
82 Int. J. Computer Applications in Technology, Vol. 68, No. 1, 2022

Copyright © 2022 Inderscience Enterprises Ltd.

SiNoptiC: swarm intelligence optimisation of
convolutional neural network architectures for
text classification

Imen Ferjani*
Laboratory of Robotics, Informatics, and
Complex Systems (RISC Lab - LR16ES07),
National Engineering School of Tunis,
University of Tunis El Manar,
BP. 37, Le Belvedere, 1002, Tunis, Tunisia
Email: imene.ferjani@enit.utm.tn
*Corresponding author

Minyar Sassi Hidri
Computer Department,
Deanship of Preparatory Year and Supporting Studies,
Imam Abdulrahman Bin Faisal University,
P.O. Box 1982, Dammam 31441, Saudi Arabia
Email: mmsassi@iau.edu.sa

Ali Frihida
Laboratory of Robotics, Informatics, and
Complex Systems (RISC Lab - LR16ES07),
National Engineering School of Tunis,
University of Tunis El Manar,
BP. 37, Le Belvedere, 1002, Tunis, Tunisia
Email: ali.frihida@enit.utm.tn

Abstract: Although many rules have been suggested by several researchers for designing deep
neural architectures, trial-and-error is often exploited in practice to find the optimal model for a
given problem. Thus, the automation of deep neural architecture search methods is highly
recommended. In this work, we address this problem by proposing a hybrid coupling of
Convolutional Neural Networks (CNNs) architectures with the swarm intelligence, especially the
Fish School Search (FSS) algorithm. This coupling is capable of discovering a promising
architecture of a CNN on handling text classification tasks. The proposed method allows users to
provide training data as input, and receive a CNN model as an output. It is completely automatic
and capable of fast convergence. Computational results show the effectiveness of the proposed
method in achieving the best classification loss among manually designed CNNs. This is the first
work using FSS for automatically designing the architectures of CNNs.

Keywords: deep learning; CNN; convolutional neural networks; swarm intelligence; FSS; text
classification; NLP.

Reference to this paper should be made as follows: Ferjani, I. and Sassi Hidri, M. and Frihida, A.
(2022) ‘SiNoptiC: swarm intelligence optimisation of convolutional neural network architectures
for text classification’, Int. J. Computer Applications in Technology, Vol. 68, No. 1,
pp.82–100.

Biographical notes: Imen Ferjani is a Doctoral student in Information and Communication
Science and Technology at the National Engineering School of Tunis (ENIT), University of
Tunis El Manar, Tunisia. She received Masters of Computer Science degree from the College of
Science of Tunis in 2012. Her doctoral research is about applying deep learning to NLP.

Minyar Sassi Hidri received her PhD degree from the National Engineering School of Tunis,
Tunisia in 2007. She is an Assistant Professor at the Imam Abdulrahman Bin Faisal University
(Dammam, Saudi Arabia) since 2017. She is an Associate Professor at the Computer Department
of the National Engineering School of Tunis (Tunis El Manar University, Tunisia)
since November 2018. Her research interests mainly focus on combinatorial aspects in Big Data

 SiNoptiC: swarm intelligence optimisation 83

analytics, Data mining, Machine Learning, Deep Learning, and Text Mining, with over
65 publications. She is currently member of the steering committee of many international
conferences and reviewer of impacted journals.

Ali Frihida received his PhD degree in GeoSpatial Informatics from University of Montreal. He
is a Senior Lecturer in National Engineering School of Tunis, University of Tunis El Manar
(Tunisia). He is actually the Head of the Information and Communication Department. Her
research interests include ontologies, big (spatial) data, AI applied to spatial data, IoT and NLP.

1 Introduction

Convolutional Neural Networks (CNNs) are biologically-
inspired algorithms that have achieved excellent performance
on many challenging tasks (Zhang et al., 2020; Zhu et al.,
2020). The performance of a CNN is largely due to its capacity
to find out complex structure and non-linear relationships
within data. CNNs have achieved interesting results in many
tasks in the computer vision field and have been effectively
explored for text classification (Yann et al., 2015; Moitra and
Mandal, 2020; Corbat et al., 2020; Ferjani et al., 2019). It is an
emerging field of study that has been widely addressed in
several real applications (Jiang et al., 2018).

The topology of a CNN is one of the most important
aspects that affect its performance. Over the last decade,
numerous CNN topologies have been proposed with the
target of either improving the accuracy or reducing the
computational complexity (Kim, 2014; Kalchbrenner et al.,
2014; Johnson and Zhang, 2017; Zhang et al., 2015;
Conneau et al., 2016).

Several approaches to designing Deep Learning (DL)
architectures based on optimisation techniques and heuristic
search (Ammar et al., 2020) have been proposed. Such
techniques can either derive their inspiration from the natural
evolution of the biological organisms (Fogel, 1995) or they can
be built on the behavioural models of living organisms such as
fish, ants, bees and birds. Such methods are called Swarm
Intelligence (SI) algorithms (Kennedy, 2006).

Swarm intelligence refers to the collective behaviour of
decentralised and self-organised systems inspired by the natural
or biological behaviour (Kennedy, 2006). SI systems consist
typically of a population of simple agents interacting locally
with one another and with the environment. As a result of such
interaction, an intelligent global behaviour unknown to the
individual agents will emerge. Fish schooling, birds flocking,
ant colonies, hawks hunting, animal herding and bacterial
growth are examples of swarm intelligence in natural systems.
The characteristics of a decentralised and flexible way of
working make swarm intelligence a successful design
paradigm for algorithms that deal with increasingly complex
problems such as optimisation problems.

Many algorithms have been proposed to optimise CNNs.
Some of them focused on hyper-parameters search (Jin et al.,
2019; Lorenzo et al., 2017; Serizawa and Fujita, 2020). Other
works optimised the weights of neural networks such as
Khalifa et al. (2017) and Wang et al. (2019). However, it is

hard to balance the trade-off between efficiency and
effectiveness of automatically designing CNN. Many works
suffered from the lack of architecture search and the huge
computational requirements. Therefore, we develop a novel
swarm-based optimisation algorithm to make a balance
between architecture and hyperparameters optimisation with a
reasonable complexity (Hidri, 2017).

The aim of this paper is to design and develop an effective
and efficient SI-based method to automatically design the
structures and parameters of deep CNNs without manual
intervention. To achieve this goal, a new version of the Fish
School Search (FSS) algorithm was designed. The proposed
method, called SiNoptiC, is based on self-adjust exploration
and exploitation modes. It will be validated and evaluated with
a very well-known and widely used problem: Text
Classification and compared with six state-of-the-art
architectures on five widely-used data sets. Our major
contributions are as follows:

 A novel algorithm that combines the strengths of the FSS
algorithm and deep CNN to explore the search space of
neural network architectures and their associated
hyperparameters to be applied.

 The use of a variable-length encoding strategy virtually
with no size limitation to allow Fishes to represent deep
CNNs.

 A novel individual movement operator is defined that
allows fishes to make a random change of their
architectures in order to explore the research space which
surrounds them.

 A novel collective movement operator is presented that
can be used to allow a fish to move towards or spread
away from the architecture representing the barycentre of
the school. This collective operator allows us to regulate
the school’s exploration ability during the optimisation
process

This paper is organised as follows: an overview of baseline
CNN architectures and DL optimisation methods is presented
in Section 2. In Section 3, we will present a detailed
background about FSS and CNN. Then, we will explain our
motivation in Section 4. A detailed description of the proposed
algorithm is presented in Section 5. The experimental protocol
and results of the proposed algorithm are shown in Section 6.
Finally, the conclusion and future work are detailed in
Section 7.

84 I. Ferjani, M. Sassi Hidri and A. Frihida

2 Related work

2.1 Baseline CNN architectures

Kim (2014) proposed a simple CNN operating on word-level
and using a single convolution layer for text classification.
Kim’s model showed that a shallow architecture can
outperform many existing models. However, its inability to
model long-distance dependencies in the sentence stands as the
main issue.

Following this work, Kalchbrenner et al. (2014) presented a
convolutional architecture called the Dynamic Convolutional
Neural Network (DCNN) that they adopt for the semantic
modelling of sentences. Their model used Dynamic k-Max
Pooling, a global pooling operation over linear sequences, and
capable of handling varying length input sentences to capture
short and long-range relations.

Johnson and Zhang (2017) studied deepening of word-level
CNNs to capture global representations of text and proposed a
model with 15 weight layers, called Deep Pyramid CNN
(DPCNN). In their model, the down-sampling strategy was
used with a fixed number of feature maps to reduce the
computation time for convolution layers.

