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max-type difference equation system

xn+1 = max

{
A

xnyn−1
, xn−2

}
,

yn+1 = max

{
A

ynxn−1
, yn−2

}
,

where n ∈ N, A ∈ R, and the initial values x−2, x−1, x0, y−2, y−1, y0 are
arbitrary non-zero numbers.
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1 Introduction

Difference equations are pervasive in mathematics and understanding the behaviour of such
equations gives insight to many interesting problems, see Din et al. (2012), Elsayed et al.
(2013), Elsayed and Eleissawy(2012) and Ibrahim andTouafek (2014). Max-type difference
equations, which appeared for the first time in control theory, have attracted extensively
attention recently (Qin et al., 2012; Xiao and Shi, 2013; Touafek and Haddad, 2015; Yazlik
et al., 2015; Ibrahim and Touafek, 2014; Ibrahim, 2016). Ibrahim (2016) examined the
periodicity and formularisation of the solutions for a system of semi-max-type difference
equations of second order in the form

xn+1 = max

{
An

yn−1
, xn−1

}
,

yn+1 = min

{
Bn

xn−1
, yn−1

}
, (1)

where n ∈ N0, N0 = N ∪ {0}, (An)n∈N0 , (Bn)n∈N0 are two-periodic positive sequences,
and initial values x0, x−1, y0, y−1 ∈ (0, +∞). Williams (2016) has investigated the
general solutions and periodic solutions of the following max-type difference equation
system

xn+1 = max

{
y2n−1,

A

yn−1

}
,

yn+1 = max

{
x2
n−1,

A

xn−1

}
, (2)

where n ∈ N0, x−1 = α, y−1 = β, x0 = λ and y0 = µ are constants and A > 0.
In this paper, we study the eventually periodicity of the following max-type difference

equation system

xn+1 = max

{
A

xnyn−1
, xn−2

}
,

yn+1 = max

{
A

ynxn−1
, yn−2

}
, (3)

where n ∈ N, A ∈ R \ {0}, and the initial values x−2, x−1, x0, y−2, y−1, y0 are arbitrary
non-zero numbers.
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2 Preliminaries

Firstly, we give two definitions.

Definition 1: The sequence {xn, yn}∞n=−k is eventually periodic with period p if there is
an n0 ∈ {−k, · · · , − 1, 0, 1, · · · } such that for all n ≥ n0,

xn+p = xn, yn+p = yn.

Definition 2: The sequence {xn, yn}∞n=−k is eventually positive (negative) if there is an
n0 ∈ {−k, · · · , − 1, 0, 1, · · · } such that for all n ≥ n0,

xn > (<)0, yn > (<)0.

In order to get the eventually periodic solutions of (3), the following lemma is needed.

Lemma 1: Assume that {xn, yn}∞n=−2 is a solution of (3) and there is k0 ∈ N0 ∪ {−2,−1}
such that

xk0 = xk0+3, xk0+1 = xk0+4, xk0+2 = xk0+5, (4)
yk0 = yk0+3, yk0+1 = yk0+4, yk0+2 = yk0+5, (5)

then this solution is eventually periodic with period three.

Proof: To prove this lemma, we just need to prove that the following equations are true.

xk0
= xk0+3m, xk0+1 = xk0+1+3m, xk0+2 = xk0+2+3m, (6)

yk0 = yk0+3m, yk0+1 = yk0+1+3m, yk0+2 = yk0+2+3m, (7)

for every m ∈ N.
We use the method of induction. For m = 1, (6) and (7) become (4) and (5), so the

result holds. Assume that (4) and (5) hold for 1 ≤ m ≤ m0, by using (3)-(7), we have

xk0+3(m0+1) = max

{
A

xk0+3m0+2yk0+3m0+1
, xk0+3m0

}
= max

{
A

xk0+2yk0+1
, xk0

}
= xk0+3 = xk0 ,

yk0+3(m0+1) = max

{
A

yk0+3m0+2xk0+3m0+1
, yk0+3m0

}
= max

{
A

yk0+2xk0+1
, yk0

}
= yk0+3 = yk0 ,

xk0+1+3(m0+1) = max

{
A

xk0+3m0+3yk0+3m0+2
, xk0+3m0+1

}
= max

{
A

xk0+3yk0+2
, xk0+1

}
= xk0+4 = xk0+1,

yk0+1+3(m0+1) = max

{
A

yk0+3m0+3xk0+3m0+2
, yk0+3m0+1

}
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= max

{
A

yk0+3xk0+2
, yk0+1

}
= yk0+4 = yk0+1,

xk0+2+3(m0+1) = max

{
A

xk0+3m0+4yk0+3m0+3
, xk0+3m0+2

}
= max

{
A

xk0+4yk0+3
, xk0+2

}
= xk0+4 = xk0+2,

yk0+2+3(m0+1) = max

{
A

yk0+3m0+4xk0+3m0+3
, yk0+3m0+2

}
= max

{
A

yk0+4xk0+3
, yk0+2

}
= yk0+4 = yk0+2.

For the sake of argument, we will give the initial values for three different situations as the
following.

(H1) All of the initials values x−2, x−1, x0, y−2, y−1, y0 are negative;
(H2) All of the initials values x−2, x−1, x0, y−2, y−1, y0 are positive;
(H3) At least one of the initials values x−2, x−1, x0, y−2, y−1, y0

is greater than zero and at least one of the initial values is less than zero.

3 Periodic solutions of (3) for the case A > 0

In this section, we will discuss the eventually periodic solutions of (3) for the case A > 0.

Theorem 1: Suppose that A > 0 and the initial values x−2, x−1, x0, y−2, y−1, y0 satisfy
(H1), then every solution of (3) is eventually periodic with period 3.

Proof: Since A > 0 and x−2, x−1, x0, y−2, y−1, y0 < 0, then

x1 = max

{
A

x0y−1
, x−2

}
=

A

x0y−1
, y1 = max

{
A

y0x−1
, y−2

}
=

A

y0x−1
.

