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Abstract: Although many rules have been suggested by several researchers for designing deep 
neural architectures, trial-and-error is often exploited in practice to find the optimal model for a 
given problem. Thus, the automation of deep neural architecture search methods is highly 
recommended. In this work, we address this problem by proposing a hybrid coupling of 
Convolutional Neural Networks (CNNs) architectures with the swarm intelligence, especially the 
Fish School Search (FSS) algorithm. This coupling is capable of discovering a promising 
architecture of a CNN on handling text classification tasks. The proposed method allows users to 
provide training data as input, and receive a CNN model as an output. It is completely automatic 
and capable of fast convergence. Computational results show the effectiveness of the proposed 
method in achieving the best classification loss among manually designed CNNs. This is the first 
work using FSS for automatically designing the architectures of CNNs. 
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1 Introduction 

Convolutional Neural Networks (CNNs) are biologically-
inspired algorithms that have achieved excellent performance 
on many challenging tasks (Zhang et al., 2020; Zhu et al., 
2020). The performance of a CNN is largely due to its capacity 
to find out complex structure and non-linear relationships 
within data. CNNs have achieved interesting results in many 
tasks in the computer vision field and have been effectively 
explored for text classification (Yann et al., 2015; Moitra and 
Mandal, 2020; Corbat et al., 2020; Ferjani et al., 2019). It is an 
emerging field of study that has been widely addressed in 
several real applications (Jiang et al., 2018). 

The topology of a CNN is one of the most important 
aspects that affect its performance. Over the last decade, 
numerous CNN topologies have been proposed with the 
target of either improving the accuracy or reducing the 
computational complexity (Kim, 2014; Kalchbrenner et al., 
2014; Johnson and Zhang, 2017; Zhang et al., 2015; 
Conneau et al., 2016). 

Several approaches to designing Deep Learning (DL) 
architectures based on optimisation techniques and heuristic 
search (Ammar et al., 2020) have been proposed. Such 
techniques can either derive their inspiration from the natural 
evolution of the biological organisms (Fogel, 1995) or they can 
be built on the behavioural models of living organisms such as 
fish, ants, bees and birds. Such methods are called Swarm 
Intelligence (SI) algorithms (Kennedy, 2006). 

Swarm intelligence refers to the collective behaviour of 
decentralised and self-organised systems inspired by the natural 
or biological behaviour (Kennedy, 2006). SI systems consist 
typically of a population of simple agents interacting locally 
with one another and with the environment. As a result of such 
interaction, an intelligent global behaviour unknown to the 
individual agents will emerge. Fish schooling, birds flocking, 
ant colonies, hawks hunting, animal herding and bacterial 
growth are examples of swarm intelligence in natural systems. 
The characteristics of a decentralised and flexible way of 
working make swarm intelligence a successful design 
paradigm for algorithms that deal with increasingly complex 
problems such as optimisation problems. 

Many algorithms have been proposed to optimise CNNs. 
Some of them focused on hyper-parameters search (Jin et al., 
2019; Lorenzo et al., 2017; Serizawa and Fujita, 2020). Other 
works optimised the weights of neural networks such as 
Khalifa et al. (2017) and Wang et al. (2019). However, it is  
 
 

hard to balance the trade-off between efficiency and 
effectiveness of automatically designing CNN. Many works 
suffered from the lack of architecture search and the huge 
computational requirements. Therefore, we develop a novel 
swarm-based optimisation algorithm to make a balance 
between architecture and hyperparameters optimisation with a 
reasonable complexity (Hidri, 2017). 

The aim of this paper is to design and develop an effective 
and efficient SI-based method to automatically design the 
structures and parameters of deep CNNs without manual 
intervention. To achieve this goal, a new version of the Fish 
School Search (FSS) algorithm was designed. The proposed 
method, called SiNoptiC, is based on self-adjust exploration 
and exploitation modes. It will be validated and evaluated with 
a very well-known and widely used problem: Text 
Classification and compared with six state-of-the-art 
architectures on five widely-used data sets. Our major 
contributions are as follows: 

 A novel algorithm that combines the strengths of the FSS 
algorithm and deep CNN to explore the search space of 
neural network architectures and their associated 
hyperparameters to be applied.  

 The use of a variable-length encoding strategy virtually 
with no size limitation to allow Fishes to represent deep 
CNNs.  

 A novel individual movement operator is defined that 
allows fishes to make a random change of their 
architectures in order to explore the research space which 
surrounds them.  

 A novel collective movement operator is presented that 
can be used to allow a fish to move towards or spread 
away from the architecture representing the barycentre of 
the school. This collective operator allows us to regulate 
the school’s exploration ability during the optimisation 
process  

This paper is organised as follows: an overview of baseline 
CNN architectures and DL optimisation methods is presented 
in Section 2. In Section 3, we will present a detailed 
background about FSS and CNN. Then, we will explain our 
motivation in Section 4. A detailed description of the proposed 
algorithm is presented in Section 5. The experimental protocol 
and results of the proposed algorithm are shown in Section 6. 
Finally, the conclusion and future work are detailed in  
Section 7. 
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2 Related work 

2.1 Baseline CNN architectures 

Kim (2014) proposed a simple CNN operating on word-level 
and using a single convolution layer for text classification. 
Kim’s model showed that a shallow architecture can 
outperform many existing models. However, its inability to 
model long-distance dependencies in the sentence stands as the 
main issue. 

Following this work, Kalchbrenner et al. (2014) presented a 
convolutional architecture called the Dynamic Convolutional 
Neural Network (DCNN) that they adopt for the semantic 
modelling of sentences. Their model used Dynamic k-Max 
Pooling, a global pooling operation over linear sequences, and 
capable of handling varying length input sentences to capture 
short and long-range relations. 

Johnson and Zhang (2017) studied deepening of word-level 
CNNs to capture global representations of text and proposed a 
model with 15  weight layers, called Deep Pyramid CNN 
(DPCNN). In their model, the down-sampling strategy was 
used with a fixed number of feature maps to reduce the 
computation time for convolution layers. 

Zhang et al. (2015) introduced an alternative character-
based model with six convolution layers, having kernels of 
different sizes (3 and 7) as well as simple max-pooling layers, 
followed by three fully connected classification layers. They 
found that considering the input text as a sequence of 
characters improves the model performance and does not 
require knowledge about the structure of a language. 

Conneau et al. (2016) took a further step by introducing a 
deep char-level CNN using up to 29  layers with small 
convolutions and pooling operations. 

The most crucial step of using convolutional architectures 
on text classification tasks is designing the best classification 
model. However, without a complete understanding of the 
characteristics of the problem domain, it remains not trivial to 
effectively decide the exact nature and order of layers, the 
number of filters in convolutional layers, the number of units in 
dense layers and other variables in the creation of deep neural 
networks. The assignment of these variables is the cornerstone 
of the success or failure of any CNN architecture which 
motivates the automation of their design. 

Several studies have been developed to find a theoretical 
basis that can help in designing deep architectures and 
finding a compromise between depth and efficiency. 

Montufar et al. (2014) studied the complexity of certain 
classes of function computable by deep feed-forward neural 
networks. They showed that deep networks have more 
representational power of these functions than shallow 
architectures. 

