Fixed-time sliding mode flight control with model-based switching functions of quadrotor unmanned aerial vehicles
by Charles Fallaha; Yassine Kali; Maarouf Saad; Jawhar Ghommam
International Journal of Automation and Control (IJAAC), Vol. 16, No. 3/4, 2022

Abstract: This paper proposes the design of a new sliding mode controller of the attitude fast inner-loop of a drone quadrotor type system. The controller uses the novel model-based switching functions approach, which leads to important simplifications of the pitch, roll and yaw torques control inputs fed to the quadrotor. The model-based switching functions approach forces as well a complete chattering decoupling of these three torque inputs and enhances the robustness of the closed-loop system. The proposed approach is combined with the fixed-time sliding mode approach, and is experimentally implemented and successfully validated on a quadrotor system.

Online publication date: Wed, 04-May-2022

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Automation and Control (IJAAC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com