(I) Suppose that x0y−1 ≥ y0x−1, and

(i) If x0

y0
≥ 1, then

x2 = max

{
x0y−1

y0
, x−1

}
= x−1, y2 = max

{
y0x−1

x0
, y−1

}
=

y0x−1

x0
;

x3 = max {y0, x0} = y0, y3 = max

{
x2
0y−1

y0x−1
, y0

}
= y0;
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x4 = max

{
x0A

y2
0x−1

,
A

x0y−1

}
=

x0A

y2
0x−1

, y4 = max

{
A

y0x−1
,

A

y0x−1

}
=

A

y0x−1
;

x5 = max

{
y0x−1

x0
, x−1

}
=

y0x−1

x0
, y5 = max

{
x−1,

y0x−1

x0

}
=

y0x−1

x0
;

x6 = max {x0, y0} = y0, y6 = max {y0, y0} = y0;

x7 = max

{
x0A

y2
0x−1

,
x0A

y2
0x−1

}
=

x0A

y2
0x−1

, y7 = max

{
x0A

y2
0x−1

,
A

y0x−1

}
=

x0A

y2
0x−1

;

x8 = max

{
y0x−1

x0
,
y0x−1

x0

}
=

y0x−1

x0
, y8 = max

{
y0x−1

x0
,
y0x−1

x0

}
=

y0x−1

x0
;

x9 = max {y0, y0} = y0, y9 = max {y0, y0} = y0;

x10 = max

{
x0A

y2
0x−1

,
x0A

y2
0x−1

}
=

x0A

y2
0x−1

, y10 = max

{
x0A

y2
0x−1

,
x0A

y2
0x−1

}
=

x0A

y2
0x−1

.

Hence x5 = y5 = x8 = y8, x6 = y6 = x9 = y9, x7 = y7 = x10 = y10, by Lemma 1 and
induction method, the solution is eventually periodic with period three as the following

x3n−1 = y3n−1 =
y0x−1

x0
; x3n = y3n = y0; x3n+1 = y3n+1 =

x0A

y20x−1
, n = 2, 3, . . . .

(ii) If 0 < x0

y0
< 1, and

(a) x2
0y−1

y0x−1
≤ y0, then

x3 = max {y0, x0} = x0, y3 = max

{
x2
0y−1

y0x−1
, y0

}
= y0;

x4 = max

{
A

y0x−1
,

A

x0y−1

}
=

A

y0x−1
, y4 = max

{
A

y0x−1
,

A

y0x−1

}
=

A

y0x−1
;

x5 = max {x−1, x−1} = x−1, y5 = max

{
y0x−1

x0
,
y0x−1

x0

}
=

y0x−1

x0
;

x6 = max {y0, x0} = x0, y6 = max {x0, y0} = x0;

x7 = max

{
A

y0x−1
,

A

y0x−1

}
=

A

y0x−1
, y7 = max

{
A

x0x−1
,

A

y0x−1

}
=

A

x0x−1
;

x8 = max

{
y0x−1

x0
, x−1

}
= x−1, y8 = max

{
x−1,

y0x−1

x0

}
= x−1;

x9 = max {x0, x0} = x0, y9 = max {y0, x0} = x0;

x10 = max

{
A

x0x−1
,

A

y0x−1

}
=

A

x0x−1
, y10 = max

{
A

x0x−1
,

A

x0x−1

}
=

A

x0x−1
;
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x11 = max {x−1, x−1} = x−1, y11 = max {x−1, x−1} = x−1;

x12 = max {x0, x0} = x0, y12 = max {x0, x0} = x0;

x13 = max

{
A

x0x−1
,

A

x0x−1

}
=

A

x0x−1
, y13 = max

{
A

x0x−1
,

A

x0x−1

}
=

A

x0x−1
.

Hence x8 = y8 = x11 = y11, x9 = y9 = x12 = y12, x10 = y10 = x13 = y13, by
Lemma 1, the solution is eventually periodic with period three as the following

x3n−1 = y3n−1 = x−1; x3n = y3n = x0; x3n+1 = y3n+1 =
A

x0x−1
, n = 3, 4, . . . .

(b) x2
0y−1

y0x−1
≥ y0, then

x3 = max {y0, x0} = x0, y3 = max

{
x2
0y−1

y0x−1
, y0

}
=

x2
0y−1

y0x−1
;

x4 = max

{
A

y0x−1
,

A

x0y−1

}
=

A

y0x−1
, y4 = max

{
y0A

x2
0y−1

,
A

y0x−1

}
=

y0A

x2
0y−1

;

x5 = max

{
y2
0x

2
−1

x2
0y−1

, x−1

}
= x−1, y5 = max

{
x0y−1

y0
,
y0x−1

x0

}
=

x0y−1

y0
;

x6 = max

{
x2
0y−1

y0x−1
, x0

}
= x0, y6 = max

{
y2
0x−1

x0y−1
,
x2
0y−1

y0x−1

}
=

y2
0x−1

x0y−1
;

x7 = max

{
y0A

x2
0y−1

,
A

y0x−1

}
=

y0A

x2
0y−1

, y7 = max

{
x0y−1A

y2
0x

2
−1

,
y0A

x2
0y−1

}
=

x0y−1A

y2
0x

2
−1

;

x8 = max

{
x3
0y

2
−1

y3
0x−1

, x−1

}
= x−1, y8 = max

{
y2
0x

2
−1

x2
0y−1

,
x0y−1

y0

}
=

y2
0x

2
−1

x2
0y−1

;

x9 = max

{
y2
0x−1

x0y−1
, x0

}
= x0, y9 = max

{
x4
0y

2
−1

y3
0x

2
−1

,
y2
0x−1

x0y−1

}
=

y2
0x−1

x0y−1
;

x10 = max

{
x0y−1A

y2
0x

2
−1

,
y0A

x2
0y−1

}
=

x0y−1A

y2
0x

2
−1

, y10 = max

{
x0y−1A

y2
0x

2
−1

,
x0y−1A

y2
0x

2
−1

}
=

x0y−1A

y2
0x

2
−1

;