In 2001, the universal approximation theorem was 
presented by Csáji (2001), which states that to approximate any 
function a single hidden layer is sufficient, but this costs an 
exponential number of neurons, making it often impossible in 
computing terms. To overcome this problem, Delalleau and 
Bengio (2011) suggested that deep networks offer a much more 
compact representation of a function at a reduced cost (Wang 
and Raj, 2017) when compared to shallow ones. 

In Bengio et al. (2013), it was empirically verified that 
complex tasks require deep neural networks to guarantee 
computational efficiency. Many other studies highlight  
the importance of the depth factor in the regularisation of 
the network learning capacity (Szegedy et al., 2015). 
Despite numerous studies, the truth is that there are no 
analytical procedures to design the appropriate deep 
architecture for a given problem, and trial and error are 
often used instead. 

2.2 Swarm intelligence optimisation of CNNs 
architectures: a brief review 

Recently, the design of Convolutional Neural Network 
architectures has largely shifted from trial and error processes 
to automatic methods. But most of the proposed architectures 
are designed specifically to solve particular problems and their 
generalisation to other fields requires expertise even if they 
have the same architecture. In this section, we will review some 
relevant works based on Swarm Intelligence optimisation of 
convolutional neural networks. 

Khalifa et al. (2017) combined two different optimisation 
algorithms in a ConvNet architecture with seven layers for 
handwritten digit classification; they used Particle Swarm 
Optimisation (PSO) algorithm for the last layer which is the 
output vector and Stochastic Gradient Descent (SGD) 
algorithm for the first six layers. They reported an accuracy 
improvement over a standard CNN that uses an SGD 
optimisation algorithm in all layers. 

Lorenzo et al. (2017) proposed an approach that aims to 
automatically discover a more appropriate network structure 
with a better configuration of hyper-parameters for the final 
training of the neural network. They combine the PSO 
algorithm and the steepest gradient descent algorithm to 
optimise the hyperparameters (learning rate, dropout rate, 
momentum, weight decay and the number of neurons in each 
hidden layer) by designing a representation of the parameters 
that encode the configuration of the network as a real number 
vector for efficient processing of the individuals of PSO in the 
search process. 

Wang et al. (2018) proposed a PSO modelling strategy to 
optimise the structure of a deep CNN for image classification 
problems. Their approach was inspired by how the Network IP 
address works. In order to facilitate the numerical convergence 
of their algorithm, they used the IP address format to represent 
the large number of parameters included in a CNN, with 
integers values within a certain range by distributing it into 
some smaller integers below 256. 

Junior and Yen (2019) presented a PSO-based algorithm 
for optimising CNN architectures for image classification with 
the use of a direct encoding and a novel definition of difference 
and velocity operators. Similarly, Wang et al. (2019) proposed 
cPSO-CNN for optimising the hyper-parameter configuration 
of CNN architectures. cPSO-CNN utilises a confidence 
function to enhance the canonical PSO’s exploration capability 
with the redefinition of the scalar acceleration coefficients of 
PSO as vectors to better adapt for the variant ranges of CNN 
hyper-parameters. 
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Serizawa and Fujita (2020) proposed a method of using 
linearly decreasing weights for PSO, which is one of the meta-
heuristic algorithms, for hyper-parameter CNN optimisation. 
Another similar work was proposed in Jiang (2020) where a 
multi-objective particle swarm optimisation based on 
decomposition was used. 

In summary, we have mentioned some relevant works 
on the application of SI methods for the automatic design of 
CNNs while minimising human interventions. Moreover, SI 
methods show as promising approaches in solving the 
problem of the automatic design of CNN architectures under 
the absence of analytic procedures for such problems. 

3 Basic concepts of CNN and FSS algorithm 

3.1 Standard CNN layers 

A standard CNN architecture for text classification includes 
four basic components: embedding, convolution, pooling 
and fully connected (see Figure 1). In addition, another 
different regulatory layer which is dropout is also 
incorporated. The number of layers as well as the manner 
they are arranged is the most important part of the design of 
a CNN architecture and has a strong impact on obtaining 
improved performance. In the following sections, we briefly 
describe the role of each layer in a CNN architecture for text 
classification. 

3.1.1 Embedding 

The embedding layer provides a dense vector representation 
of a text from the vocabulary by mapping each character, 
word, or sentence to an embedding dimension vector of real 
numbers (Sivakumar and Rajalakshmi, 2021). It is an 
improvement over traditional encoding methods such as  
 

bag-of-words where each word was represented by a large 
sparse vector depending upon the size of vocabulary it is 
dealing with. 

The pre-trained word embeddings such as word2vec and 
Glove (Pennington et al., 2014; Goldberg and Levy, 2014) 
have been widely used as inputs to deep neural models. On the 
other hand, some simple and efficient models which can 
directly learn task-specific word embeddings or fine-tune on 
pre-trained word embeddings have been proposed recently. 
This work focuses on learning task-specific word embeddings 
during the training of CNN. 

3.1.2 Convolution 

The convolutional layer consists of a set of filters to perform 
convolutional operations on the sequences of word 
embeddings. The filter will be a wide rectangle with 
dimensions like 3 500  or 4 500  (if we have an embedding 
dimension of 500). The filter width is usually the same as the 
embedding dimension and its height or size may vary 
according to the number of embeddings (rows of the input 
embedding matrix) that will be seen at a time, similar to 
representing an n-gram in a word model. 

During the convolutional operation, the filter vertically 
slides with the size of the filter kernel until the whole text 
sequence has been scanned. At each position, a multiplication 
operation in pairs is performed between the kernel weights and 
the embedding values followed by a summation to get a single 
output value. These aggregated filter outputs form a new vector 
known as a feature map. 

Thus, the convolution operation can be viewed as a 
detector of features or patterns in sequential word groupings 
that indicate traits like the sentiment of a text, the 
grammatical function of different words and so on. In a 
convolutional layer, multiple filters are allowed to coexist, 
producing a set of feature maps. 

Figure 1 A standard CNN architecture for text classification 
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3.1.3 Pooling 

The pooling layers are a way to down-sample the incoming 
feature vectors from the convolution layer. In the case of the 
max-pooling layer, which is the most common pooling 
method, only the maximum value in a feature vector, which 
should be the most useful local feature, will be kept by the 
network. The concatenation of the max-values produced by 
processing each of the convolution feature vectors is used to 
generate the sentence representation. 

3.1.4 Fully connected 

A fully connected layer is in principle the same as the 
traditional Multi-Layer Perceptron (MLP) neural network. It 
performs a global operation by taking input from the 
previous layer and globally analysing the output of all the 
preceding layers. Specifically, it ‘flattens’ the output of the 
previous layers by turning them into a single vector that can 
be an input for the next layer. Then, it applies weights to 
predict the correct label and finally gives probabilities for 
each label. 

3.1.5 Dropout 

Dropout refers to ignoring units (i.e. neurons) during the 
training phase of a certain set of neurons that are chosen at 
random. More technically, at each training stage, individual 
nodes are either dropped out of the net with a certain 
probability, so that a reduced network is left, or incoming 
and outgoing edges to a dropped-out node are also removed. 
It is used to make a regularisation within the network by 
improving its generalisation and preventing over-fitting. 

3.2 FSS optimisation 

FSS (Bastos Filho et al., 2008) is a nature-inspired algorithm 
based on the concept of populations. The core idea is to make 
the fishes perform local searches and the school aggregates 
social information. The search is performed in a bounded 
search space. Each fish k  is represented by a position within 
the search space, ( )kx t , which represents a candidate solution 

to the optimisation problem, and its corresponding weight  
is ( )kW t . 

