Molecular dynamics modelling and simulation of nanoscale ductile cutting of silicon
by Minbo Cai, Xiaoping Li, Mustafizur Rahman
International Journal of Computer Applications in Technology (IJCAT), Vol. 28, No. 1, 2007

Abstract: A simulation system for nanoscale ductile mode cutting of monocrystalline silicon has been developed in thi study using the Molecular Dynamics (MD) method for better understanding of the ductile mode cutting mechanism. In the model of this simulation system, the initial atom positions of silicon workpiece material are arranged according to the crystal lattice structure, the atomic interactive actions of silicon are based on the Tersoff potential, the diamond cutting tool is assumed to be undeformable, the tool cutting edge is realistically modelled to have a finite radius, and the motions of the atoms in the chip formation zone are determined by Newton's equations of motion. The simulated variation of the cutting forces with the tool cutting edge radius is compared with the results of experimental cutting tests to substantiate the developed simulation system and the results show a good agreement with analytical findings.

Online publication date: Tue, 06-Feb-2007

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computer Applications in Technology (IJCAT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com