x11 = max {x−1, x−1} = x−1, y11 = max

{
y2
0x

2
−1

x2
0y−1

,
y2
0x

2
−1

x2
0y−1

}
=

y2
0x

2
−1

x2
0y−1

;

x12 = max

{
y2
0x−1

x0y−1
, x0

}
= x0, y12 = max

{
x0,

y2
0x−1

x0y−1

}
= x0;

x13 = max

{
x0y−1A

y2
0x

2
−1

,
x0y−1A

y2
0x

2
−1

}
=

x0y−1A

y2
0x

2
−1

, y13 = max

{
A

x0x−1
,
x0y−1A

y2
0x

2
−1

}
=

A

x0x−1
;

x14 = max

{
y2
0x

2
−1

x2
0y−1

, x−1

}
= x−1, y14 = max

{
x−1,

y2
0x

2
−1

x2
0y−1

}
= x−1;

x15 = max {x0, x0} = x0, y15 = max

{
y2
0x−1

x0y−1
, x0

}
= x0;

x16 = max

{
A

x0x−1
,
x0y−1A

y2
0x

2
−1

}
=

A

x0x−1
, y16 = max

{
A

x0x−1
,

A

x0x−1

}
=

A

x0x−1
;

x17 = max {x−1, x−1} = x−1, y17 = max {x−1, x−1} = x−1;

x18 = max {x0, x0} = x0, y18 = max {x0, x0} = x0;

x19 = max

{
A

x0x−1
,

A

x0x−1

}
=

A

x0x−1
, y19 = max

{
A

x0x−1
,

A

x0x−1

}
=

A

x0x−1
.
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Hence x14 = y14 = x17 = y17, x15 = y15 = x18 = y18, x16 = y16 = x19 = y19, by
Lemma 1, the solution is eventually periodic with period three as the following

x3n−1 = y3n−1 = x−1; x3n = y3n = x0; x3n+1 = y3n+1 =
A

x0x−1
, n = 5, 6, . . . .

(II) Suppose that x0y−1 ≤ y0x−1, the proof is similar to case 1, so we just give the result.

(i) If x0

y0
≥ 1, and

(a) x0 ≥ y2
0x−1

x0y−1
, then the solution is eventually periodic with period three as the following

x3n−1 = y3n−1 = y−1; x3n = y3n = y0; x3n+1 = y3n+1 =
A

y0y−1
, n = 3, 4, . . . .

(b) x0 ≤ y2
0x−1

x0y−1
, then the solution is eventually periodic with period three as the following

x3n−1 = y3n−1 = y−1; x3n = y3n = y0; x3n+1 = y3n+1 =
A

y0y−1
, n = 5, 6, . . . .

(ii) If 0 < x0

y0
< 1, then the solution is eventually periodic with period three as the following

x3n−1 = y3n−1 =
x0y−1

y0
; x3n = y3n = x0; x3n+1 = y3n+1 =

y0A

x2
0y−1

, n = 2, 3, . . . .

Remark 1: A > 0 and (H1) imply that every solution of (3) is eventually sign-changing.

Theorem 2: Suppose that A > 0 and the initial values x−2, x−1, x0, y−2, y−1, y0 satisfy
(H2), then every solution of (3) is eventually periodic with period three.

Proof: As in the proof of Theorem 1, there are several cases which should be discussed
because of the maximum property in system (3). While due to the similarity of the proof
and the space limitations, here we just show the results of some cases.

(I) Assume that y−2 ≥ A
y0x−1

≥ A
x0y−1

≥ x−2, and

(i) If x0

y0
≥ 1, then the solution is eventually periodic with period three as the following

x3n−2 =
A

x0y−1
; x3n−1 =

x0y−1

y0
; x3n = x0; y3n−2 = y−2; y3n−1 = y−1;

y3n = x0, n = 1, 2, . . . .

(ii) If 0 < x0

y0
< 1, and

(a)x0 ≥ y0A
x0y−1y−2

, then the solution is eventually periodic with period three as the following

x3n−2 =
A

x0y−1
; x3n−1 =

x0y−1

y0
; x3n = x0;

y3n−2 = y−2; y3n−1 = y−1; y3n = y0, n = 1, 2, . . . .
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(b)x0 ≤ y0A
x0y−1y−2

, then the solution is eventually periodic with period three as the following

x3n−2 =
A

x0y−1
; x3n−1 =

x0y−1

y0
; x3n =

y0A

x0y−1y−2
;

y3n−2 = y−2; y3n−1 = y−1; y3n = y0, n = 1, 2, . . . .

(II) Assume that A
y0x−1

≥ A
x0y−1

≥ x−2 ≥ y−2, and

(i) If x0

y0
≥ 1, then the solution is eventually periodic with period three as the following

x3n−2 =
A

x0y−1
; x3n−1 =

x0y−1

y0
; x3n = x0;

y3n−2 =
A

y0x−1
; y3n−1 = y−1; y3n = x0, n = 1, 2, . . . .

(ii) If 0 < x0

y0
< 1, and

(a) x0 ≥ y2
0x−1A
x0y−1

, then the solution is eventually periodic with period three as the following

x3n−2 =
A

x0y−1
; x3n−1 =

x0y−1

y0
; x3n = x0;

y3n−2 =
A

y0x−1
; y3n−1 = y−1; y3n = y0, n = 1, 2, . . . .

(b) x0 ≤ y2
0x−1A
x0y−1

, then the solution is eventually periodic with period three as the following

x3n−2 =
A

x0y−1
; x3n−1 =

x0y−1

y0
; x3n =

y20x−1

x0y−1
;

y3n−2 =
A

y0x−1
; y3n−1 = y−1; y3n = y0, n = 1, 2, . . . .

Remark 2: A > 0 and (H2) imply that every solution of (3) is positive.

Theorem 3: Suppose that A > 0 and the initial values x−2, x−1, x0, y−2, y−1, y0 satisfy
(H3), then every solution of (3) is eventually periodic with period three.