Feeding is a fundamental concept in the FSS, it updates the 
weight of each fish and reflects its level of success during the 
individual movement within the current iteration. There are 
three movement operators: individual, collective-instinctive, 
and collective-volitive. The individual movement is used to 
trigger the other operators. In this operator, each fish randomly 
chooses a new position in its neighbourhood following the 
equation (1):  

( 1) = ( ) ( 1,1)k k indx t x t rand step    (1) 

where: 

 ( )kx t  and ( 1)kx t   are the positions of fish k  before 

and after the individual movement respectively.  

 ( 1,1)rand   is an uniformly distributed random 

numbers array with the same dimension as ( )kx t  and 

values varying from 1  up to 1 .  

 indstep  is the individual step. It is predefined prior to 

the search process. In general, it decays linearly along 
the iterations.  

The new fish position ( 1)kx t   is only approved if there is 

an improvement of its fitness after the change. Otherwise, 
the position remains unchanged and ( 1) ( )k kx t x t  . After 

the individual movement, the feeding operator is executed, 
i.e. updating the weight kW  of fish k  using equation (2): 
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where: 

 kf  is the difference between the fitness of the neighbour 

position  ( 1)kf x t   and the current position  ( )kf x t .  

  max kf  represents the maximum absolute value of 

fitness variation among all fishes in the school.  

 kW  is only allowed to vary from 1 up to scaleW . All 

fishes are initialised with a weight equal to the value 

/ 2scaleW .  

The collective-instinctive component of the movement is 
the average of individual movements for all kx . A vector I  

representing the weighted average of displacements for each 

kx  is calculated according to equation (3): 
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where N  is the size of the school and kx  is the displacement 

of the fish k  generated by the individual movement. The 
displacement represented by I  is defined in a way that fishes 
with a higher improvement will attract other fishes to its 
position. After computing I , every fish moves following the 
equation (4): 

( 1) = ( )k kx t x t I   (4) 

The collective-volitive movement is used to determine the 
final position of all fish school. First, the barycentre is 
calculated according to equation (5): 

=1

=1

( ) ( )
=

( )

N

k k
k

N

k
k

x t W t
B

W t




 (5) 

Then, depending on the increase or decrease of the total 
school weight, the swarm is contracted or dilated towards or 
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outwards the barycentre of the school according to 
equations (6) and (7), respectively. 

 
( ) ( )

( 1) = ( ) (0,1)
( ), ( )

k
k k vol

k

x t B t
x t x t step rand

dist x t B t


   (6) 

 
( ) ( )

( 1) = ( ) (0,1)
( ), ( )

k
k k vol

k

x t B t
x t x t step rand

dist x t B t


   (7) 

where: 

 volstep  represents the steps of the volitive movement.  

  ( ), ( )kdist x t B t  is the Euclidean distance between the 

school barycentre B  and fish k  position.  

 (0,1)rand  is a normal rand vector with the same 

dimension as B  and values varying from 0 up to 1. 

4 Motivation 

In Section 2, we have reviewed some works about 
optimising CNNs using Swarm Intelligence. According to 
the study carried out in Baldominos et al. (2019), the 
research area studying the optimisation of deep architectures 
has been increasingly larger since 2017 and many works 
testing different methods have been proposed. 

Training a neural network involves using a training data set 
to update the model weights in a way that minimises the error 
between training labels and the network predicted outputs, the 
cross-entropy loss is often used with CNNs. The training 
process is based on an optimisation algorithm in which the 
weights which maximise the performance of the model on the 
training data set are chosen. In general, the gradient descent and 
back-propagation (LeCun et al., 1998) are often used for 
minimisation.  Owing the complexity of the gradient 
calculation which is usually computationally intensive and 
requires powerful hardware to perform the entire training in a 
reasonable time frame, the number of works studying the 
optimisation of deep CNNs is still very scarce. 

The good news is that there is a remarkable advancement 
over the past few years in hardware devices (such as GPUs-
graphic processor units- or TPU-Tensor Processing Unit (Dean 
and Hölzle, 2017)) which speed up the process of iterating over 
different models and topologies since the most consuming 
computation power tasks (forward propagation and backward 
propagation) are notably accelerated with the use of these 
devices. Additionally, some deep learning primitives such as 
NVIDIA’s cuDNN (Chetlur et al., 2014) and frameworks such 
as TensorFlow (Abadi et al., 2016) or PyTorch (Paszke et al., 
2016) are developed to make training and testing thousands of 
CNNs feasible. This was our main motivation to explore the 
field of deep architecture optimisation. 

Also, deep networks have been demonstrated to be capable 
of achieving remarkable performance in NLP tasks such as the 
online Skype translator, Google Spam filters or Netflix. 
However, an overall analysis of the existing optimisation 
methods for DL architectures in Section 2 shows that image 

processing tasks have received more attention than the text 
processing field over the last few decades. Our aim is to extend 
architecture optimisation techniques to unexplored domains 
such as text classification. 

While some research on Evolutionary Computing-based 
approaches such as Genetic Algorithms has reached a 
significant degree of advancement for traditional ANNs, the 
number of works using Swarm Intelligence meta-heuristic is 
still small, yet growing. Thereby, the development of swarm 
intelligence-based algorithms that can automatically create and 
evaluate CNN architectures is important. 

An overall analysis of the Swarm Intelligence-based 
optimisation methods shows that the underlying idea behind all 
SI algorithms is similar, and various SI algorithms differ only 
in their details. Particle Swarm Optimisation (PSO) has been 
widely used while many other SI algorithms such as Fish 
School Search (FSS) optimisation may also be explored to 
evolve deep architectures, especially CNNs. Our main 
motivation to use the FSS algorithm is the use of the search 
operators: the core idea is to evolve CNN architectures 
individually toward better efficiency. Collectively, the best 
architectures have more influence on the search process as a 
whole, which makes the possible solutions move toward better 
architectures in the search space over the iterations. 

In summary, considering the large use of CNNs in many 
fields, the automation of their architectures design is a very 
promising area that must be given a big interest. Another 
important field is SI optimisation which has gained significant 
attention in the previous few years due to its simplicity and fast 
convergence. In addition to current advances in computation 
technology which facilitate the development of new works 
within this line of research. 

5 FSS and CNN coupling-based optimisation for 
text classification 

In this section, we firstly present an overview of the 
proposed solution with various aspects that contribute to the 
solution, next we detail the main steps of our algorithm. In 
the next sections, we explain our encoding strategy of CNN 
architecture as well as the individual and the collective 
movement associated with a CNN which plays central roles 
in our solution and algorithm. 

5.1 Model overview 

The core idea of the proposed algorithm is the use of FSS 
optimisation to explore the search space of deep neural network 
architectures. A set of CNN architectures is considered as the 
fish school which will swim by applying individual and 
collective movements to achieve a collective goal that is 
discovering the best architecture for a given data set. The inputs 
of our proposed algorithm are parameters related to the 
initialisation of the school of CNN architectures, such as the 
minimum and maximum numbers of layers, parameters related 
to the FSS algorithm such as the school size and the number of 
iterations, and parameters referring to the text classification 
task, such as the training data. 
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The Algorithm 1 shows the framework of the proposed 
algorithm. The first step is initialising the school with the 
predefined school size where each fish encodes a particular 
architecture of the CNN using the proposed encoding 
strategy to encode the predefined building blocks. Then, all 
fishes perform an individual movement followed by an 
evaluation of the fitness of each fish after this movement. 
After that, the best fish is selected based on fitness. Then, all 
fishes perform a collective movement. Specifically, the 
barycentre of the school is calculated and fishes will either 
expand or contract from the barycentre based on the global 
fitness improvement of the school. The evolution continues 
until the number of iterations is reached. 