Zhang et al. (2015) introduced an alternative character-
based model with six convolution layers, having kernels of
different sizes (3 and 7) as well as simple max-pooling layers,
followed by three fully connected classification layers. They
found that considering the input text as a sequence of
characters improves the model performance and does not
require knowledge about the structure of a language.

Conneau et al. (2016) took a further step by introducing a
deep char-level CNN using up to 29 layers with small
convolutions and pooling operations.

The most crucial step of using convolutional architectures
on text classification tasks is designing the best classification
model. However, without a complete understanding of the
characteristics of the problem domain, it remains not trivial to
effectively decide the exact nature and order of layers, the
number of filters in convolutional layers, the number of units in
dense layers and other variables in the creation of deep neural
networks. The assignment of these variables is the cornerstone
of the success or failure of any CNN architecture which
motivates the automation of their design.

Several studies have been developed to find a theoretical
basis that can help in designing deep architectures and
finding a compromise between depth and efficiency.

Montufar et al. (2014) studied the complexity of certain
classes of function computable by deep feed-forward neural
networks. They showed that deep networks have more
representational power of these functions than shallow
architectures.

In 2001, the universal approximation theorem was
presented by Csáji (2001), which states that to approximate any
function a single hidden layer is sufficient, but this costs an
exponential number of neurons, making it often impossible in
computing terms. To overcome this problem, Delalleau and
Bengio (2011) suggested that deep networks offer a much more
compact representation of a function at a reduced cost (Wang
and Raj, 2017) when compared to shallow ones.

In Bengio et al. (2013), it was empirically verified that
complex tasks require deep neural networks to guarantee
computational efficiency. Many other studies highlight
the importance of the depth factor in the regularisation of
the network learning capacity (Szegedy et al., 2015).
Despite numerous studies, the truth is that there are no
analytical procedures to design the appropriate deep
architecture for a given problem, and trial and error are
often used instead.

2.2 Swarm intelligence optimisation of CNNs
architectures: a brief review

Recently, the design of Convolutional Neural Network
architectures has largely shifted from trial and error processes
to automatic methods. But most of the proposed architectures
are designed specifically to solve particular problems and their
generalisation to other fields requires expertise even if they
have the same architecture. In this section, we will review some
relevant works based on Swarm Intelligence optimisation of
convolutional neural networks.

Khalifa et al. (2017) combined two different optimisation
algorithms in a ConvNet architecture with seven layers for
handwritten digit classification; they used Particle Swarm
Optimisation (PSO) algorithm for the last layer which is the
output vector and Stochastic Gradient Descent (SGD)
algorithm for the first six layers. They reported an accuracy
improvement over a standard CNN that uses an SGD
optimisation algorithm in all layers.

Lorenzo et al. (2017) proposed an approach that aims to
automatically discover a more appropriate network structure
with a better configuration of hyper-parameters for the final
training of the neural network. They combine the PSO
algorithm and the steepest gradient descent algorithm to
optimise the hyperparameters (learning rate, dropout rate,
momentum, weight decay and the number of neurons in each
hidden layer) by designing a representation of the parameters
that encode the configuration of the network as a real number
vector for efficient processing of the individuals of PSO in the
search process.

Wang et al. (2018) proposed a PSO modelling strategy to
optimise the structure of a deep CNN for image classification
problems. Their approach was inspired by how the Network IP
address works. In order to facilitate the numerical convergence
of their algorithm, they used the IP address format to represent
the large number of parameters included in a CNN, with
integers values within a certain range by distributing it into
some smaller integers below 256.

Junior and Yen (2019) presented a PSO-based algorithm
for optimising CNN architectures for image classification with
the use of a direct encoding and a novel definition of difference
and velocity operators. Similarly, Wang et al. (2019) proposed
cPSO-CNN for optimising the hyper-parameter configuration
of CNN architectures. cPSO-CNN utilises a confidence
function to enhance the canonical PSO’s exploration capability
with the redefinition of the scalar acceleration coefficients of
PSO as vectors to better adapt for the variant ranges of CNN
hyper-parameters.

 SiNoptiC: swarm intelligence optimisation 85

Serizawa and Fujita (2020) proposed a method of using
linearly decreasing weights for PSO, which is one of the meta-
heuristic algorithms, for hyper-parameter CNN optimisation.
Another similar work was proposed in Jiang (2020) where a
multi-objective particle swarm optimisation based on
decomposition was used.

In summary, we have mentioned some relevant works
on the application of SI methods for the automatic design of
CNNs while minimising human interventions. Moreover, SI
methods show as promising approaches in solving the
problem of the automatic design of CNN architectures under
the absence of analytic procedures for such problems.

3 Basic concepts of CNN and FSS algorithm

3.1 Standard CNN layers

A standard CNN architecture for text classification includes
four basic components: embedding, convolution, pooling
and fully connected (see Figure 1). In addition, another
different regulatory layer which is dropout is also
incorporated. The number of layers as well as the manner
they are arranged is the most important part of the design of
a CNN architecture and has a strong impact on obtaining
improved performance. In the following sections, we briefly
describe the role of each layer in a CNN architecture for text
classification.

3.1.1 Embedding

The embedding layer provides a dense vector representation
of a text from the vocabulary by mapping each character,
word, or sentence to an embedding dimension vector of real
numbers (Sivakumar and Rajalakshmi, 2021). It is an
improvement over traditional encoding methods such as

bag-of-words where each word was represented by a large
sparse vector depending upon the size of vocabulary it is
dealing with.

The pre-trained word embeddings such as word2vec and
Glove (Pennington et al., 2014; Goldberg and Levy, 2014)
have been widely used as inputs to deep neural models. On the
other hand, some simple and efficient models which can
directly learn task-specific word embeddings or fine-tune on
pre-trained word embeddings have been proposed recently.
This work focuses on learning task-specific word embeddings
during the training of CNN.

3.1.2 Convolution

The convolutional layer consists of a set of filters to perform
convolutional operations on the sequences of word
embeddings. The filter will be a wide rectangle with
dimensions like 3 500 or 4 500 (if we have an embedding
dimension of 500). The filter width is usually the same as the
embedding dimension and its height or size may vary
according to the number of embeddings (rows of the input
embedding matrix) that will be seen at a time, similar to
representing an n-gram in a word model.

During the convolutional operation, the filter vertically
slides with the size of the filter kernel until the whole text
sequence has been scanned. At each position, a multiplication
operation in pairs is performed between the kernel weights and
the embedding values followed by a summation to get a single
output value. These aggregated filter outputs form a new vector
known as a feature map.

Thus, the convolution operation can be viewed as a
detector of features or patterns in sequential word groupings
that indicate traits like the sentiment of a text, the
grammatical function of different words and so on. In a
convolutional layer, multiple filters are allowed to coexist,
producing a set of feature maps.

Figure 1 A standard CNN architecture for text classification

86 I. Ferjani, M. Sassi Hidri and A. Frihida

3.1.3 Pooling

The pooling layers are a way to down-sample the incoming
feature vectors from the convolution layer. In the case of the
max-pooling layer, which is the most common pooling
method, only the maximum value in a feature vector, which
should be the most useful local feature, will be kept by the
network. The concatenation of the max-values produced by
processing each of the convolution feature vectors is used to
generate the sentence representation.

3.1.4 Fully connected

A fully connected layer is in principle the same as the
traditional Multi-Layer Perceptron (MLP) neural network. It
performs a global operation by taking input from the
previous layer and globally analysing the output of all the
preceding layers. Specifically, it ‘flattens’ the output of the
previous layers by turning them into a single vector that can
be an input for the next layer. Then, it applies weights to
predict the correct label and finally gives probabilities for
each label.

3.1.5 Dropout

Dropout refers to ignoring units (i.e. neurons) during the
training phase of a certain set of neurons that are chosen at
random. More technically, at each training stage, individual
nodes are either dropped out of the net with a certain
probability, so that a reduced network is left, or incoming
and outgoing edges to a dropped-out node are also removed.
It is used to make a regularisation within the network by
improving its generalisation and preventing over-fitting.

3.2 FSS optimisation

FSS (Bastos Filho et al., 2008) is a nature-inspired algorithm
based on the concept of populations. The core idea is to make
the fishes perform local searches and the school aggregates
social information. The search is performed in a bounded
search space. Each fish k is represented by a position within
the search space, ()kx t , which represents a candidate solution

to the optimisation problem, and its corresponding weight
is ()kW t .