Proof: (I) suppose that x−1, y−2 > 0, x−2, x0, y−1, y0 < 0, then

x1 = max

{
A

x0y−1
, x−2

}
=

A

x0y−1
, y1 = max

{
A

y0x−1
, y−2

}
= y−2;

(i) if A
y−2x0

≥ y−1, then

x2 = max

{
x0y−1

y0
, x−1

}
= x−1, y2 = max

{
A

y−2x0
, y−1

}
=

A

y−2x0
;
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(a) x2
0y−1y−2

A ≥ y0, we have

x3 = max

{
A

x−1y−2
, x0

}
=

A

x−1y−2
, y3 = max

{
x2
0y−1y−2

A
, y0

}
=

x2
0y−1y−2

A
;

x4 = max

{
y2
−2x−1x0

A
,

A

x0y−1

}
=

A

x0y−1
, y4 = max

{
A2

x2
0y−1y−2x−1

, y−2

}
= y−2;

x5 = max

{
A

x0y−2
, x−1

}
= x−1, y5 = max

{
x−1,

A

y−2x0

}
= x−1;

x6 = max

{
A

x−1y−2
,

A

x−1y−2

}
=

A

x−1y−2
, y6 = max

{
x0y−1

x−1
,
x2
0y−1y−2

A

}
=

x0y−1

x−1
;

x7 = max

{
y−2,

A

x0y−1

}
= y−2, y7 = max

{
A

x0y−1
, y−2

}
= y−2;

x8 = max

{
x−1A

x0y−1y−2
, x−1

}
= x−1, y8 = max {x−1, x−1} = x−1;

x9 = max

{
A

x−1y−2
,

A

x−1y−2

}
=

A

x−1y−2
, y9 = max

{
A

x−1y−2
,
x0y−1

x−1

}
=

x0y−1

x−1
;

x10 = max {y−2, y−2} = y−2, y10 = max

{
A

x0y−1
, y−2

}
= y−2;

Hence x5 = x8, x6 = x9, x7 = x10, y5 = y8, y6 = y9, y7 = y10, by Lemma 1, the
solution is eventually periodic with period three as the following

x3n−1 = x−1; x3n =
A

x−1y−2
; x3n+1 = y−2;

y3n−1 = x−1; y3n =
x0y−1

x−1
; y3n+1 = y−2, n = 2, 3, . . . .

(b) x2
0y−1y−2

A ≤ y0, the results are the same as (a).

(ii) if A
y−2x0

≤ y−1, then

x2 = max

{
x0y−1

y0
, x−1

}
= x−1, y2 = max

{
A

y−2x0
, y−1

}
= y−1;

(a) x0 ≥ y0, we have

x3 = max

{
A

x−1y−2
, x0

}
=

A

x−1y−2
, y3 = max {x0, y0} = x0;

x4 = max

{
x−1y−2

y−1
,

A

x0y−1

}
=

A

x0y−1
, y4 = max

{
A

x0x−1
, y−2

}
= y−2;

x5 = max {y−1, x−1} = x−1, y5 = max {x−1, y−1} = x−1;

x6 = max

{
A

x−1y−2
,

A

x−1y−2

}
=

A

x−1y−2
, y6 = max

{
x0y−1

x−1
, x0

}
=

x0y−1

x−1
;

x7 = max

{
y−2,

A

x0y−1

}
=

A

x0y−1
, y7 = max

{
A

x0y−1
, y−2

}
=

A

x0y−1
;

x8 = max {x−1, x−1} = x−1, y8 = max
{x0x−1y−1y−2

A
, x−1

}
= x−1;
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x9 = max

{
x0y−1

x−1
,

A

x−1y−2

}
=

A

x−1y−2
, y9 = max

{
x0y−1

x−1
,
x0y−1

x−1

}
=

x0y−1

x−1
;

x10 = max

{
y−2,

A

x0y−1

}
=

A

x0y−1
, y10 = max

{
A

x0y−1
,

A

x0y−1

}
=

A

x0y−1
;

Hence x5 = x8, x6 = x9, x7 = x10, y5 = y8, y6 = y9, y7 = y10, by Lemma 1, the
solution is eventually periodic with period three as the following

x3n−1 = x−1; x3n =
A

x−1y−2
; x3n+1 =

A

x0y−1
;

y3n−1 = x−1; y3n =
x0y−1

x−1
; y3n+1 =

A

x0y−1
, n = 2, 3, . . . .

(b) x0 ≤ y0, the results are the same as (a).

(II) Suppose that y0 > 0, x−2, x−1, x0, y−2, y−1 < 0, and

(i) if A
y0x−1

≥ y−2, then

x1 = max

{
A

x0y−1
, x−2

}
=

A

x0y−1
, y1 = max

{
A

y0x−1
, y−2

}
=

A

y0x−1
;

x2 = max

{
x0y−1

y0
, x−1

}
=

x0y−1

y0
, y2 = max

{
y0x−1

x0
, y−1

}
=

y0x−1

x0
;

(a) y2
0x−1

x0y−1
≥ x0, we have

x3 = max

{
y2
0x−1

x0y−1
, x0

}
=

y2
0x−1

x0y−1
, y3 = max

{
x2
0y−1

y0x−1
, y0

}
=

x2
0y−1

y0x−1
;

x4 = max

{
x2
0y−1A

y3
0x

2
−1

,
A

x0y−1

}
=

A

x0y−1
, y4 = max

{
y2
0x−1A

x3
0y

2
−1

,
A

y0x−1

}
=

y2
0x−1A

x3
0y

2
−1

;

x5 = max

{
y0x−1

x0
,
x0y−1

y0

}
=

x0y−1

y0
, y5 = max

{
x4
0y

3
−1

y4
0x

2
−1

,
y0x−1

x0

}
=

y0x−1

x0
;

x6 = max

{
x2
0y−1

y0x−1
,
y2
0x−1

x0y−1

}
=

x2
0y−1

y0x−1
, y6 = max

{
x2
0y−1

y0x−1
,
x2
0y−1

y0x−1

}
=

x2
0y−1

y0x−1
;