 

As shown in Figure 2 which presents a detailed illustration of a 
single iteration of our algorithm and the corresponding main 
steps. The proposed algorithm follows the standard pipeline of 
FSS (the phases of individual and collective movements). Note 
that, all used operators such as barycentre are redefined to fit a 
CNN architecture optimisation process. 

Our algorithm includes five modules allowing it to find  
the optimal CNN architecture: a flexible CNN encoding, 
initialisation of a school, fitness evaluation of individual fishes, 
individual and collective movements that allow fishes to update 
their architectures. The corresponding algorithms of these 
modules are presented in detail in the following subsections. 

5.2 CNN modelling 

As introduced in Sub-section 3.1, a standard CNN is composed 
of the convolution layers, pooling layers and fully connected 
layers. Designing an algorithm that deals with such structures 
highly relies on the encoding strategy used. In the proposed 
encoding strategy, we use a variable-length array which offers 
better flexibility than the fixed-length encoding since it enables 
the proposed algorithm to automatically find the promising 
CNN architecture without any restriction in depth. For 
example, if the depth of the CNN providing the highest 
classification accuracy is 20, the proposed encoding strategy 
could enable candidates architectures to achieve this depth 
during the optimisation process, no matter what was their initial 
depth. The variable-length encoding strategy is the key to 
enabling the proposed algorithm to automatically optimise a 
CNN architecture without any domain knowledge from  
the users. In our encoding strategy, a direct-encoding 
representation of the parameters associated with each layer is 
performed. That is, every layer of information in the CNN is 
specified directly and explicitly in the encoding array. 

Figure 2 SiNoptiC algorithm 
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The parameters of a convolution layer are the number of 
output filters and the size of the convolution window. In 
addition, the pooling layers used in the proposed encoding 
strategy are max-pooling layers without padding. So the 
only parameter encoded for these layers is the size of the 
max pooling window. For the fully-connected layers, the 
number of neurons is encoded. 

An example of the proposed encoding strategy 
representing a CNN is illustrated in Table 1, where CV , 
MP  and FC  stand for convolution, max-pooling and fully-
connected layers, respectively. This CNN is composed of 
three layers: convolution – max-pooling – fully connected. 
The list encoding this CNN is composed of the parameters 
representing each layer. 

Table 1 CNN layers encoding example 

CV: Convolution MP: MaxPooling FC: Fully Connected 

Type: Convolution Type: Pooling Type: Fully connected 

Output filters: 178 Pooling size: 3 Neurons: 200 

Kernel size: 5   

5.3 School initialisation 

In our algorithm, fishes dynamics was based on 
initialisation, movement of the initial set using individual 
and collective movements. Thus, the initialisation of the 
school ( ()InitSchool ) is an important step in the proposed 

algorithm. The school was initialised with a set of N  fishes 
representing a set of CNN architectures. 

Each architecture has a random depth, between three 
and  maxDepth  (the upper bound of the initial number of 

layers) which limits the depth only in the initialisation step. 
For the convenience of the discussions, each architecture is 
composed of three main parts starting with the embedding 
layer which is a common layer for all fishes, the second part 
is composed of the convolution and pooling layers and the 
last part is the fully connected layers. 

In general, the CNN architectures for text classification 
start with an embedding layer. In our work, we train our 
word (and character) embeddings during the training of the 
CNN without using any pre-trained word embeddings. The 
second part takes the sequence of embedding vectors as 
input and can only be added after the first part. In this part, 
we use blocks of layers where each block is either 
composed of one convolution layer followed by one max-
pooling layer or only one convolution layer. The choice of 
inserting a max-pooling layer after a convolution layer is 
made randomly. In fact, we do not require an alternation  
of convolution and pooling layers, from which each  
 
 
 
 
 
 
 
 

architecture can contain two or more successive convolution 
layers. It is important to notice that in case two or more 
convolution layers are stacked together, the compatibility of 
inputs and outputs between successive layers is ensured by 
defining ranges of possible values for each. 

The last part, which contains a succession of fully 
connected layers, takes as input data by flattening all 
elements of the second part of feature maps. 

Usually, the convolution and the pooling layers can be 
stacked together after the embedding layer, while the fully 
connected layers are stacked with each other at the tail of 
the architecture. Typically, fully connected layers take the 
deep representation from the convolution and pooling layers 
and transform it into the final output classes or class scores. 
It is not common to insert fully-connected layers between 
convolution and pooling layers because it makes the entire 
training process of CNN inefficient as well as time-
consuming. This is due to the increase in the number of 
parameters of the overall CNN. 

The Algorithm 2 lists the major steps of the school 
initialisation, where the initial depth is randomly generated. 
70% of this depth is allocated to convolution blocks 

 .iF CV  and 30% is allocated to fully connected layers 

( .iF FC ). Line 5 shows the generation of the first part of a 

given fish. The function ()addEmbedding  will add an 

embedding layer to a fish architecture given the embedding 
dimension  embed . 

Lines 6–8 show the generation of the second part, where 
the algorithm stacks the convolution and pooling layers 
using the function ()addConvPool . In this step, an arbitrary 

selection is performed to decide whether a convolution layer 
is followed by a pooling layer or not. If so, the pooling size 
will be randomly generated. 

The convolution layer has two random parameters: the 
number of output convolution filters from 7 up to maxmaps  

and the length of the convolution window from 3 up to 

maxk , where maxk  indicates the maximum size of the 

convolution kernel. Lines 9–11 show the generation of the 
last part using the _ ()add FC  function that will join an FC 

layer to the fish architecture. This layer has a number of 
hidden neurons generated randomly between 1 up to a 
maximum of maxn . All layers use the rectified linear unit 

 ReLU  as an activation function. Line 12 adds the last Fc 

layer with cnb lasses  as output. In lines 13-14, each fish is 

trained on the training data and their accuracy and loss are 
saved. 
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5.4 Fitness function 

The objective of the fitness function evaluation is to give a 
quantitative measure determining which architectures will 
be selected as the best solutions. Because the proposed 
algorithm is related to text classification tasks, we used the 
classification loss as a metric to assign the fitness of fishes 
architectures, in our case we used the cross-entropy loss 
function. The best architecture in our algorithm is the one 
having the smallest loss, no matter what are the values of 
the other parameters and without considering any other 
criteria. 

Regarding this step, we have trained each CNN 
architecture over a training set. Before the training, each CNN 
is compiled based on the encoded information in the list of 
layers. Noting that, a dropout layer is added between each two 
FC  layers to avoid the over-fitting problem (Ioffe and 
Szegedy, 2015). 

Secondly, we have reduced the size of the training  
data during the optimisation algorithm to decrease the  
Synoptic execution time. Indeed, we used a sample of 50% of 
the whole data set which has been trained over ten epochs. The 
best model found will be trained on the entire data set. The 
Training process is performed using Adam (Kingma and Ba, 
2014) and weights are initialised with Xavier (Glorot and 
Bengio, 2010). 