Feeding is a fundamental concept in the FSS, it updates the
weight of each fish and reflects its level of success during the
individual movement within the current iteration. There are
three movement operators: individual, collective-instinctive,
and collective-volitive. The individual movement is used to
trigger the other operators. In this operator, each fish randomly
chooses a new position in its neighbourhood following the
equation (1):

(1) = () (1,1)k k indx t x t rand step   (1)

where:

 ()kx t and (1)kx t  are the positions of fish k before

and after the individual movement respectively.

 (1,1)rand  is an uniformly distributed random

numbers array with the same dimension as ()kx t and

values varying from 1 up to 1 .

 indstep is the individual step. It is predefined prior to

the search process. In general, it decays linearly along
the iterations.

The new fish position (1)kx t  is only approved if there is

an improvement of its fitness after the change. Otherwise,
the position remains unchanged and (1) ()k kx t x t  . After

the individual movement, the feeding operator is executed,
i.e. updating the weight kW of fish k using equation (2):

 
(1) = ()

max
k

k k

k

f
W t W t

f


 


 (2)

where:

 kf is the difference between the fitness of the neighbour

position  (1)kf x t  and the current position  ()kf x t .

  max kf represents the maximum absolute value of

fitness variation among all fishes in the school.

 kW is only allowed to vary from 1 up to scaleW . All

fishes are initialised with a weight equal to the value

/ 2scaleW .

The collective-instinctive component of the movement is
the average of individual movements for all kx . A vector I

representing the weighted average of displacements for each

kx is calculated according to equation (3):

=1

=1

=

N

k k
k

N

k
k

x f
I

f

 






 (3)

where N is the size of the school and kx is the displacement

of the fish k generated by the individual movement. The
displacement represented by I is defined in a way that fishes
with a higher improvement will attract other fishes to its
position. After computing I , every fish moves following the
equation (4):

(1) = ()k kx t x t I  (4)

The collective-volitive movement is used to determine the
final position of all fish school. First, the barycentre is
calculated according to equation (5):

=1

=1

() ()
=

()

N

k k
k

N

k
k

x t W t
B

W t




 (5)

Then, depending on the increase or decrease of the total
school weight, the swarm is contracted or dilated towards or

 SiNoptiC: swarm intelligence optimisation 87

outwards the barycentre of the school according to
equations (6) and (7), respectively.

 
() ()

(1) = () (0,1)
(), ()

k
k k vol

k

x t B t
x t x t step rand

dist x t B t


  (6)

 
() ()

(1) = () (0,1)
(), ()

k
k k vol

k

x t B t
x t x t step rand

dist x t B t


  (7)

where:

 volstep represents the steps of the volitive movement.

  (), ()kdist x t B t is the Euclidean distance between the

school barycentre B and fish k position.

 (0,1)rand is a normal rand vector with the same

dimension as B and values varying from 0 up to 1.

4 Motivation

In Section 2, we have reviewed some works about
optimising CNNs using Swarm Intelligence. According to
the study carried out in Baldominos et al. (2019), the
research area studying the optimisation of deep architectures
has been increasingly larger since 2017 and many works
testing different methods have been proposed.

Training a neural network involves using a training data set
to update the model weights in a way that minimises the error
between training labels and the network predicted outputs, the
cross-entropy loss is often used with CNNs. The training
process is based on an optimisation algorithm in which the
weights which maximise the performance of the model on the
training data set are chosen. In general, the gradient descent and
back-propagation (LeCun et al., 1998) are often used for
minimisation. Owing the complexity of the gradient
calculation which is usually computationally intensive and
requires powerful hardware to perform the entire training in a
reasonable time frame, the number of works studying the
optimisation of deep CNNs is still very scarce.

The good news is that there is a remarkable advancement
over the past few years in hardware devices (such as GPUs-
graphic processor units- or TPU-Tensor Processing Unit (Dean
and Hölzle, 2017)) which speed up the process of iterating over
different models and topologies since the most consuming
computation power tasks (forward propagation and backward
propagation) are notably accelerated with the use of these
devices. Additionally, some deep learning primitives such as
NVIDIA’s cuDNN (Chetlur et al., 2014) and frameworks such
as TensorFlow (Abadi et al., 2016) or PyTorch (Paszke et al.,
2016) are developed to make training and testing thousands of
CNNs feasible. This was our main motivation to explore the
field of deep architecture optimisation.

Also, deep networks have been demonstrated to be capable
of achieving remarkable performance in NLP tasks such as the
online Skype translator, Google Spam filters or Netflix.
However, an overall analysis of the existing optimisation
methods for DL architectures in Section 2 shows that image

processing tasks have received more attention than the text
processing field over the last few decades. Our aim is to extend
architecture optimisation techniques to unexplored domains
such as text classification.

While some research on Evolutionary Computing-based
approaches such as Genetic Algorithms has reached a
significant degree of advancement for traditional ANNs, the
number of works using Swarm Intelligence meta-heuristic is
still small, yet growing. Thereby, the development of swarm
intelligence-based algorithms that can automatically create and
evaluate CNN architectures is important.

An overall analysis of the Swarm Intelligence-based
optimisation methods shows that the underlying idea behind all
SI algorithms is similar, and various SI algorithms differ only
in their details. Particle Swarm Optimisation (PSO) has been
widely used while many other SI algorithms such as Fish
School Search (FSS) optimisation may also be explored to
evolve deep architectures, especially CNNs. Our main
motivation to use the FSS algorithm is the use of the search
operators: the core idea is to evolve CNN architectures
individually toward better efficiency. Collectively, the best
architectures have more influence on the search process as a
whole, which makes the possible solutions move toward better
architectures in the search space over the iterations.

In summary, considering the large use of CNNs in many
fields, the automation of their architectures design is a very
promising area that must be given a big interest. Another
important field is SI optimisation which has gained significant
attention in the previous few years due to its simplicity and fast
convergence. In addition to current advances in computation
technology which facilitate the development of new works
within this line of research.

5 FSS and CNN coupling-based optimisation for
text classification

In this section, we firstly present an overview of the
proposed solution with various aspects that contribute to the
solution, next we detail the main steps of our algorithm. In
the next sections, we explain our encoding strategy of CNN
architecture as well as the individual and the collective
movement associated with a CNN which plays central roles
in our solution and algorithm.

5.1 Model overview

The core idea of the proposed algorithm is the use of FSS
optimisation to explore the search space of deep neural network
architectures. A set of CNN architectures is considered as the
fish school which will swim by applying individual and
collective movements to achieve a collective goal that is
discovering the best architecture for a given data set. The inputs
of our proposed algorithm are parameters related to the
initialisation of the school of CNN architectures, such as the
minimum and maximum numbers of layers, parameters related
to the FSS algorithm such as the school size and the number of
iterations, and parameters referring to the text classification
task, such as the training data.

88 I. Ferjani, M. Sassi Hidri and A. Frihida

The Algorithm 1 shows the framework of the proposed
algorithm. The first step is initialising the school with the
predefined school size where each fish encodes a particular
architecture of the CNN using the proposed encoding
strategy to encode the predefined building blocks. Then, all
fishes perform an individual movement followed by an
evaluation of the fitness of each fish after this movement.
After that, the best fish is selected based on fitness. Then, all
fishes perform a collective movement. Specifically, the
barycentre of the school is calculated and fishes will either
expand or contract from the barycentre based on the global
fitness improvement of the school. The evolution continues
until the number of iterations is reached.

As shown in Figure 2 which presents a detailed illustration of a
single iteration of our algorithm and the corresponding main
steps. The proposed algorithm follows the standard pipeline of
FSS (the phases of individual and collective movements). Note
that, all used operators such as barycentre are redefined to fit a
CNN architecture optimisation process.

Our algorithm includes five modules allowing it to find
the optimal CNN architecture: a flexible CNN encoding,
initialisation of a school, fitness evaluation of individual fishes,
individual and collective movements that allow fishes to update
their architectures. The corresponding algorithms of these
modules are presented in detail in the following subsections.

5.2 CNN modelling

As introduced in Sub-section 3.1, a standard CNN is composed
of the convolution layers, pooling layers and fully connected
layers. Designing an algorithm that deals with such structures
highly relies on the encoding strategy used. In the proposed
encoding strategy, we use a variable-length array which offers
better flexibility than the fixed-length encoding since it enables
the proposed algorithm to automatically find the promising
CNN architecture without any restriction in depth. For
example, if the depth of the CNN providing the highest
classification accuracy is 20, the proposed encoding strategy
could enable candidates architectures to achieve this depth
during the optimisation process, no matter what was their initial
depth. The variable-length encoding strategy is the key to
enabling the proposed algorithm to automatically optimise a
CNN architecture without any domain knowledge from
the users. In our encoding strategy, a direct-encoding
representation of the parameters associated with each layer is
performed. That is, every layer of information in the CNN is
specified directly and explicitly in the encoding array.