x7 = max

{
A

x0y−1
,

A

x0y−1

}
=

A

x0y−1
, y7 = max

{
y2
0x−1A

x3
0y

2
−1

,
y2
0x−1A

x3
0y

2
−1

}
=

y2
0x−1A

x3
0y

2
−1

;

x8 = max

{
y0x−1

x0
,
x0y−1

y0

}
=

x0y−1

y0
, y8 = max

{
x0y−1

y0
,
y0x−1

x0

}
=

x0y−1

y0
;

x9 = max

{
x2
0y−1

y0x−1
,
x2
0y−1

y0x−1

}
=

x2
0y−1

y0x−1
, y9 = max

{
y0,

x2
0y−1

y0x−1

}
=

x2
0y−1

y0x−1
;

x10 = max

{
y2
0x−1A

x3
0y

2
−1

,
A

x0y−1

}
=

A

x0y−1
, y10 = max

{
y2
0x−1A

x3
0y

2
−1

,
y2
0x−1A

x3
0y

2
−1

}
=

y2
0x−1A

x3
0y

2
−1

;

x11 = max

{
y0x−1

x0
,
x0y−1

y0

}
=

x0y−1

y0
, y11 = max

{
x0y−1

y0
,
x0y−1

y0

}
=

x0y−1

y0
;
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Hence x6 = x9, x7 = x10, x8 = x11, y6 = y9, y7 = y10, y9 = y11, by Lemma 1, the
solution is eventually periodic with period three as the following

x3n =
x2
0y−1

y0x−1
; x3n+1 =

A

x0y−1
; x3n+2 =

x0y−1

y0
;

y3n =
x2
0y−1

y0x−1
; y3n+1 =

y20x−1A

x3
0y

2
−1

; y3n+2 =
x0y−1

y0
, n = 2, 3, . . . .

(b) y2
0x−1

x0y−1
≤ x0, we have

x3 = max

{
y20x−1

x0y−1
, x0

}
= x0, y3 = max

{
x2
0y−1

y0x−1
, y0

}
= y0;

x4 = max

{
A

y0x−1
,

A

x0y−1

}
=

A

x0y−1
, y4 = max

{
A

x0y−1
,

A

y0x−1

}
=

A

x0y−1
;

x5 = max

{
x0y−1

y0
,
x0y−1

y0

}
=

x0y−1

y0
, y5 = max

{
y−1,

y0x−1

x0

}
=

y0x−1

x0
;

x6 = max {y0, x0} = y0, y6 = max

{
x2
0y−1

y0x−1
, y0

}
= y0;

x7 = max

{
x0A

y20x−1
,

A

x0y−1

}
=

A

x0y−1
, y7 = max

{
A

x0y−1
,

A

x0y−1

}
=

A

x0y−1
;

x8 = max

{
x0y−1

y0
,
x0y−1

y0

}
=

x0y−1

y0
, y8 = max

{
x0y−1

y0
,
y0x−1

x0

}
=

y0x−1

x0
;

x9 = max {y0, y0} = y0, y9 = max

{
x2
0y−1

y0x−1
, y0

}
= y0;

Hence x4 = x7, x5 = x8, x6 = x9, y4 = y7, y5 = y8, y6 = y9, by Lemma 1, the solution
is eventually periodic with period three as the following

x3n+1 =
A

x0y−1
; x3n+2 =

x0y−1

y0
; x3n+3 = y0;

y3n+1 =
A

x0y−1
; y3n+2 =

y0x−1

x0
; y3n+3 = y0, n = 1, 2, . . . .

(ii) if A
y0x−1

≤ y−2, then

x1 = max

{
A

x0y−1
, x−2

}
=

A

x0y−1
, y1 = max

{
A

y0x−1
, y−2

}
= y−2;

x2 = max

{
x0y−1

y0
, x−1

}
=

x0y−1

y0
, y2 = max

{
A

y−2x0
, y−1

}
=

A

y−2x0
;

(a) y0A
x0y−1y−2

≥ x0, we have

x3 = max

{
y0A

x0y−1y−2
, x0

}
=

y0A

x0y−1y−2
, y3 = max

{
x2
0y−1y−2

A
, y0

}
=

x2
0y−1y−2

A
;
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x4 = max

{
x2
0y−1y

2
−2

y0A
,

A

x0y−1

}
=

A

x0y−1
, y4 = max

{
y0A

2

x3
0y

2
−1y−2

, y−2

}
=

y0A
2

x3
0y

2
−1y−2

;

x5 = max

{
A

x0y−2
,
x0y−1

y0

}
=

x0y−1

y0
, y5 = max

{
x4
0y

3
−1y

2
−2

y2
0A

2
,

A

y−2x0

}
=

A

y−2x0
;

x6 = max

{
x2
0y−1y−2

A
,

y0A

x0y−1y−2

}
=

x2
0y−1y−2

A
,

y6 = max

{
x2
0y−1y−2

A
,
x2
0y−1y−2

A

}
=

x2
0y−1y−2

A
;

x7 = max

{
A

x0y−1
,

A

x0y−1

}
=

A

x0y−1
, y7 = max

{
y0A

2

x3
0y

2
−1y−2

,
y0A

2

x3
0y

2
−1y−2

}
=

y0A
2

x3
0y

2
−1y−2

;

x8 = max

{
A

x0y−2
,
x0y−1

y0

}
=

x0y−1

y0
, y8 = max

{
x0y−1

y0
,

A

x0y−2

}
=

x0y−1

y0
;

x9 = max

{
x2
0y−1y−2

A
,
x2
0y−1y−2

A

}
=

x2
0y−1y−2

A
,

y9 = max

{
y0,

x2
0y−1y−2

A

}
=

x2
0y−1y−2

A
;

x10 = max

{
y0A

2

x3
0y

2
−1y−2

,
A

x0y−1

}
=

A

x0y−1
,

y10 = max

{
y0A

2

x3
0y

2
−1y−2

,
y0A

2

x3
0y

2
−1y−2

}
=

y0A
2

x3
0y

2
−1y−2

;

x11 = max

{
A

x0y−2
,
x0y−1

y0

}
=

x0y−1

y0
, y11 = max

{
x0y−1

y0
,
x0y−1

y0

}
=

x0y−1

y0
;

Hence x6 = x9, x7 = x10, x8 = x11, y6 = y9, y7 = y10, y8 = y11, by Lemma 1, the
solution is eventually periodic with period three as the following

x3n =
x2
0y−1y−2

A
; x3n+1 =

A

x0y−1
; x3n+2 =

x0y−1

y0
;

y3n =
x2
0y−1y−2

A
; y3n+1 =

y0A
2

x3
0y

2
−1y−2

; y3n+2 =
x0y−1

y0
, n = 2, 3, . . . .