 

5.5 Individual movement 

The individual component of the movement in FSS is 
responsible for each fish local search looking for promising 
architectures in the search space, as described by equation (1). 
In our algorithm, each fish architecture Fi is represented by a 
position  . , .i iF CV F FC  within the search space, where 

.iF CV  represents the number of convolution blocks and 

.iF FC  represents the number of fully connected layers. 

During the individual movement, each fish will follow a 
random change in its architecture. This change consists of 
increasing or decreasing .iF CV  and .iF FC  by a small step 

according to equation (8). 

. ( 1) = . ( )

. ( 1) = . ( )
i i ind

i i ind

F CV t F CV t step

F FC t F FC t step

 
 

 (8) 

where: 

 . ( 1)iF CV t   and . ( 1)iF FC t   are the new values of 

. ( )iF CV t  and . ( )iF FC t  after the individual movement.  

 indstep  defines the value of the number of layers added 

or removed during this movement and it is a random 
number varying from 2  up to 2 .  

Changing the architecture of a fish after an individual movement 
is an important step in the Synoptic algorithm. The change 
happens in the module MoveRandomly() in Algorithm 3. 

 

The movement only occurs if there is an improvement in the 
fitness of fish i after the change. Otherwise, the fish keeps 
the same architecture. 

The change of ConvPool part is done independently of the 
FC part by generating a random step for each part. If the step is 
a negative value, layers will be removed from the fish 
architecture. 
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Figure 3 Individual movement proposed showing the initial fish architecture and new architectures after different possible randomly 
chosen steps 

 
 

Otherwise, layers will be added without defining the 
maximum number of layers that the fish architecture can 
reach. However, a finite minimum of layers is allowed. If, 
after removing layers, the fish ends up with layers less than 
that allowed, the fish architecture will be set to the 
minimum architecture composed of three layers. This 
process is illustrated in Figure 3. 

5.6 Collective movement 

The collective movement in the proposed algorithm is defined 
as the combination of both volitive and instinctive movements. 
We merged the two types of movements in a single movement 
in order to adapt them to the nature of CNN architectures. After 
all fishes architectures have changed individually, the list of 
fish’s loss is computed and sorted in an ascending order to 
select the fishes with the lowest loss values. Selected fishes that 
had successful individual movements will influence later the 
resulting direction of the collective movement more than other 
ones. The number of selected fishes is proportional to the size 
of the school. In our algorithm, we set this proportion to 50% . 
The reason for choosing a percentage of the fish to contribute 
to the collective movement is random initialisation. Indeed, we 
may have a number of generated CNNs with bad loss values 
and we want to exclude them from the barycentre calculation to 
ensure an improvement of the overall loss of the school over 
iterations. After the selection step is performed, all fishes in the 
school perform a collective movement. CNNs having bad loss 
values will be more affected by this movement. 

This movement is considered as an overall success/failure 
evaluation based on the incremental sum of the loss of the fish 
school as a whole. We refer to the loss of the school as the 
school weight calculated according to equation (9).  

=1

= .
N

i
i

W F loss  (9) 

where W  represents the weight, N  is the size of the school 
and .iF loss  is the loss of the fish i  architecture after 

evaluating its fitness. 
The collective movement is based on the school weight: 

if there is an improvement in the weight, i.e. the value of the 
total error decreases (which means that the search was 
successful), the radius of the school should contract, i.e. the 
fish will approach the barycentre; otherwise, it should dilate 
(the fish will move away from the barycentre). 

This operator is supposed to greatly help improve the 
exploration capabilities of our algorithm. The collective 
movement is applied as a small change to every fish 
architecture concerning the school barycentre. 

The fish-school barycentre is obtained by considering 
the best fish architectures with corresponding CV  and FC  
layers according to equation (10). 

 

1 1
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where: 

 CVB  and FCB  are the coordinates of the barycentre B  

in terms of number of convolution blocks and fully 
connected layers, respectively.  

 1N  is the number of fishes to be considered when 
calculating the barycentre of the school (N1=N/2).  

 .iF CV  and .iF FC  are the number of CV  blocks and 

the number of FC  layers for fish i  respectively.  

In our barycentre calculation, we considered that all fishes 
have the same coefficient (equal to 1). In each iteration, a  
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comparison between the previously recorded overall weight 
of the school and the new overall weight observed at the end 
of the current search cycle is made. According to whether 
an improvement has been found, contractions and 
expansions of the school will occur. 

For this movement, we also defined a parameter called 
collective step ( colstep ) which is fixed to 0.5  along  

the iterations. The fish moves to the new position as in 
equation (11) if the overall weight of the school decreases in 
the FSS cycle; if the overall weight increases, we use 
equation (12). 

( 1). = ( ). | ( ). |

( 1). = ( ). | ( ). |
i i col i CV

i i col i FC

F t CV F t CV step F t CV B

F t FC F t FC step F t FC B

  
  

 (11) 

( 1). = ( ). | ( ). |

( 1). = ( ). | ( ). |
i i col i CV

i i col i FC

F t CV F t CV step F t CV B

F t FC F t FC step F t FC B

  
  

 (12) 

The above equations show how a fish school architecture 
changes in collective movement towards the search objective 
which is finding the best architecture. 

6 Computational results 

6.1 Data of experimentation 

The comparison of many different optimisations approaches to 
show the benefit of each one is highly related to the availability 
of large benchmark data sets (e.g. 1000 classes for ImageNet 
for computer vision). To evaluate the ability of our approach to 
competitively produce CNN architectures, we conducted our 
experiments on five text classification benchmark data sets, 
which are freely available and widely used for investigating the 
performance of CNN architectures. They are the AG’News 
(AG.N), DBPedia (DBP), Yelp Review Polarity (Yelp.P), Yelp 
Review Full (Yelp.F) and Yahoo answers (Yah.A) (Zhang  
et al., 2015). 

Several classification tasks such as news categorisation, 
topic classification, or sentiment analysis are covered by the 
used data sets The number of classes is comprised between 
2 and 14. The number of training examples varies from 120 
k up to 3.6 M, with equal numbers of examples in each class 
for both training and test sets. A summary of their classes, 
training and test sizes is shown in Table 2. The reader is 
referred to Zhang et al. (2015) for more details on the 
construction of the data sets. 

6.2 Comparison models 

To evaluate the ability of our SiNoptiC algorithm to 
competitively produce CNN architectures, we compared our 
results with state-of-the-art text classification CNN models 
which have been introduced in Section 2. 
 
 
 

Table 2 Data of experimentation 

Data set #Classes #Train #Test 

AG’s News (AG.N) 4 120 k 7.6 k 

DBPedia (DBP) 14 560 k 70 k 

Yelp Review Polarity (Yelp.P) 2 560 k 38 k 

Yelp Review Full (Yelp.F) 5 650 k 50 k 

Yahoo! Answers (Yah.A) 10 1400 k 60 k 

It is important to notice that these models are not found using 
an optimisation algorithm as in our case. These models are 
manually designed for specific problems. A direct comparison 
is not possible in our case due to the absence of optimisation 
algorithms for text classification, especially the comparison of 
the computation complexity. Instead, we evaluate the 
performance of CNNs automatically found by our SiNoptiC 
against those designed manually on the same data sets. 
Although there are recent models based on CNN, we choose 
the first CNNs to compare our results with them (Conneau  
et al., 2016; Zhang et al., 2015; Kim, 2014; Johnson and 
Zhang, 2016, 2017). Both char-level and word-level CNNs 
were used for comparison in order to evaluate our algorithm for 
different token types of text input. Their classification results 
are directly cited from the original publications except for 
Kim’s model (2014) for which we use our implementation to 
get results on our chosen benchmark data sets. 