Figure 2 SiNoptiC algorithm

 SiNoptiC: swarm intelligence optimisation 89

The parameters of a convolution layer are the number of
output filters and the size of the convolution window. In
addition, the pooling layers used in the proposed encoding
strategy are max-pooling layers without padding. So the
only parameter encoded for these layers is the size of the
max pooling window. For the fully-connected layers, the
number of neurons is encoded.

An example of the proposed encoding strategy
representing a CNN is illustrated in Table 1, where CV ,
MP and FC stand for convolution, max-pooling and fully-
connected layers, respectively. This CNN is composed of
three layers: convolution – max-pooling – fully connected.
The list encoding this CNN is composed of the parameters
representing each layer.

Table 1 CNN layers encoding example

CV: Convolution MP: MaxPooling FC: Fully Connected

Type: Convolution Type: Pooling Type: Fully connected

Output filters: 178 Pooling size: 3 Neurons: 200

Kernel size: 5

5.3 School initialisation

In our algorithm, fishes dynamics was based on
initialisation, movement of the initial set using individual
and collective movements. Thus, the initialisation of the
school (()InitSchool) is an important step in the proposed

algorithm. The school was initialised with a set of N fishes
representing a set of CNN architectures.

Each architecture has a random depth, between three
and  maxDepth (the upper bound of the initial number of

layers) which limits the depth only in the initialisation step.
For the convenience of the discussions, each architecture is
composed of three main parts starting with the embedding
layer which is a common layer for all fishes, the second part
is composed of the convolution and pooling layers and the
last part is the fully connected layers.

In general, the CNN architectures for text classification
start with an embedding layer. In our work, we train our
word (and character) embeddings during the training of the
CNN without using any pre-trained word embeddings. The
second part takes the sequence of embedding vectors as
input and can only be added after the first part. In this part,
we use blocks of layers where each block is either
composed of one convolution layer followed by one max-
pooling layer or only one convolution layer. The choice of
inserting a max-pooling layer after a convolution layer is
made randomly. In fact, we do not require an alternation
of convolution and pooling layers, from which each

architecture can contain two or more successive convolution
layers. It is important to notice that in case two or more
convolution layers are stacked together, the compatibility of
inputs and outputs between successive layers is ensured by
defining ranges of possible values for each.

The last part, which contains a succession of fully
connected layers, takes as input data by flattening all
elements of the second part of feature maps.

Usually, the convolution and the pooling layers can be
stacked together after the embedding layer, while the fully
connected layers are stacked with each other at the tail of
the architecture. Typically, fully connected layers take the
deep representation from the convolution and pooling layers
and transform it into the final output classes or class scores.
It is not common to insert fully-connected layers between
convolution and pooling layers because it makes the entire
training process of CNN inefficient as well as time-
consuming. This is due to the increase in the number of
parameters of the overall CNN.

The Algorithm 2 lists the major steps of the school
initialisation, where the initial depth is randomly generated.
70% of this depth is allocated to convolution blocks

 .iF CV and 30% is allocated to fully connected layers

(.iF FC). Line 5 shows the generation of the first part of a

given fish. The function ()addEmbedding will add an

embedding layer to a fish architecture given the embedding
dimension  embed .

Lines 6–8 show the generation of the second part, where
the algorithm stacks the convolution and pooling layers
using the function ()addConvPool . In this step, an arbitrary

selection is performed to decide whether a convolution layer
is followed by a pooling layer or not. If so, the pooling size
will be randomly generated.

The convolution layer has two random parameters: the
number of output convolution filters from 7 up to maxmaps

and the length of the convolution window from 3 up to

maxk , where maxk indicates the maximum size of the

convolution kernel. Lines 9–11 show the generation of the
last part using the _ ()add FC function that will join an FC

layer to the fish architecture. This layer has a number of
hidden neurons generated randomly between 1 up to a
maximum of maxn . All layers use the rectified linear unit

 ReLU as an activation function. Line 12 adds the last Fc

layer with cnb lasses as output. In lines 13-14, each fish is

trained on the training data and their accuracy and loss are
saved.

90 I. Ferjani, M. Sassi Hidri and A. Frihida

5.4 Fitness function

The objective of the fitness function evaluation is to give a
quantitative measure determining which architectures will
be selected as the best solutions. Because the proposed
algorithm is related to text classification tasks, we used the
classification loss as a metric to assign the fitness of fishes
architectures, in our case we used the cross-entropy loss
function. The best architecture in our algorithm is the one
having the smallest loss, no matter what are the values of
the other parameters and without considering any other
criteria.

Regarding this step, we have trained each CNN
architecture over a training set. Before the training, each CNN
is compiled based on the encoded information in the list of
layers. Noting that, a dropout layer is added between each two
FC layers to avoid the over-fitting problem (Ioffe and
Szegedy, 2015).

Secondly, we have reduced the size of the training
data during the optimisation algorithm to decrease the
Synoptic execution time. Indeed, we used a sample of 50% of
the whole data set which has been trained over ten epochs. The
best model found will be trained on the entire data set. The
Training process is performed using Adam (Kingma and Ba,
2014) and weights are initialised with Xavier (Glorot and
Bengio, 2010).

5.5 Individual movement

The individual component of the movement in FSS is
responsible for each fish local search looking for promising
architectures in the search space, as described by equation (1).
In our algorithm, each fish architecture Fi is represented by a
position  . , .i iF CV F FC within the search space, where

.iF CV represents the number of convolution blocks and

.iF FC represents the number of fully connected layers.

During the individual movement, each fish will follow a
random change in its architecture. This change consists of
increasing or decreasing .iF CV and .iF FC by a small step

according to equation (8).

. (1) = . ()

. (1) = . ()
i i ind

i i ind

F CV t F CV t step

F FC t F FC t step

 
 

 (8)

where:

 . (1)iF CV t  and . (1)iF FC t  are the new values of

. ()iF CV t and . ()iF FC t after the individual movement.

 indstep defines the value of the number of layers added

or removed during this movement and it is a random
number varying from 2 up to 2 .

Changing the architecture of a fish after an individual movement
is an important step in the Synoptic algorithm. The change
happens in the module MoveRandomly() in Algorithm 3.

The movement only occurs if there is an improvement in the
fitness of fish i after the change. Otherwise, the fish keeps
the same architecture.

The change of ConvPool part is done independently of the
FC part by generating a random step for each part. If the step is
a negative value, layers will be removed from the fish
architecture.

 SiNoptiC: swarm intelligence optimisation 91

Figure 3 Individual movement proposed showing the initial fish architecture and new architectures after different possible randomly
chosen steps

Otherwise, layers will be added without defining the
maximum number of layers that the fish architecture can
reach. However, a finite minimum of layers is allowed. If,
after removing layers, the fish ends up with layers less than
that allowed, the fish architecture will be set to the
minimum architecture composed of three layers. This
process is illustrated in Figure 3.

5.6 Collective movement

The collective movement in the proposed algorithm is defined
as the combination of both volitive and instinctive movements.
We merged the two types of movements in a single movement
in order to adapt them to the nature of CNN architectures. After
all fishes architectures have changed individually, the list of
fish’s loss is computed and sorted in an ascending order to
select the fishes with the lowest loss values. Selected fishes that
had successful individual movements will influence later the
resulting direction of the collective movement more than other
ones. The number of selected fishes is proportional to the size
of the school. In our algorithm, we set this proportion to 50% .
The reason for choosing a percentage of the fish to contribute
to the collective movement is random initialisation. Indeed, we
may have a number of generated CNNs with bad loss values
and we want to exclude them from the barycentre calculation to
ensure an improvement of the overall loss of the school over
iterations. After the selection step is performed, all fishes in the
school perform a collective movement. CNNs having bad loss
values will be more affected by this movement.

This movement is considered as an overall success/failure
evaluation based on the incremental sum of the loss of the fish
school as a whole. We refer to the loss of the school as the
school weight calculated according to equation (9).

=1

= .
N

i
i

W F loss (9)

where W represents the weight, N is the size of the school
and .iF loss is the loss of the fish i architecture after

evaluating its fitness.
The collective movement is based on the school weight:

if there is an improvement in the weight, i.e. the value of the
total error decreases (which means that the search was
successful), the radius of the school should contract, i.e. the
fish will approach the barycentre; otherwise, it should dilate
(the fish will move away from the barycentre).

This operator is supposed to greatly help improve the
exploration capabilities of our algorithm. The collective
movement is applied as a small change to every fish
architecture concerning the school barycentre.

The fish-school barycentre is obtained by considering
the best fish architectures with corresponding CV and FC
layers according to equation (10).

