A numerical method for potential implementation of underbalanced drilling in high pore pressure reservoirs
by Oveis Farzay; Seyedalireza Khatibi; Azadeh Aghajanpour; Ali Shakhouri; Adel M. Al-Ajmi
International Journal of Oil, Gas and Coal Technology (IJOGCT), Vol. 30, No. 3, 2022

Abstract: Rising demand to increase productivity as well as reducing drilling damages has encouraged companies to use underbalanced drilling (UBD) technology. In this study, a numerical simulation is applied to evaluate the feasibility of UBD in high pore pressure reservoirs. To achieve this objective, the minimum possible mud weight that ensures wellbore stability is estimated by considering an elastoplastic model. Furthermore, the growth of the plastic area around the wellbore is studied and utilised as an indicator of wellbore instability. When the growing plastic volume around the wellbore equals the drilled wellbore's volume, the finite-difference model results in the optimum mad weight for the formation. Moreover, a detailed study is conducted in the zones with no safe mud windows to determine the optimum applications. The work of the paper is applied to real field data for justification, where the feasibility of UBD implementation in high pore pressure reservoirs is acknowledged. [Received: March 12, 2021; Accepted: September 27, 2021]

Online publication date: Wed, 01-Jun-2022

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Oil, Gas and Coal Technology (IJOGCT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com