6.3 Experimental protocol 

The parameters of the models used for comparison have 
been manually tuned with the use of domain expertise of 
their authors. Thus, none of their parameter settings needs to 
be specified since we directly cited their classification 
results from the original publications. 

For Kim’s model, we implemented the CNN-rand model 
and we set the parameters as they were mentioned by the 
author in Kim (2014). All our parameters related to CNN 
are based on the settings employed by the state-of-the-art 
CNNs. We can group the parameters used in our algorithm 
into three categories: CNN architecture initialisation, FSS 
optimisation and CNN training (see Table 3). 

The parameters of the first category control the initial 
fishes’ architectures generated randomly during the 
initialisation step. These parameters are: 

 The lower bound of the initial depth.  

 The upper bound of the initial depth.  

 The highest number of neurons in FC layer.  

 The lowest number of neurons in FC layer.  

 The character-based convolution window size.  

 The word-based convolution window size.  

 The number of output filters from a convolution layer.  
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Table 3 List of parameters used for the fish school search 
algorithm 

Parameter Value 

CNN architecture initialisation 

Lower bound of initial layers 3 

Upper bound of initial layers 30 

Lowest number of neurons in a FC  layer 2 

Highest number of neurons in a FC  layer 300 

Char-Conv window size: random from [3, 5 ,7] 

Word-Conv window size: random from [3, 4] 

#output filters: random choice from  6 7 8 92 ,2 ,2 ,2  

FSS optimisation 

School size 20 

Number of iterations 15 

Individual step movement 1 

Collective step movement 0.5 

CNN training 

Sampling percentage 50% 

#epochs for fish evaluation 1 

#epochs 10 

Dropout rate 0.5 

Initialisation is the first step in our algorithm. During this 
step, a number of CNN architectures with different depths 
and configurations will be generated. The number of layers 
of each fish’s architecture will be randomly chosen. The 
highest and the lowest number of layers parameters will 
bound the initial fish’s architecture. After the initialisation 
step, the fish’s architecture will be changed by following 
our defined FSS movements with respect only to the 
minimum number of layers and without an upper bound 
depth. 

In addition, these parameters also allow us to regulate 
the size of the search space for optimisation. Indeed, large 
values of the maximum depth will guide optimisation in 
deep architectures search space. But, the constraint here will 
be the size of available memory as well as the computing 
power used for running the algorithm. 

When an FC layer is added to the fish architecture, its 
number of neurons will be randomly chosen between the 
highest and the lowest numbers of neurons in FC  layers. Also, 
the number of feature maps that any given convolution layer 
can output is limited by the number of output filters. In order to 
ensure the compatibility of output and input dimensions 
between two convolution layers, the minimum value of the 
output filters size is always greater than the maximum value of 
the convolution window size. In this way, we avoid having a 
kernel size greater than a feature maps size when two 
successive convolutions happen. Our chosen values are 
inspired by the state-of-the-art existing models in both 
character and word CNNs for text categorisation. The 
convolutional window’s size will always be a random number 
chosen from a predefined range of values. 

The second category contains four parameters that are 
related to the FSS algorithm: the school size, the number of 
iterations and the individual and collective movement step. 
The school size defines the number of fishes used in our 
algorithm knowing that each fish represents a CNN 
architecture which can be a possible solution for our 
optimisation problem. Increasing the number of fishes has 
an impact on expanding the search space of possible 
architectures during the search process. 

The individual step parameter is predefined before the 
search process. In our case, it is set to a neutral value (equal 
to 1). Indeed, each movement will increase or decrease the 
number of convolution and fully connected layers according 
to the randomly generated couple of integer values. 
Multiplying by a neutral value is appropriate in this case. 

The collective movement step will control how fast the 
fishes in the school will be attracted to or spread away from 
the school barycentre. In our case, a smaller step will make 
the fish’s movement very slow and ineffective in the case 
where the fish have almost an architecture similar to the 
barycentre. Moreover, a neutral collective step value (equal 
to 1) will reduce the diversity of the school and, 
consequently, all fishes will have the same architecture after 
each collective movement which will decrease the diversity 
of the school and limit the search space. 

The parameters of the third category are used in the 
control of the training process of each fish. It contains two 
parameters: 

 The percentage of samples used from the full data set in 
question to evaluate fishes during the algorithm.  

 The number of epochs  

 The dropout rate.  

The computational resources required for training only one 
epoch on the used large-scale data sets would require 
significant computational resources and take a long time. 
For this reason, we only train and evaluate fishes on 50% of 
the data set during the optimisation process with respect to 
the number of samples in each class. 70% of the data are 
used for training, 20% for testing and 10% for validation. 
The same distribution is used when the full data set is used. 

The number of epochs for fish evaluation will define the 
number of times that the fish’s architecture will work 
through the training data set before evaluating its training 
accuracy. When the best is found at the end of the 
optimisation, it will be evaluated in the test set after a full 
training for a number of epochs. 

The dropout rate parameter is used to randomly omit 
connections in fully connected layers during the training 
process of fish’s architecture to avoid over-fitting. For all 
data sets, we trained and evaluated the best architecture 
found with and without a dropout rate. 

Finally, in order to obtain significant results in our 
experiments, a total of 50 independent tests was performed. 
We used in our tests a virtual machine having the following 
characteristics: a single Nvidia Tesla K80 GPU and 13 GB 
of RAM memory. Although these are considered powerful 
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features for CNNs training, the amount of RAM remains 
insufficient to train complex CNNs. 

6.4 Results and analysis 

6.4.1 About architecture optimisation 

For the AG.N, DBP, Yelp.P, Yelp.F and Yah.A data sets, the 
best test errors recorded by our SiNoptiC for char-level and 
word-level CNN, shown in Table 5, are 2.73, 0.60, 1.28, 8.47 
and 13.23, respectively. The accuracy-test on these data sets are 
92%, 98%, 95%, 65% and 56%, respectively. In Figure 5, a 
boxplot representation of the test accuracy distribution for 
character and word level CNN on these data sets. 

In character-level CNN, our method recorded the best loss 
results on all data sets with respect to chosen char-based 
models used for comparison. For the DBP data set, our char 
best model found has a loss of 1.20  which is nearly equal to 
the best value found by VDCNN (Conneau et al., 2016). 

In word-level CNN, our method recorded the best results 
on AG.N and Yelp.F data sets for chosen word-based models 
used for comparison. Although our results are not the best on 
the DBP, Yelp.P and Yah.A, they are among the two best 
results. Whereas we are not using any kind of data 
augmentation, our results are considered promising. For 
example, Kim’s (2014) word-level model was able to achieve 
test errors of 5.5, 11.5 and 12.99 on DBP, Yelp.P and Yah.A, 
respectively using a simple 3 layers CNN. It is important to 
note that a simple CNN containing only 3 layers such as Kim’s 
CNN outperforms the best test errors on three data sets from a 
total of five. Word-CNN models generated by our algorithm 
are 3 layered models with different kernel sizes and feature 
maps (see Table 4). In our word CNN, we apply a max-
overtime pooling operation (Collobert et al., 2011) over the 
feature map. For this reason, the size of the max pooling 
operation depends on the number of words in the sentence fed 
to the network. 