 

1 1

=1 =1

. .
= , = ,

1 1

N N

i i
i i

CV FC

F CV F FC
B B B

N N

 
 
 
 
 
 

 
 (10)

where:

 CVB and FCB are the coordinates of the barycentre B

in terms of number of convolution blocks and fully
connected layers, respectively.

 1N is the number of fishes to be considered when
calculating the barycentre of the school (N1=N/2).

 .iF CV and .iF FC are the number of CV blocks and

the number of FC layers for fish i respectively.

In our barycentre calculation, we considered that all fishes
have the same coefficient (equal to 1). In each iteration, a

92 I. Ferjani, M. Sassi Hidri and A. Frihida

comparison between the previously recorded overall weight
of the school and the new overall weight observed at the end
of the current search cycle is made. According to whether
an improvement has been found, contractions and
expansions of the school will occur.

For this movement, we also defined a parameter called
collective step (colstep) which is fixed to 0.5 along

the iterations. The fish moves to the new position as in
equation (11) if the overall weight of the school decreases in
the FSS cycle; if the overall weight increases, we use
equation (12).

(1). = (). | (). |

(1). = (). | (). |
i i col i CV

i i col i FC

F t CV F t CV step F t CV B

F t FC F t FC step F t FC B

  
  

 (11)

(1). = (). | (). |

(1). = (). | (). |
i i col i CV

i i col i FC

F t CV F t CV step F t CV B

F t FC F t FC step F t FC B

  
  

 (12)

The above equations show how a fish school architecture
changes in collective movement towards the search objective
which is finding the best architecture.

6 Computational results

6.1 Data of experimentation

The comparison of many different optimisations approaches to
show the benefit of each one is highly related to the availability
of large benchmark data sets (e.g. 1000 classes for ImageNet
for computer vision). To evaluate the ability of our approach to
competitively produce CNN architectures, we conducted our
experiments on five text classification benchmark data sets,
which are freely available and widely used for investigating the
performance of CNN architectures. They are the AG’News
(AG.N), DBPedia (DBP), Yelp Review Polarity (Yelp.P), Yelp
Review Full (Yelp.F) and Yahoo answers (Yah.A) (Zhang
et al., 2015).

Several classification tasks such as news categorisation,
topic classification, or sentiment analysis are covered by the
used data sets The number of classes is comprised between
2 and 14. The number of training examples varies from 120
k up to 3.6 M, with equal numbers of examples in each class
for both training and test sets. A summary of their classes,
training and test sizes is shown in Table 2. The reader is
referred to Zhang et al. (2015) for more details on the
construction of the data sets.

6.2 Comparison models

To evaluate the ability of our SiNoptiC algorithm to
competitively produce CNN architectures, we compared our
results with state-of-the-art text classification CNN models
which have been introduced in Section 2.

Table 2 Data of experimentation

Data set #Classes #Train #Test

AG’s News (AG.N) 4 120 k 7.6 k

DBPedia (DBP) 14 560 k 70 k

Yelp Review Polarity (Yelp.P) 2 560 k 38 k

Yelp Review Full (Yelp.F) 5 650 k 50 k

Yahoo! Answers (Yah.A) 10 1400 k 60 k

It is important to notice that these models are not found using
an optimisation algorithm as in our case. These models are
manually designed for specific problems. A direct comparison
is not possible in our case due to the absence of optimisation
algorithms for text classification, especially the comparison of
the computation complexity. Instead, we evaluate the
performance of CNNs automatically found by our SiNoptiC
against those designed manually on the same data sets.
Although there are recent models based on CNN, we choose
the first CNNs to compare our results with them (Conneau
et al., 2016; Zhang et al., 2015; Kim, 2014; Johnson and
Zhang, 2016, 2017). Both char-level and word-level CNNs
were used for comparison in order to evaluate our algorithm for
different token types of text input. Their classification results
are directly cited from the original publications except for
Kim’s model (2014) for which we use our implementation to
get results on our chosen benchmark data sets.

6.3 Experimental protocol

The parameters of the models used for comparison have
been manually tuned with the use of domain expertise of
their authors. Thus, none of their parameter settings needs to
be specified since we directly cited their classification
results from the original publications.

For Kim’s model, we implemented the CNN-rand model
and we set the parameters as they were mentioned by the
author in Kim (2014). All our parameters related to CNN
are based on the settings employed by the state-of-the-art
CNNs. We can group the parameters used in our algorithm
into three categories: CNN architecture initialisation, FSS
optimisation and CNN training (see Table 3).

The parameters of the first category control the initial
fishes’ architectures generated randomly during the
initialisation step. These parameters are:

 The lower bound of the initial depth.

 The upper bound of the initial depth.

 The highest number of neurons in FC layer.

 The lowest number of neurons in FC layer.

 The character-based convolution window size.

 The word-based convolution window size.

 The number of output filters from a convolution layer.

 SiNoptiC: swarm intelligence optimisation 93

Table 3 List of parameters used for the fish school search
algorithm

Parameter Value

CNN architecture initialisation

Lower bound of initial layers 3

Upper bound of initial layers 30

Lowest number of neurons in a FC layer 2

Highest number of neurons in a FC layer 300

Char-Conv window size: random from [3, 5 ,7]

Word-Conv window size: random from [3, 4]

#output filters: random choice from  6 7 8 92 ,2 ,2 ,2

FSS optimisation

School size 20

Number of iterations 15

Individual step movement 1

Collective step movement 0.5

CNN training

Sampling percentage 50%

#epochs for fish evaluation 1

#epochs 10

Dropout rate 0.5

Initialisation is the first step in our algorithm. During this
step, a number of CNN architectures with different depths
and configurations will be generated. The number of layers
of each fish’s architecture will be randomly chosen. The
highest and the lowest number of layers parameters will
bound the initial fish’s architecture. After the initialisation
step, the fish’s architecture will be changed by following
our defined FSS movements with respect only to the
minimum number of layers and without an upper bound
depth.

In addition, these parameters also allow us to regulate
the size of the search space for optimisation. Indeed, large
values of the maximum depth will guide optimisation in
deep architectures search space. But, the constraint here will
be the size of available memory as well as the computing
power used for running the algorithm.

When an FC layer is added to the fish architecture, its
number of neurons will be randomly chosen between the
highest and the lowest numbers of neurons in FC layers. Also,
the number of feature maps that any given convolution layer
can output is limited by the number of output filters. In order to
ensure the compatibility of output and input dimensions
between two convolution layers, the minimum value of the
output filters size is always greater than the maximum value of
the convolution window size. In this way, we avoid having a
kernel size greater than a feature maps size when two
successive convolutions happen. Our chosen values are
inspired by the state-of-the-art existing models in both
character and word CNNs for text categorisation. The
convolutional window’s size will always be a random number
chosen from a predefined range of values.

The second category contains four parameters that are
related to the FSS algorithm: the school size, the number of
iterations and the individual and collective movement step.
The school size defines the number of fishes used in our
algorithm knowing that each fish represents a CNN
architecture which can be a possible solution for our
optimisation problem. Increasing the number of fishes has
an impact on expanding the search space of possible
architectures during the search process.

The individual step parameter is predefined before the
search process. In our case, it is set to a neutral value (equal
to 1). Indeed, each movement will increase or decrease the
number of convolution and fully connected layers according
to the randomly generated couple of integer values.
Multiplying by a neutral value is appropriate in this case.

The collective movement step will control how fast the
fishes in the school will be attracted to or spread away from
the school barycentre. In our case, a smaller step will make
the fish’s movement very slow and ineffective in the case
where the fish have almost an architecture similar to the
barycentre. Moreover, a neutral collective step value (equal
to 1) will reduce the diversity of the school and,
consequently, all fishes will have the same architecture after
each collective movement which will decrease the diversity
of the school and limit the search space.

The parameters of the third category are used in the
control of the training process of each fish. It contains two
parameters:

 The percentage of samples used from the full data set in
question to evaluate fishes during the algorithm.

 The number of epochs

 The dropout rate.

The computational resources required for training only one
epoch on the used large-scale data sets would require
significant computational resources and take a long time.
For this reason, we only train and evaluate fishes on 50% of
the data set during the optimisation process with respect to
the number of samples in each class. 70% of the data are
used for training, 20% for testing and 10% for validation.
The same distribution is used when the full data set is used.

The number of epochs for fish evaluation will define the
number of times that the fish’s architecture will work
through the training data set before evaluating its training
accuracy. When the best is found at the end of the
optimisation, it will be evaluated in the test set after a full
training for a number of epochs.

