Observer design for linear systems with external disturbance and intermittent measurements
by Xu Cai; Xuyang Lou
International Journal of Modelling, Identification and Control (IJMIC), Vol. 39, No. 2, 2021

Abstract: This paper deals with the state estimation of linear systems with external disturbance for which measurements of the output are available intermittently. An observer with triggered jumps is designed within a hybrid systems framework. By employing the stability results in hybrid systems, the global uniform asymptotic stability of a closed set related to the estimation errors, which contains all coincident points of the system state and its estimated value, is achieved. Based on the Finsler lemma, conditions for the global uniform asymptotic stability of the estimation errors are established in the form of linear matrix inequalities. Finally, numerical simulations including a damped mass-spring system and a DC motor system are provided to illustrate the results.

Online publication date: Mon, 20-Jun-2022

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Modelling, Identification and Control (IJMIC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com