For all data sets, the terms ( )dropout  and ( )dropout  

in Table 6 are provided to indicate whether the result 
generated by the proposed method is with or without the use 
of a dropout layer between fully connected layers. The best-
obtained test errors were found when using dropout. The 
mean test errors for AG.N, DBP, Yelp.P, Yelp.F and Yah.A 
data sets in character level CNN are 4.46, 2.26, 2.14, 13.65 
and 17.22 respectively, when using dropout, and 7.45, 2.46, 
2.73, 14.62 and 19.88, respectively without using dropout. 

The mean test errors for the same data sets in word-level 
CNN are 3.76, 0.88, 2.98, 9.22 and 15.14, respectively, 
when using dropout, and 4.12, 1.17, 3.12, 10.03 and 17.26, 
respectively without using dropout. 

Table 4 Best found word level models by our algorithm on 
the benchmark data sets (the size of max-pooling 
kernel depends on the number of words in the 
sentence fed to the network) 

Data set Layer Parameters 

AG.N 

CV kernels:[4, 5, 6]; output filters: 512 

MP kernel size: variable 

FC output neurons: 190 

DBP 

CV kernels: [2, 3, 4, 5]; output filters: 64 

MP kernel size: variable 

FC output neurons: 152 

Yelp.P 

CV kernels: [3, 4, 5]; output filters: 512 

MP kernel size: variable 

FC output neurons: 126 

Yelp.F 

CV kernels: [5, 6, 7]; output filters: 512 

MP kernel size: variable 

FC output neurons: 192 

Yah.A 

CV kernels: [3, 3, 3]; output filters: 512 

MP kernel size: variable 

FC output neurons: 169 

Table 5 Best results obtained by SiNoptiC and their 
computational complexity for five data sets 

 Data set Error 
Accuracy  

(%) 
# Parameters 

Char  
CNN 

AG.N 3.86 87 523k 

DBP 1.20 97 3M 

Yelp.P 1.92 93 591k 

Yelp.F 9.79 20 983k 

Yah.A 14.08 55 1.6M 

Word  
CNN 

AG.N 2.73 92 5M 

DBP 0.60 98 4M 

Yelp.P 1.28 95 2M 

Yelp.F 8.47 65 4.4M 

Yah.A 13.23 56 3M 

Table 6 Test errors of SiNoptiC on five data sets with and without dropout 

 SiNoptiC AG.N DBP Yelp.P Yelp.F Yah.A. 

Char CNN 

(+) dropout (Best) 3.86 1.20 1.92 9.79 14.08 

(+) dropout (Mean.) 4.46 2.26 2.14 13.65 17.22 

(–) dropout (Best) 5.16 1.88 2.05 14.18 15.88 

(–) dropout (Mean) 7.45 2.46 2.73 14.62 19.88 

Word CNN 

(+) dropout (Best) 2.73 0.60 1.28 8.47 13.23 

(+) dropout (Mean) 3.76 0.88 2.98 9.22 15.14 

(–) dropout (Best) 3.08 0.98 1.60 9.47 15.99 

(–) dropout (Mean) 4.12 1.17 3.12 10.03 17.26 
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Table 7 SiNoptiC test errors comparison with different models 

 Model AG.N DBP Yelp.P Yelp.F Yah.A. 

Char CNN 

Char-level CNN (Zhang et al., 2015) 12.82 1.73 5.89 39.62 29.55 

VDCNN (Conneau et al., 2016) 8.73 1.29 4.28 35.28 26.57 

SiNoptiC 3.86 1.20 1.92 9.79 14.08 

Word CNN 

Kim’s model (Kim, 2014) 2.78 0.55 1.15 8.60 12.99 

Word-level CNN (Zhang et al., 2015) 8.55 1.42 4.60 40.16 31.50 

Word-CNN (Johnson and Zhang, 2016) 6.95 1.12 3.44 34.21 26.06 

DPCNN (Johnson and Zhang, 2017) 6.87 0.88 2.64 30.58 23.90 

SiNoptiC 2.73 0.60 1.28 8.47 13.23 

 
With regard to illustrating the convergence behaviour of 
Synoptic along with the iterations, we run SiNoptiC 5  times on 
AG.N data set where 20  fishes were used over 15  iterations. 
We recorded the best fish accuracy at the end of each run, as 
we can see in Figure 4, the best accuracy was achieved from 
the 8th iteration and there is no remarkable improvement until 
the last iteration. 

It is important to note that such convergence has nothing to 
do with the quality of the solutions at the end of the run. It only 
talks about a set of architectures that will evolve to end up with 
the same architecture rather than giving different architectures 
with different depths and parameters. 

In Figure 4, it is clear that we could have more chances 
of reaching a good accuracy at the end of each run. A 
possible improvement will take place if we could increase 
the number of iterations and the number of fishes to explore 
more CNN architectures and find better models for the 
problem in question. Unfortunately, Owing our limited 
computational power, it was not possible to increase the 
number of fishes and iterations in our runs. Reducing the 
running time of SiNoptiC is a major contribution to the 
field. 

In the proposed algorithm, there are two separate 
versions: the first considers the entry as a sequence of 

characters, and the second considers the entry as a sequence 
of words. 

In Figure 5, we illustrated both character and word level 
CNNs found by our algorithm, the figure shows that the best 
accuracy was achieved using the word CNN for all benchmark 
data sets. One of our future research directions is to merge the 
two versions and create an algorithm where input granularity 
(character or word) and depth are optimised at the same time. 

Figure 4 The accuracy of the best architecture accuracy found  
over 15 iterations of our SiNoptiC algorithm on AG.N 
data set 

 

Figure 5 Boxplots of the test accuracy for: (a) AG’News, (b) DBPedia, (c) Yelp Polarity, (d) Yelp Full and (e) Yahoo Answers data sets 
obtained with the proposed SiNoptiC 

     

(a) (b) 
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Figure 5 Boxplots of the test accuracy for: (a) AG’News, (b) DBPedia, (c) Yelp Polarity, (d) Yelp Full and (e) Yahoo Answers data sets 
obtained with the proposed SiNoptiC (continued) 

     

(c) (d) 

 

(e) 

We implemented two versions of our SiNoptiC: the first one 
initialises the school with architectures using a word 
embedding as the first layer while the second version uses a 
character embedding instead. The word-level SiNoptiC 
provides as best architecture found a model with three 
layers (Convolution – Max Pooling – Fully Connected) for 
all data sets. 

The character level SiNoptiC performs models with 
different depths that we presented in Table 8. For each data 
set, we presented the layers found with their related 
parameters. All the best CNNs found contain only a single 
FC layer at the tail of each model. This highlights the 
performance of the SiNoptiC algorithm because many 
recent studies have proved that CNNs having a single FC 
layer at the end are more efficient (Springenberg et al., 
2014). 

Our results show that the SiNoptiC algorithm can find 
optimal architectures without any expertise on the domain in 
question. Even though SiNoptiC was tested for character 
level and word level separately, our results show that in  
 

both cases SiNoptiC can be considered as an efficient way 
to find optimised CNN architectures. Thus, the proposed 
algorithm can be a good way to help non-experts 
automatically design deep architectures and it can be 
extended to several areas other than text classification. 