The dropout rate parameter is used to randomly omit
connections in fully connected layers during the training
process of fish’s architecture to avoid over-fitting. For all
data sets, we trained and evaluated the best architecture
found with and without a dropout rate.

Finally, in order to obtain significant results in our
experiments, a total of 50 independent tests was performed.
We used in our tests a virtual machine having the following
characteristics: a single Nvidia Tesla K80 GPU and 13 GB
of RAM memory. Although these are considered powerful

94 I. Ferjani, M. Sassi Hidri and A. Frihida

features for CNNs training, the amount of RAM remains
insufficient to train complex CNNs.

6.4 Results and analysis

6.4.1 About architecture optimisation

For the AG.N, DBP, Yelp.P, Yelp.F and Yah.A data sets, the
best test errors recorded by our SiNoptiC for char-level and
word-level CNN, shown in Table 5, are 2.73, 0.60, 1.28, 8.47
and 13.23, respectively. The accuracy-test on these data sets are
92%, 98%, 95%, 65% and 56%, respectively. In Figure 5, a
boxplot representation of the test accuracy distribution for
character and word level CNN on these data sets.

In character-level CNN, our method recorded the best loss
results on all data sets with respect to chosen char-based
models used for comparison. For the DBP data set, our char
best model found has a loss of 1.20 which is nearly equal to
the best value found by VDCNN (Conneau et al., 2016).

In word-level CNN, our method recorded the best results
on AG.N and Yelp.F data sets for chosen word-based models
used for comparison. Although our results are not the best on
the DBP, Yelp.P and Yah.A, they are among the two best
results. Whereas we are not using any kind of data
augmentation, our results are considered promising. For
example, Kim’s (2014) word-level model was able to achieve
test errors of 5.5, 11.5 and 12.99 on DBP, Yelp.P and Yah.A,
respectively using a simple 3 layers CNN. It is important to
note that a simple CNN containing only 3 layers such as Kim’s
CNN outperforms the best test errors on three data sets from a
total of five. Word-CNN models generated by our algorithm
are 3 layered models with different kernel sizes and feature
maps (see Table 4). In our word CNN, we apply a max-
overtime pooling operation (Collobert et al., 2011) over the
feature map. For this reason, the size of the max pooling
operation depends on the number of words in the sentence fed
to the network.

For all data sets, the terms ()dropout and ()dropout

in Table 6 are provided to indicate whether the result
generated by the proposed method is with or without the use
of a dropout layer between fully connected layers. The best-
obtained test errors were found when using dropout. The
mean test errors for AG.N, DBP, Yelp.P, Yelp.F and Yah.A
data sets in character level CNN are 4.46, 2.26, 2.14, 13.65
and 17.22 respectively, when using dropout, and 7.45, 2.46,
2.73, 14.62 and 19.88, respectively without using dropout.

The mean test errors for the same data sets in word-level
CNN are 3.76, 0.88, 2.98, 9.22 and 15.14, respectively,
when using dropout, and 4.12, 1.17, 3.12, 10.03 and 17.26,
respectively without using dropout.

Table 4 Best found word level models by our algorithm on
the benchmark data sets (the size of max-pooling
kernel depends on the number of words in the
sentence fed to the network)

Data set Layer Parameters

AG.N

CV kernels:[4, 5, 6]; output filters: 512

MP kernel size: variable

FC output neurons: 190

DBP

CV kernels: [2, 3, 4, 5]; output filters: 64

MP kernel size: variable

FC output neurons: 152

Yelp.P

CV kernels: [3, 4, 5]; output filters: 512

MP kernel size: variable

FC output neurons: 126

Yelp.F

CV kernels: [5, 6, 7]; output filters: 512

MP kernel size: variable

FC output neurons: 192

Yah.A

CV kernels: [3, 3, 3]; output filters: 512

MP kernel size: variable

FC output neurons: 169

Table 5 Best results obtained by SiNoptiC and their
computational complexity for five data sets

 Data set Error
Accuracy

(%)
Parameters

Char
CNN

AG.N 3.86 87 523k

DBP 1.20 97 3M

Yelp.P 1.92 93 591k

Yelp.F 9.79 20 983k

Yah.A 14.08 55 1.6M

Word
CNN

AG.N 2.73 92 5M

DBP 0.60 98 4M

Yelp.P 1.28 95 2M

Yelp.F 8.47 65 4.4M

Yah.A 13.23 56 3M

Table 6 Test errors of SiNoptiC on five data sets with and without dropout

 SiNoptiC AG.N DBP Yelp.P Yelp.F Yah.A.

Char CNN

(+) dropout (Best) 3.86 1.20 1.92 9.79 14.08

(+) dropout (Mean.) 4.46 2.26 2.14 13.65 17.22

(–) dropout (Best) 5.16 1.88 2.05 14.18 15.88

(–) dropout (Mean) 7.45 2.46 2.73 14.62 19.88

Word CNN

(+) dropout (Best) 2.73 0.60 1.28 8.47 13.23

(+) dropout (Mean) 3.76 0.88 2.98 9.22 15.14

(–) dropout (Best) 3.08 0.98 1.60 9.47 15.99

(–) dropout (Mean) 4.12 1.17 3.12 10.03 17.26

 SiNoptiC: swarm intelligence optimisation 95

Table 7 SiNoptiC test errors comparison with different models

 Model AG.N DBP Yelp.P Yelp.F Yah.A.

Char CNN

Char-level CNN (Zhang et al., 2015) 12.82 1.73 5.89 39.62 29.55

VDCNN (Conneau et al., 2016) 8.73 1.29 4.28 35.28 26.57

SiNoptiC 3.86 1.20 1.92 9.79 14.08

Word CNN

Kim’s model (Kim, 2014) 2.78 0.55 1.15 8.60 12.99

Word-level CNN (Zhang et al., 2015) 8.55 1.42 4.60 40.16 31.50

Word-CNN (Johnson and Zhang, 2016) 6.95 1.12 3.44 34.21 26.06

DPCNN (Johnson and Zhang, 2017) 6.87 0.88 2.64 30.58 23.90

SiNoptiC 2.73 0.60 1.28 8.47 13.23

With regard to illustrating the convergence behaviour of
Synoptic along with the iterations, we run SiNoptiC 5 times on
AG.N data set where 20 fishes were used over 15 iterations.
We recorded the best fish accuracy at the end of each run, as
we can see in Figure 4, the best accuracy was achieved from
the 8th iteration and there is no remarkable improvement until
the last iteration.

It is important to note that such convergence has nothing to
do with the quality of the solutions at the end of the run. It only
talks about a set of architectures that will evolve to end up with
the same architecture rather than giving different architectures
with different depths and parameters.

In Figure 4, it is clear that we could have more chances
of reaching a good accuracy at the end of each run. A
possible improvement will take place if we could increase
the number of iterations and the number of fishes to explore
more CNN architectures and find better models for the
problem in question. Unfortunately, Owing our limited
computational power, it was not possible to increase the
number of fishes and iterations in our runs. Reducing the
running time of SiNoptiC is a major contribution to the
field.

In the proposed algorithm, there are two separate
versions: the first considers the entry as a sequence of

characters, and the second considers the entry as a sequence
of words.

In Figure 5, we illustrated both character and word level
CNNs found by our algorithm, the figure shows that the best
accuracy was achieved using the word CNN for all benchmark
data sets. One of our future research directions is to merge the
two versions and create an algorithm where input granularity
(character or word) and depth are optimised at the same time.

Figure 4 The accuracy of the best architecture accuracy found
over 15 iterations of our SiNoptiC algorithm on AG.N
data set

Figure 5 Boxplots of the test accuracy for: (a) AG’News, (b) DBPedia, (c) Yelp Polarity, (d) Yelp Full and (e) Yahoo Answers data sets
obtained with the proposed SiNoptiC

(a) (b)

96 I. Ferjani, M. Sassi Hidri and A. Frihida

Figure 5 Boxplots of the test accuracy for: (a) AG’News, (b) DBPedia, (c) Yelp Polarity, (d) Yelp Full and (e) Yahoo Answers data sets
obtained with the proposed SiNoptiC (continued)

(c) (d)

(e)

We implemented two versions of our SiNoptiC: the first one
initialises the school with architectures using a word
embedding as the first layer while the second version uses a
character embedding instead. The word-level SiNoptiC
provides as best architecture found a model with three
layers (Convolution – Max Pooling – Fully Connected) for
all data sets.

The character level SiNoptiC performs models with
different depths that we presented in Table 8. For each data
set, we presented the layers found with their related
parameters. All the best CNNs found contain only a single
FC layer at the tail of each model. This highlights the
performance of the SiNoptiC algorithm because many
recent studies have proved that CNNs having a single FC
layer at the end are more efficient (Springenberg et al.,
2014).