(b) y0A
x0y−1y−2

≤ x0, we have

x3 = max

{
y0A

x0y−1y−2
, x0

}
= x0, y3 = max

{
x2
0y−1y−2

A
, y0

}
= y0;

x4 = max

{
y−2,

A

x0y−1

}
=

A

x0y−1
, y4 = max

{
A

x0y−1
, y−2

}
=

A

x0y−1
;

x5 = max

{
x0y−1

y0
,
x0y−1

y0

}
=

x0y−1

y0
, y5 = max

{
y−1,

A

y−2x0

}
=

A

y−2x0
;

x6 = max {y0, x0} = y0, y6 = max

{
x2
0y−1y−2

A
, y0

}
= y0;

x7 = max

{
y−2x0

y0
,

A

x0y−1

}
=

A

x0y−1
, y7 = max

{
A

x0y−1
,

A

x0y−1

}
=

A

x0y−1
;

x8 = max

{
x0y−1

y0
,
x0y−1

y0

}
=

x0y−1

y0
, y8 = max

{
x0y−1

y0
,

A

x0y−2

}
=

A

x0y−2
;
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x9 = max {y0, y0} = y0, y9 = max

{
x2
0y−1y−2

A
, y0

}
= y0;

Hence x4 = x7, x5 = x8, x6 = x9, y4 = y7, y5 = y8, y6 = y9, by Lemma 1, the solution
is eventually periodic with period three as the following

x3n+1 =
A

x0y−1
; x3n+2 =

x0y−1

y0
; x3n+3 = y0;

y3n+1 =
A

x0y−1
; y3n+2 =

A

x0y−2
; y3n+3 = y0, n = 1, 2, . . . .

(III) Suppose that x−1, x0, y−1 > 0, x−2, y−2, y0 < 0, and

(i) if A
y0x−1

≥ y−2, then

x1 = max

{
A

x0y−1
, x−2

}
=

A

x0y−1
, y1 = max

{
A

y0x−1
, y−2

}
=

A

y0x−1
;

x2 = max

{
x0y−1

y0
, x−1

}
= x−1, y2 = max

{
y0x−1

x0
, y−1

}
= y−1;

x3 = max {y0, x0} = x0, y3 = max {x0, y0} = x0;

x4 = max

{
A

x0y−1
,

A

x0y−1

}
=

A

x0y−1
, y4 = max

{
A

x0x−1
,

A

y0x−1

}
=

A

x0x−1
;

(a) x−1 ≥ y−1, we have

x5 = max {y−1, x−1} = x−1, y5 = max {x−1, y−1} = x−1;

x6 = max {x0, x0} = x0, y6 = max

{
x0y−1

x−1
, x0

}
= x0;

x7 = max

{
A

x0x−1
,

A

x0y−1

}
=

A

x0y−1
, y7 = max

{
A

x0x−1
,

A

x0x−1

}
=

A

x0x−1
;

x8 = max {y−1, x−1} = x−1, y8 = max {x−1, x−1} = x−1;

Hence x3 = x6, x4 = x7, x5 = x8, y3 = y6, y4 = y7, y5 = y8, by Lemma 1, the solution
is eventually periodic with period three as the following

x3n = x0; x3n+1 =
A

x0y−1
; x3n+2 = x−1;

y3n = x0; y3n+1 =
A

x0x−1
; y3n+2 = x−1, n = 1, 2, . . . .

(b) x−1 ≤ y−1, we have

x5 = max {y−1, x−1} = y−1, y5 = max {x−1, y−1} = y−1;

x6 = max

{
x0x−1

y−1
, x0

}
= x0, y6 = max {x0, x0} = x0;

x7 = max

{
A

x0y−1
,

A

x0y−1

}
=

A

x0y−1
, y7 = max

{
A

x0y−1
,

A

x0x−1

}
=

A

x0x−1
;

x8 = max {y−1, y−1} = y−1, y8 = max {x−1, y−1} = y−1;
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Hence x3 = x6, x4 = x7, x5 = x8, y3 = y6, y4 = y7, y5 = y8, by Lemma 1, the solution
is eventually periodic with period three as the following

x3n = x0; x3n+1 =
A

x0y−1
; x3n+2 = y−1;

y3n = x0; y3n+1 =
A

x0x−1
; y3n+2 = y−1, n = 1, 2, . . . .

(ii) if A
y0x−1

≤ y−2, the results are the same as (i). We omit other cases since they are similar
in proof of induction.

Remark 3:A > 0 and (H3) imply that (3) could have either eventually positive or eventually
negative or eventually sign-changing solutions.

4 Periodic solutions of (3) for the case A < 0

In this section, we will discuss the eventually periodic solutions of (3) for the case A < 0.

Theorem 4: Suppose that A < 0 and the initial values x−2, x−1, x0, y−2, y−1, y0 satisfy
(H1), then every solution of (3) is eventually periodic with period three.