6.4.2 About individual and collective movements 

Individual and collective movements occur for each fish 
architecture in the school at every iteration of SiNoptiC 
algorithm according to equations (8), (6) and (7). The step is 
randomly chosen and each fish depth will increase or decrease 
without any maximum boundaries. 

Figure 6 shows the accuracy of each fish before and after 
the individual movement during the first iteration of SiNoptiC 
for the AG.N data set. We have chosen to illustrate the effect of 
the individual movement during the first iteration because the 
fish were initialised with different architectures randomly 
generated and the algorithm has not yet converged to the same 
architecture. 
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Table 8 Best found character level models by our algorithm on the benchmark data sets 

Data set Layer Parameters 

AG.N 

CV window size: 5; output filters: 256 

MP kernel size: 5 

CV window size: 3; output filters: 128 

MP kernel size: 3 

CV window size: 3; output filters: 256 

MP kernel size: 5 

FC output neurons: 300 

DBP 

CV window size: 3; output filters: 512 

CV window size: 5; output filters: 256 

MP kernel size: 3 

CV window size: 3; output filters: 64 

MP kernel size: 3 

CV window size: 3; output filters: 128 

MP kernel size: 3 

CV window size: 3; output filters: 64 

MP kernel size: 3 

FC output neurons: 1024 

Yelp.P 

CV window size: 3; output filters: 256 

MP kernel size: 3 

CV window size: 3; output filters: 512 

CV window size: 3; output filters: 256 

MP kernel size: 5 

CV window size: 3; output filters: 128 

MP kernel size: 5 

CV window size: 3; output filters: 64 

MP kernel size: 3 

FC output neurons: 378 

Yelp.F 

CV window size: 5; output filters: 512 

MP kernel size: 5 

CV window size: 3; output filters: 256 

MP kernel size: 5 

CV window size: 3; output filters: 64 

MP kernel size: 3 

CV window size: 3; output filters: 128 

CV window size: 3; output filters: 64 

MP kernel size: 3 

FC output neurons: 257 

Yah.A 

CV window size: 5; output filters: 128 

MP kernel size: 3 

CV window size: 3; output filters: 256 

MP kernel size: 3 

CV window size: 3; output filters: 256 

MP kernel size: 3 

CV window size: 3; output filters: 128 

MP kernel size: 3 

CV window size: 5; output filters: 128 

MP kernel size: 3 

FC output neurons: 309 
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Figure 6 Individual movements illustrated during the first 
iteration of SiNoptiC on AG.N data set 

 

Hence, during this iteration, the effect of the individual 
movement is more clear. Over ten fishes, six fishes had 
successful individual movements. For example, fish 2 moved 
from the accuracy 37 to 40% after a change in its architecture. 
Unlike fish 1 which remained at the same position with the 
same accuracy of 30% and without any change in its 
architecture. We should mention that according to our 
algorithm, the individual movement of the fish does not occur 
if there is no improvement in the accuracy. Figure 6 shows the 
accuracy of each fish before and after the collective movement 
that accrued directly after the previous individual movement to 
track the fish’s accuracy. We can see that the effect of the 
collective movement has less impact on the improvement of 
the fish’s accuracy when compared to the individual 
movement. This is explained by the fact that during the 
collective movement fishes having unsuccessful movements 
will have more chances to change their architectures. 

Indeed, the fishes having successful individual movements 
will influence the resulting direction of movement more than 
the unsuccessful ones. Only two fish (Fish 1 and Fish 3) over 
ten recorded an improvement after their collective movement. 
This shows that our defined collective operator is working 
according to the designed objective which is enhancing the 
overall performance of the school. 

In the SiNoptiC algorithm, we can see the importance of 
both individual and collective movement on the best 
architecture found. Figure 6 shows that the accuracy of the fish 
is getting better after each individual movement which could be 
an increase or decrease in the number of layers or a change in 
the layers’ parameters. We found that sometimes a random 
change can achieve good accuracy. Figure 7 shows that the 
proposed collective movement operator is performing an 
update to the fish architecture in a way that either improves its 
accuracy or makes no change. In all cases, the design of this 
operator in our algorithm is indeed working similarly to an FSS 
algorithm by making only good fishes influence the resulting 
direction of this movement. All the designed operators exert a 
strong influence on the search result. 

 
 
 

Figure 7 Collective movements illustrated during the first 
iteration of SiNoptiC on AG.N data set 

 

6.4.3 About computational complexity 

Although it is not easy to compute the algorithm’s 
computational complexity theoretically because of the 
stochastic nature of FSS and CNNs, the obtained results show 
that SiNoptiC can find very competitive architectures with 
fewer parameters. For example, if we compare our char-CNN 
best model with VDCNN (Conneau et al., 2016) on Yelp.P 
data set, we can see that our best model has 10 layers, an error 
of 1.92 and only 591  thousand parameters, is much simpler 
than VDCNN. 

SiNoptiC has shown its ability to find simpler models with 
fewer parameters than those of other comparable models. For 
example, in DBP, Yelp.P and Yah. Data set, best models found 
by SiNoptiC algorithm only have 3, 0.591 and 1.6 million 
parameters respectively (see Table 5) which are much less than 
those of VDCNN (Conneau et al., 2016). 

It should be noted that there are studies that have shown 
that, at the word level, simple three-layer models are much 
more efficient than deep models. At the character level, the 
models provided by our algorithm are simple when compared 
with VDCNN (Conneau et al., 2016). So, SiNoptiC can find 
models with less number of layers than the peer competitor 
models; this can be explained by the choice of initialising the 
fish with ‘shallow’ networks (having a small number of layers). 
This emphasises the fact that the depth in many handcrafted 
models is not optimal, and it is possible to find models that are 
shallower and have higher precision. 

Also, SiNoptiC has proven its efficiency in giving 
competitive results even without the use of complex 
architectures and data augmentation techniques. From the 
results presented in Section 6, the models found by the 
proposed word-level SiNoptiC are three-layered models and 
similar in their architecture to Kim’s model (2014). 

In each iteration, SiNoptiC evaluates the fitness function of 
each fish after the individual and the collective movement in 
order to update the best fish. Each evaluation involves training 
the fish’s model. Fortunately, the number of epochs required 
for the training convergence is relatively small. This has 
reduced the computation time of our algorithm. 
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7 Conclusions 

In this paper, a new method of automatic CNNs architecture 
design for text classification problems was proposed. The 
proposed algorithm helps to optimise CNNs in a proficient 
way by using a coupling CNN with FSS-based optimisation. 
We adopted an encoding strategy allowing for variable-
length CNN architectures. We re-defined the operators of 
the standard FSS algorithm such as the individual and 
collective movement for efficiently searching for adequate 
architecture. 

The experimental result has shown that the proposed 
method can automatically find competitive CNN architectures 
compared with the state-of-the-art models. The experimental 
results show that if we had more computing power, the 
proposed method could provide even better architectures. We 
will publish our code so that the research community can easily 
build on top of our work. 

Future work involves investigating alternative adaptation of 
the meta-heuristic FSS to solve CNN architecture optimisation 
with many objectives such as the granularity of the CNN input, 
computational complexity and classification accuracy. 
Therefore, a decision-maker could configure his model 
according to his needs, which will further improve the 
classification accuracy of the resulting models. 

So far the proposed algorithm is limited to CNNs but can 
be easily adapted to work for any feedforward architecture 
including recurrent or modular architectures. Another challenge 
for future research is the extension to general networks. 
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