Our results show that the SiNoptiC algorithm can find
optimal architectures without any expertise on the domain in
question. Even though SiNoptiC was tested for character
level and word level separately, our results show that in

both cases SiNoptiC can be considered as an efficient way
to find optimised CNN architectures. Thus, the proposed
algorithm can be a good way to help non-experts
automatically design deep architectures and it can be
extended to several areas other than text classification.

6.4.2 About individual and collective movements

Individual and collective movements occur for each fish
architecture in the school at every iteration of SiNoptiC
algorithm according to equations (8), (6) and (7). The step is
randomly chosen and each fish depth will increase or decrease
without any maximum boundaries.

Figure 6 shows the accuracy of each fish before and after
the individual movement during the first iteration of SiNoptiC
for the AG.N data set. We have chosen to illustrate the effect of
the individual movement during the first iteration because the
fish were initialised with different architectures randomly
generated and the algorithm has not yet converged to the same
architecture.

 SiNoptiC: swarm intelligence optimisation 97

Table 8 Best found character level models by our algorithm on the benchmark data sets

Data set Layer Parameters

AG.N

CV window size: 5; output filters: 256

MP kernel size: 5

CV window size: 3; output filters: 128

MP kernel size: 3

CV window size: 3; output filters: 256

MP kernel size: 5

FC output neurons: 300

DBP

CV window size: 3; output filters: 512

CV window size: 5; output filters: 256

MP kernel size: 3

CV window size: 3; output filters: 64

MP kernel size: 3

CV window size: 3; output filters: 128

MP kernel size: 3

CV window size: 3; output filters: 64

MP kernel size: 3

FC output neurons: 1024

Yelp.P

CV window size: 3; output filters: 256

MP kernel size: 3

CV window size: 3; output filters: 512

CV window size: 3; output filters: 256

MP kernel size: 5

CV window size: 3; output filters: 128

MP kernel size: 5

CV window size: 3; output filters: 64

MP kernel size: 3

FC output neurons: 378

Yelp.F

CV window size: 5; output filters: 512

MP kernel size: 5

CV window size: 3; output filters: 256

MP kernel size: 5

CV window size: 3; output filters: 64

MP kernel size: 3

CV window size: 3; output filters: 128

CV window size: 3; output filters: 64

MP kernel size: 3

FC output neurons: 257

Yah.A

CV window size: 5; output filters: 128

MP kernel size: 3

CV window size: 3; output filters: 256

MP kernel size: 3

CV window size: 3; output filters: 256

MP kernel size: 3

CV window size: 3; output filters: 128

MP kernel size: 3

CV window size: 5; output filters: 128

MP kernel size: 3

FC output neurons: 309

98 I. Ferjani, M. Sassi Hidri and A. Frihida

Figure 6 Individual movements illustrated during the first
iteration of SiNoptiC on AG.N data set

Hence, during this iteration, the effect of the individual
movement is more clear. Over ten fishes, six fishes had
successful individual movements. For example, fish 2 moved
from the accuracy 37 to 40% after a change in its architecture.
Unlike fish 1 which remained at the same position with the
same accuracy of 30% and without any change in its
architecture. We should mention that according to our
algorithm, the individual movement of the fish does not occur
if there is no improvement in the accuracy. Figure 6 shows the
accuracy of each fish before and after the collective movement
that accrued directly after the previous individual movement to
track the fish’s accuracy. We can see that the effect of the
collective movement has less impact on the improvement of
the fish’s accuracy when compared to the individual
movement. This is explained by the fact that during the
collective movement fishes having unsuccessful movements
will have more chances to change their architectures.

Indeed, the fishes having successful individual movements
will influence the resulting direction of movement more than
the unsuccessful ones. Only two fish (Fish 1 and Fish 3) over
ten recorded an improvement after their collective movement.
This shows that our defined collective operator is working
according to the designed objective which is enhancing the
overall performance of the school.

In the SiNoptiC algorithm, we can see the importance of
both individual and collective movement on the best
architecture found. Figure 6 shows that the accuracy of the fish
is getting better after each individual movement which could be
an increase or decrease in the number of layers or a change in
the layers’ parameters. We found that sometimes a random
change can achieve good accuracy. Figure 7 shows that the
proposed collective movement operator is performing an
update to the fish architecture in a way that either improves its
accuracy or makes no change. In all cases, the design of this
operator in our algorithm is indeed working similarly to an FSS
algorithm by making only good fishes influence the resulting
direction of this movement. All the designed operators exert a
strong influence on the search result.

Figure 7 Collective movements illustrated during the first
iteration of SiNoptiC on AG.N data set

6.4.3 About computational complexity

Although it is not easy to compute the algorithm’s
computational complexity theoretically because of the
stochastic nature of FSS and CNNs, the obtained results show
that SiNoptiC can find very competitive architectures with
fewer parameters. For example, if we compare our char-CNN
best model with VDCNN (Conneau et al., 2016) on Yelp.P
data set, we can see that our best model has 10 layers, an error
of 1.92 and only 591 thousand parameters, is much simpler
than VDCNN.

SiNoptiC has shown its ability to find simpler models with
fewer parameters than those of other comparable models. For
example, in DBP, Yelp.P and Yah. Data set, best models found
by SiNoptiC algorithm only have 3, 0.591 and 1.6 million
parameters respectively (see Table 5) which are much less than
those of VDCNN (Conneau et al., 2016).

It should be noted that there are studies that have shown
that, at the word level, simple three-layer models are much
more efficient than deep models. At the character level, the
models provided by our algorithm are simple when compared
with VDCNN (Conneau et al., 2016). So, SiNoptiC can find
models with less number of layers than the peer competitor
models; this can be explained by the choice of initialising the
fish with ‘shallow’ networks (having a small number of layers).
This emphasises the fact that the depth in many handcrafted
models is not optimal, and it is possible to find models that are
shallower and have higher precision.

Also, SiNoptiC has proven its efficiency in giving
competitive results even without the use of complex
architectures and data augmentation techniques. From the
results presented in Section 6, the models found by the
proposed word-level SiNoptiC are three-layered models and
similar in their architecture to Kim’s model (2014).

In each iteration, SiNoptiC evaluates the fitness function of
each fish after the individual and the collective movement in
order to update the best fish. Each evaluation involves training
the fish’s model. Fortunately, the number of epochs required
for the training convergence is relatively small. This has
reduced the computation time of our algorithm.

 SiNoptiC: swarm intelligence optimisation 99

7 Conclusions

In this paper, a new method of automatic CNNs architecture
design for text classification problems was proposed. The
proposed algorithm helps to optimise CNNs in a proficient
way by using a coupling CNN with FSS-based optimisation.
We adopted an encoding strategy allowing for variable-
length CNN architectures. We re-defined the operators of
the standard FSS algorithm such as the individual and
collective movement for efficiently searching for adequate
architecture.

The experimental result has shown that the proposed
method can automatically find competitive CNN architectures
compared with the state-of-the-art models. The experimental
results show that if we had more computing power, the
proposed method could provide even better architectures. We
will publish our code so that the research community can easily
build on top of our work.

Future work involves investigating alternative adaptation of
the meta-heuristic FSS to solve CNN architecture optimisation
with many objectives such as the granularity of the CNN input,
computational complexity and classification accuracy.
Therefore, a decision-maker could configure his model
according to his needs, which will further improve the
classification accuracy of the resulting models.

So far the proposed algorithm is limited to CNNs but can
be easily adapted to work for any feedforward architecture
including recurrent or modular architectures. Another challenge
for future research is the extension to general networks.

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin,
M., Ghemawat, S., Irving, G. and Isard, M. et al. (2016)
‘Tensorflow: a system for large-scale machine learning’,
Proceedings of the 12th USENIX Symposium on Operating
Systems Design and Implementation, pp.265–283.

Ammar, M., Hidri, A. and Sassi Hidri, M. (2020) ‘Time-sensitive
clustering evolving textual data streams’, International Journal of
Computer Applications in Technology, Vol. 63, Nos. 1/2,
pp.25–40, 2020.

Baldominos, A., Saez, Y. and Isasi, P. (2019) ‘On the automated,
evolutionary design of neural networks: past, present, and future’,
Neural Computing and Applications, pp.1–27.

Bastos Filho, C.J.A., de Lima Neto, F.B., Lins, A.J.C.C., Nascimento,
A.I.S. and Lima, M.P. (2008) ‘A novel search algorithm based on
fish school behavior’, Proceedings of the IEEE International
Conference on Systems, Man and Cybernetics, IEEE,
pp.2646–2651.