Proof: Since A < 0 and x−2, x−1, x0, y−2, y−1, y0 < 0, by the induction and iterative
method, we can obtain that xn, yn < 0 for everyn ∈ N. We letB = −A, un = −xn, vn =
−yn, then (3) becomes

un+1 = min

{
B

unvn−1
, un−2

}
,

vn+1 = min

{
B

vnun−1
, vn−2

}
, (8)

where un, vn > 0 for n = −2,−1, 0, . . ..
Now in order to prove the theorem, we only need to prove that the solutions of (8) are

eventually periodic with period three. Similarly as in the proof of Theorem 1, considering
the limit length of the paper, we shall go with the following one case, other cases can be
treated similarly. Assume that B

u0v−1
≥ v−2 ≥ u−2 ≥ B

v0u−1
, then we have

u1 = min

{
B

u0v−1
, u−2

}
= u−2, v1 = min

{
B

v0u−1
, v−2

}
=

B

v0u−1
;

u2 = min

{
B

u−2v0
, u−1

}
=

B

u−2v0
, v2 = min

{
v0u−1

u0
, v−1

}
= v−1;

(i) If u0

v0
≥ 1, and

(a) u0 ≥ v2
0u−1u−2

B , then

u3 = min

{
v20u−1u−2

B
, u0

}
=

v20u−1u−2

B
, v3 = min

{
B

v−1u−2
, v0

}
= v0;
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u4 = min

{
B2

v20v−1u−1u−2
, u−2

}
= u−2, v4 = min

{
u−2,

B

v0u−1

}
=

B

v0u−1
;

u5 = min

{
B

u−2v0
,

B

u−2v0

}
=

B

u−2v0
, v5 = min

{
B

u−2v0
, v−1

}
= v−1;

u6 = min

{
v20u−1u−2

B
,
v20u−1u−2

B

}
=

v20u−1u−2

B
, v6 = min

{
B

v−1u−2
, v0

}
= v0.

Hence u1 = u4, u2 = u5, u3 = u6, v1 = v4, v2 = v5, v3 = v6, by Lemma 1, the solution
is eventually periodic with period three as the following

u3n−2 = u−2; u3n−1 =
B

u−2v0
; u3n =

v20u−1u−2

B
; v3n−2 =

B

v0u−1
;

v3n−1 = v−1; v3n = v0, n = 1, 2, . . . .

i.e.

x3n−2 = x−2; x3n−1 =
B

x−2y0
; x3n =

y20x−1x−2

B
; y3n−2 =

B

y0x−1
;

y3n−1 = y−1; y3n = y0, n = 1, 2, . . . .

(b) u0 ≤ v2
0u−1u−2

B , then

u3 = min

{
v20u−1u−2

B
, u0

}
= u0, v3 = min

{
B

v−1u−2
, v0

}
= v0;

u4 = min

{
B

u0v−1
, u−2

}
= u−2, v4 = min

{
u−2,

B

v0u−1

}
=

B

v0u−1
;

u5 = min

{
B

u−2v0
,

B

u−2v0

}
=

B

u−2v0
, v5 = min

{
v0u−1

u0
, v−1

}
= v−1;

u6 = min

{
v20u−1u−2

B
, u0

}
= u0, v6 = min

{
B

v−1u−2
, v0

}
= v0.

Hence u1 = u4, u2 = u5, u3 = u6, v1 = v4, v2 = v5, v3 = v6, by Lemma 1, the solution
is eventually periodic with period three as the following

u3n−2 = u−2; u3n−1 =
B

u−2v0
; u3n = u0; v3n−2 =

B

v0u−1
;

v3n−1 = v−1; v3n = v0, n = 1, 2, . . . .

i.e.

x3n−2 = x−2; x3n−1 =
B

x−2y0
; x3n = x0; y3n−2 =

B

y0x−1
;

y3n−1 = y−1; y3n = y0, n = 1, 2, . . . .

(ii) If 0 < u0

v0
< 1, and
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(a) v0 ≥ B
v−1u−2

, then

u3 = min

{
v20u−1u−2

B
, u0

}
= u0, v3 = min

{
B

v−1u−2
, v0

}
=

B

v−1u−2
;

u4 = min

{
B

u0v−1
, u−2

}
= u−2, v4 = min

{
v0v−1u

2
−2

B
,

B

v0u−1

}
=

B

v0u−1
;

u5 = min

{
v−1,

B

u−2v0

}
=

B

u−2v0
, v5 = min

{
v0u−1

u0
, v−1

}
= v−1;

u6 = min

{
v20u−1u−2

B
, u0

}
= u0, v6 = min

{
B

v−1u−2
,

B

v−1u−2

}
=

B

v−1u−2
.

Hence u1 = u4, u2 = u5, u3 = u6, v1 = v4, v2 = v5, v3 = v6, by Lemma 1, the solution
is eventually periodic with period three as the following

u3n−2 = u−2; u3n−1 =
B

u−2v0
; u3n = u0;

v3n−2 =
B

v0u−1
; v3n−1 = v−1; v3n =

B

v−1u−2
, n = 1, 2, · · · .

i.e.

x3n−2 = x−2; x3n−1 =
B

x−2y0
; x3n = x0;

y3n−2 =
B

y0x−1
; y3n−1 = y−1; y3n =

B

y−1x−2
, n = 1, 2, · · · .

(b) v0 ≤ B
v−1u−2

, then

u3 = min

{
v20u−1u−2

B
, u0

}
= u0, v3 = min

{
B

v−1u−2
, v0

}
= v0;

u4 = min

{
B

u0v−1
, u−2

}
= u−2, v4 = min

{
u−2,

B

v0u−1

}
=

B

v0u−1
;

u5 = min

{
B

u−2v0
,

B

u−2v0

}
=

B

u−2v0
, v5 = min

{
v0u−1

u0
, v−1

}
= v−1;

u6 = min

{
v20u−1u−2

B
, u0

}
= u0, v6 = min

{
B

v−1u−2
, v0

}
= v0.

Hence u1 = u4, u2 = u5, u3 = u6, v1 = v4, v2 = v5, v3 = v6, by Lemma 1, the solution
is periodic with period three as the following

u3n−2 = u−2; u3n−1 =
B

u−2v0
; u3n = u0;

v3n−2 =
B

v0u−1
; v3n−1 = v−1; v3n = v0, n = 1, 2, · · · .
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i.e.

x3n−2 = x−2; x3n−1 =
B

x−2y0
; x3n = x0;

y3n−2 =
B

y0x−1
; y3n−1 = y−1; y3n = y0, n = 1, 2, . . . .

