Legged robot design and Van der Pol oscillator based control approach
by Riadh Zaier; Omer Eldirdiry
International Journal of Modelling, Identification and Control (IJMIC), Vol. 38, No. 3/4, 2021

Abstract: It is widely accepted within the field of animal locomotion that the gait is generated by a central pattern generator (CPG), which is usually modelled as a nonlinear oscillator. This paper proposes a mechanical design of a bio-inspired legged robot with a passive toe joint, and proposes a control method based on the key characteristics of the CPG generating the rolling motion of the gait. The overall control system is set as a Van der Pol oscillator, and the controller is then deduced accordingly. The legged robot is modelled as an inverted pendulum with a few control parameters that can be tuned to modulate the rolling motion and make it adaptive along with the stride. The locomotion controller is structured so that the overall closed loop system exhibits a stable limit cycle. Finally, the validation of the simulation platform and the implementation results of the designed robot is reported.

Online publication date: Mon, 13-Jun-2022

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Modelling, Identification and Control (IJMIC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com