Bengio, Y., Courville, A. and Vincent, P. (2013) ‘Representation
learning: a review and new perspectives’, IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. 35, No. 8,
pp.1798–1828.

Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran, J.,
Catanzaro, B. and Shelhamer, E. (2014) ‘Cudnn: efficient
primitives for deep learning’, arXiv preprint arXiv:1410.0759.

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K. and
Kuksa, P. (2011) ‘Natural language processing (almost) from
scratch’, Journal of Machine Learning Research, Vol. 12,
pp.2493–2537.

Conneau, A., Schwenk, H., Barrault, L. and Lecun, Y. (2016) ‘Very
deep convolutional networks for natural language processing’,
arXiv preprint arXiv:1606.01781, Vol. 2, pp.1–10.

Corbat, L., Nauval, M., Henriet, J. and Lapayre, J.C. (2020) ‘A fusion
method based on deep learning and case-based reasoning which
improves the resulting medical image segmentations’,
Expert Systems with Applications, Vol. 147, No. 8. Doi:
10.1016/j.eswa.2020.113200.

Csáji, B.C. (2001) Approximation with Artificial Neural Networks,
Faculty of Sciences, Etvs Lornd University, Hungary, Vol. 24,
p.48.

Dean, J. and Hölzle, U. (2017) Build and Train Machine Learning
Models on Our New Google Cloud Tpus, Google Cloud.

Delalleau, O. and Bengio, Y. (2011) ‘Shallow vs. deep sum-product
networks’, Advances in Neural Information Processing Systems,
pp.666–674.

Ferjani, E., Hidri, A., Sassi Hidri, M. and Frihida, A. (2019)
‘Mapreduce-based convolutional neural network for text
categorization’, Proceedings of the 11th International Conference
on Computational Collective Intelligence (ICCCI), pp.155–166.

Fogel, D.B. (1995) ‘Phenotypes, genotypes, and operators in
evolutionary computation’, Proceedings of the IEEE
International Conference on Evolutionary Computation,
pp.193–198.

Glorot, X. and Bengio, Y. (2010) ‘Understanding the difficulty of
training deep feedforward neural networks’, Proceedings of the
13th International Conference on Artificial Intelligence and
Statistics, pp.249–256.

Goldberg, Y. and Levy, O. (2014) ‘word2vec explained: deriving
mikolov et al.’s negative-sampling word-embedding method’,
arXiv preprint arXiv:1402.3722.

Hidri, A. (2017) ‘Optimization for training CNN deep models based
on swarm intelligence’, International Conference on Advanced
Systems and Electric Technologies (IC_ASET), pp.284–289.

Ioffe, S. and Szegedy, C. (2015) ‘Batch normalization: accelerating
deep network training by reducing internal covariate shift’, arXiv
preprint arXiv:1502.03167.

Jiang, J., Han, F., Ling, Q., Wang, J., Li, T. and Han, H. (2020)
‘Efficient network architecture search via multiobjective particle
swarm optimization based on decomposition’, Neural Networks,
Vol. 123, pp.305–316.

Jiang, M., Liang, Y., Feng, X., Fan, X., Pei, Z., Xue, Y. and Guan, R.
(2018) ‘Text classification based on deep belief network and
softmax regression’, Neural Computing and Applications,
Vol. 29, No. 1, pp.61–70.

Jin, H., Song, Q. and Hu, X. (2019) ‘Auto-keras: an efficient neural
architecture search system’, Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp.1946–1956.

Johnson, R. and Zhang, T. (2016) ‘Convolutional neural networks for
text categorization: shallow word-level vs. deep character-level’,
arXiv preprint arXiv:1609.00718.

Johnson, R. and Zhang, T. (2017) ‘Deep pyramid convolutional neural
networks for text categorization’, Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp.562–570.

Junior, F.E.F. and Yen, G.G. (2019) ‘Particle swarm optimization of
deep neural networks architectures for image classification’,
Swarm and Evolutionary Computation, Vol. 49, pp.62–74.

Kalchbrenner, N., Grefenstette, E. and Blunsom, P. (2014) ‘A
convolutional neural network for modelling sentences’, arXiv
preprint arXiv:1404.2188.

100 I. Ferjani, M. Sassi Hidri and A. Frihida

Kennedy, J. (2006) ‘Swarm intelligence’, Handbook of Nature-
Inspired and Innovative Computing, pp.187–219.

Khalifa, M.H., Ammar, M., Ouarda, W. and Alimi, A.M. (2017)
‘Particle swarm optimization for deep learning of convolution
neural network’, Sudan Conference on Computer Science and
Information Technology (SCCSIT), pp.1–5.

Kim, Y. (2014) ‘Convolutional neural networks for sentence
classification’, Proceedings of the Conference on Empirical
Methods in Natural Language Processing, October 25–29, Doha,
Qatar, pp.1746–1751.

Kingma, D.P. and Ba, J. (2014) ‘Adam: a method for stochastic
optimization’, arXiv preprint arXiv:1412.6980.

LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P. (1998) ‘Gradient-
based learning applied to document recognition’, Proceedings of
the IEEE, Vol. 86, pp.2278–2324.

Lorenzo, P.R., Nalepa, J., Kawulok, M., Ramos, L.S. and Pastor, J.R.
(2017) ‘Particle swarm optimization for hyper-parameter
selection in deep neural networks’, Proceedings of the Genetic
and Evolutionary Computation Conference, pp.481–488, 2017.

Moitra, D. and Mandal, R.K. (2020) ‘Classification of non-small cell
lung cancer using one-dimensional convolutional neural
network’, Expert Systems with Applications, Vol. 159.
Doi: 10.1016/j.eswa.2020.113564.

Montufar, G.F., Pascanu, R., Cho, K. and Bengio, Y. (2014) ‘On the
number of linear regions of deep neural networks’, Advances in
Neural Information Processing Systems, pp.2924–2932.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z.,
Lin, Z., Desmaison, A., Antiga, L. and Lerer, A. (2017)
‘Automatic differentiation in pytorch’, Proceedings of the 31st
Conference on Neural Information Processing Systems, Long
Beach, CA, USA, pp.1–4.

Pennington, J., Socher, R. and Manning, C.D. (2014) ‘Glove: global
vectors for word representation’, Proceedings of the Conference
on Empirical Methods in Natural Language Processing
(EMNLP), pp.1532–1543.

Serizawa, T. and Fujita, H. (2020) ‘Optimization of convolutional
neural network using the linearly decreasing weight particle
swarm optimization’, arXiv preprint arXiv:2001.05670.

Sivakumar, S. and Rajalakshmi, R. (2021) ‘Self-attention based
sentiment analysis with effective embedding techniques’,
International Journal of Computer Applications in Technology,
Vol. 65, No. 1, pp.65–77.

Springenberg, J.T., Dosovitskiy, A., Brox, T. and Riedmiller, M.
(2014) ‘Striving for simplicity: the all convolutional net’, arXiv
preprint arXiv:1412.6806.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov,
D., Erhan, D., Vanhoucke, V. and Rabinovich, A. (2015)
‘Going deeper with convolutions’, Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp.1–9.

Wang, B., Sun, Y., Xue, B. and Zhang, M. (2018) ‘Evolving deep
convolutional neural networks by variable-length particle swarm
optimization for image classification’, IEEE Congress on
Evolutionary Computation (CEC), pp.1–8.

Wang, H. and Raj, B. (2017) ‘On the origin of deep learning’, arXiv
preprint arXiv:1702.07800, pp.1–71.

Wang, Y., Zhang, H. and Zhang, G. (2019) ‘cpso-cnn: an efficient pso-
based algorithm for fine-tuning hyper-parameters of
convolutional neural networks’, Swarm and Evolutionary
Computation, Vol. 49, pp.114–123.

Yann, L., Yoshua, B. and Geoffrey, H. (2015) ‘Deep learning’,
Nature, Vol. 521, pp.436–444.

Zhang, T., Zhang, Y., Cao, Y., Li, L. and Hao, L. (2020)
‘Diagnosing parkinson’s disease with speech signal
based on convolutional neural network’, International
Journal of Computer Applications in Technology, Vol. 63,
No. 4, pp.348–353.

Zhang, X., Zhao, J. and LeCun, Y. (2015) ‘Character-level
convolutional networks for text classification’, Advances in
Neural Information Processing Systems, pp.649–657.

Zhu, L., Wang, J. and Li, K. (2020) ‘Computer image analysis for
various shading factors segmentation in forest canopy
using convolutional neural networks’, International
Journal of Computer Applications in Technology, Vol. 64, No. 4,
pp.415–428.

