33)—(34)

n =min(nmin +L(nmax — Nmin +1)XR1Janmax) (33)
K =min (Kuin +| (Kmax = Kumin +1)X Ry |, K ) (34)

where  (Mmin, Kmin) and  (#max, Kmin) are the lower and upper limits of (1K),

respectively. Furthermore, R; and R, are two random number that follow the uniform
distribution with R, R,~U(0,1).

Table 4 The values of the parameters in the numerical example
Parameter P d’ d D A B A
Value 100 80 1 10,000 80 10 0.01
Parameter co cl cy cf Cy Cpm Crm
Value 115 950 200 1 0.2 2,400 5,000
Parameter p ARL; ARL, Nimin Nimax Nmax K
Value 3 100 10 0.01 0.6 20 40

Table 5 The optimal results of the case study

.. . Production run Objective
Decision variables EPQ length Junction
n* h* k* K* Q* ET* ETC*
11 0.15 4.50 25 390 3.84 5785.16

5 Experimental results

To illustrate the applicability and credibility of the presented optimisation model an
industrial example from Pan et al. (2012) is used. Firstly to solve and to optimise this
case study the PSO algorithm is run. Then, a comparative study is conducted between the
integrated model and an mathematical programming in which the decision variables
related to the three concepts of production planning, maintenance policy and statistical
process monitoring are optimised, separately. The results of two models for 27 instances
that are generated by a Taguchi experimental design are compared.
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The generated instances with the Taguchi L27 design

Table 6
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Table 7 The ETC for the proposed model (A) and the optimisation model of three concepts

separately (B)
Decision variables Objective function c

Instance ETC* ETC* sa\?i;tg

n* h* k* K* model model %

(4) (B)

1 3 0.18 5 28 3,215 3,331 3
2 6 0.26 5 37 6,365 6,423 1
3 18 0.34 5 28 9,324 9,442 1
4 11 0.06 5 39 7,193 7,609 5
5 5 0.07 5 32 9,596 10,843 12
6 16 0.10 5 27 6,492 7,570 14
7 3 0.19 5 33 10,841 11,935 9
8 13 0.18 5 30 8,372 9,282 10
9 12 0.04 5 29 12,597 14,865 15
10 9 0.09 4.67 32 8,494 10,687 21
11 3 0.18 491 31 10,759 12,137 11
12 12 0.08 4.57 28 6,667 8,760 24
13 6 0.28 4.45 30 6,918 8,418 18
14 14 0.12 4.46 37 7,075 8,381 16
15 18 0.11 4.07 38 6,532 8,379 22
16 7 0.11 4.62 35 6,798 7,951 14
17 6 0.12 491 30 7,884 9,240 15
18 9 0.12 4.49 29 7,813 8,287 6
19 7 0.09 4.12 31 8,882 9,691
20 9 0.11 4.82 30 5,374 7,152 25
21 8 0.12 3.93 33 7,802 9,691 19
22 14 0.12 4.14 34 8,353 9,661 14
23 9 0.10 3.55 31 8,026 9,723 17
24 8 0.11 4.73 33 9,277 10,948 15
25 2 0.25 3.79 30 5,716 6,403 11
26 5 0.16 4.77 31 6,786 6,830 1
27 4 0.11 4.77 29 5,128 6,100 16
Average 13

5.1 Case study

The case study is about a company that sells a determined food product to a wholesaler in
packages marked with the specific weight, volume, and length as the quality
characteristics. This modified example is taken from Pan et al. (2012) to display the
applicability of the integrated model. It is supposed that the shift in three mentioned
characteristics affect the product quality. The occurrence of assignable cause leads to
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change only in the mean of at least one of the quality characteristics. As mentioned
before, T2 Hotelling chart is employed for monitoring the process. Also, the maintenance
is implemented at the end of the production cycle according to the condition of the
process. The values of the main parameters related to the production system are recorded
in Table 4.

With regard to the complexity of the model and the robust performance of the PSO
algorithm to find the optimal solution in such models, this algorithm is implemented to
solve the model in MATLAB software. The number of iterations and population size are
obtained 100 and 50, respectively by the trial-and-error process. The optimal results of
the case study consist of decision variables, EPQ, production run length, and ETC are
recorded in Table 5.

Figure 6 The graphical representation related to the obtained results of comparing study
(see online version for colours)
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5.2 Comparative study

In this section, to illustrate the efficiency of the integrated model, it is compared with a
model in which decision variables related to the three concepts are separately obtained
called hereafter model B. For this purpose, firstly the optimal values of the control chart
parameters consisting of (n, 4, k) are obtained by minimising the summation of quality
loss and inspection costs subject to the statistical constraints. The obtained values are
equal to n =13, h = 0.21, k = 3.95. Then, according to these values, the cycle run length
is calculated 7 = 6.1. Afterward, the number of sampling in a perfect cycle time is
computed K = 31. Finally, the result of the integrated model, hereafter called model A4,
and model B are compared in terms of the expected cost per time unit.

To enhance the validity of the presented comparison, 27 instances generated using
design of experiment method as shown in Table 6. In these instances, the values of the
other parameters are considered according to Table 4. Eventually, the ETC values in both
above-mentioned models are given in Table 7.

According to the obtained results in Table 7, ETC per time unit in all instances is
reduced between 1% to 25% with an average of 13% by the presented model, which is
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remarkable value in cost-saving. So, to clarify the difference between two
above-mentioned models from point-of-view of cost, the values of the expected total cost
in all instances are illustrated graphically in Figure 6.

6 Conclusions

This study developed a joint model by integrating three issues of manufacturing cycle
length, maintenance policy, and the control chart design. To monitor several correlated
quality characteristics was employed the T?-Hotelling chart. Moreover, the suggested
mathematical programming not only investigated economic considerations in the process
optimisation but also applied statistical criteria in optimising the control chart parameters.
With respect to the model is nonlinear and the solution space is non-convex, the PSO
algorithm was employed to compute the optimal values of process variables in a way that
the expected total cost per production cycle is minimised. Eventually, to show the
importance of integration of statistical process monitoring, maintenance policy and
production planning, the presented model, a comparative study between integrated model
and a model in which the decision variables related to each of the three concepts obtain
separately on twenty-seven different instances was performed. The outcome of two
models was compared in terms of the expected total cost per time unit. The results
confirmed that the integrated model has better performance in cost savings.

As a suggestion for future research, a similar study can be conducted on more
sophisticated production systems such as an inventory system with shortage allowed.
Moreover, a process with multiple assignable causes investigates, which leads to the
model more adapted to real manufacturing environments.
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