Remark 4: A < 0 and (H1) imply that every solution of (3) is negative.

Theorem 5: Suppose that A < 0 and the initial values x−2, x−1, x0, y−2, y−1, y0 satisfy
(H2), then every solution of (3) is periodic with period three.

Proof: Since A < 0 and x−2, x−1, x0, y−2, y−1, y0 > 0, then we have

x1 = max

{
A

x0y−1
, x−2

}
= x−2, y1 = max

{
A

y0x−1
, y−2

}
= y−2;

x2 = max

{
A

x−2y0
, x−1

}
= x−1, y2 = max

{
A

y−2x0
, y−1

}
= y−1;

x3 = max

{
A

x−1y−2
, x0

}
= x0, y3 = max

{
A

y−1x−2
, y0

}
= y0,

from this and by induction we have xn, yn > 0 for n ∈ N. Hence by Lemma 1,

x3n−2 = x−2; x3n−1 = x−1; x3n = x0; y3n−2 = y−2; y3n−1 = y−1;

y3n = y0, n = 1, 2, . . . .

Remark 5: A < 0 and (H2) imply that every solution of (3) is positive.

Theorem 6: Suppose that A < 0 and the initial values x−2, x−1, x0, y−2, y−1, y0 satisfy
(H3), then every solution of (3) is eventually periodic with period three.

Proof: Since there are many categories, we will discuss only four situations, other cases
can be treated similarly.
(I) Suppose that x0, y0 > 0, x−2, x−1, y−2, y−1 < 0, then

x1 = max

{
A

x0y−1
, x−2

}
=

A

x0y−1
, y1 = max

{
A

y0x−1
, y−2

}
=

A

y0x−1
;

(i) if y0x−1 ≥ x0y−1, then

x2 = max

{
x0y−1

y0
, x−1

}
= x−1; y2 = max

{
y0x−1

x0
, y−1

}
=

y0x−1

x0
.

(a) x0

y0
≥ 1, and
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(a1) y0 ≥ x2
0y−1

y0x−1
, we have

x3 = max {y0, x0} = x0, y3 = max

{
x2
0y−1

y0x−1
, y0

}
= y0;

x4 = max

{
A

y0x−1
,

A

x0y−1

}
=

A

y0x−1
, y4 = max

{
A

y0x−1
,

A

y0x−1

}
=

A

y0x−1
;

x5 = max {x−1, x−1} = x−1, y5 = max

{
y0x−1

x0
,
y0x−1

x0

}
=

y0x−1

x0
;

x6 = max {yo, x0} = x0, y6 = max {x0, y0} = x0;

x7 = max

{
A

y0x−1
,

A

y0x−1

}
=

A

y0x−1
, y7 = max

{
A

x0x−1
,

A

y0x−1

}
=

A

y0x−1
;

x8 = max

{
y0x−1

x0
, x−1

}
=

y0x−1

x0
, y8 = max

{
y0x−1

x0
,
y0x−1

x0

}
=

y0x−1

x0
;

x9 = max {x0, x0} = x0, y9 = max {x0, x0} = x0;

x10 = max

{
A

y0x−1
,

A

y0x−1

}
=

A

y0x−1
, y10 = max

{
A

y0x−1
,

A

y0x−1

}
=

A

y0x−1
;

x11 = max

{
y0x−1

x0
,
y0x−1

x0

}
=

y0x−1

x0
, y11 = max

{
y0x−1

x0
,
y0x−1

x0

}
=

y0x−1

x0
.

Hence x6 = y6 = x9 = y9, x7 = y7 = x10 = y10, x8 = y8 = x11 = y11, by Lemma 1,
the solution is eventually periodic with period three as the following

x3n = y3n = x0; x3n+1 = y3n+1 =
A

y0x−1
; x3n+2 = y3n+2 =

y0x−1

x0
, n = 2, 3, . . . .

(a2) y0 ≤ x2
0y−1

y0x−1
, the result is the same as (a1).

x3n = y3n = x0; x3n+1 = y3n+1 =
A

y0x−1
; x3n+2 = y3n+2 =

y0x−1

x0
, n = 2, 3, . . . .

(b) 0 < x0

y0
< 1, we have

x3 = max {y0, x0} = y0, y3 = max

{
x2
0y−1

y0x−1
, y0

}
= y0;

x4 = max

{
x0A

y20x−1
,

A

x0y−1

}
=

A

x0y−1
, y4 = max

{
A

y0x−1
,

A

y0x−1

}
=

A

y0x−1
;

x5 = max

{
x0y−1

y0
, x−1

}
= x−1, y5 = max

{
x−1,

y0x−1

x0

}
= x−1;

x6 = max {yo, y0} = y0, y6 = max

{
x0y−1

x−1
, y0

}
=

x0y−1

x−1
;

x7 = max

{
A

y0x−1
,

A

x0y−1

}
=

A

y0x−1
, y7 = max

{
A

x0y−1
,

A

y0x−1

}
=

A

y0x−1
;

x8 = max

{
y0x

2
−1

x0y−1
, x−1

}
= x−1, y8 = max {x−1, x−1} = x−1;
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x9 = max {yo, y0} = y0, y9 = max

{
y0,

x0y−1

x−1

}
=

x0y−1

x−1
;

x10 = max

{
A

y0x−1
,

A

y0x−1

}
=

A

y0x−1
, y10 = max

{
A

x0y−1
,

A

y0x−1

}
=

A

y0x−1
.

Hence x5 = x8, x6 = x9, x7 = x10, y5 = y8, y6 = y9, y7 = y10, by Lemma 1, the
solution is eventually periodic with period three as the following

x3n−1 = y3n−1 = x−1; x3n = y0; y3n =
x0y−1

x−1
;

x3n+1 = y3n+1 =
A

y0x−1
, n = 2, 3, . . . .

(ii) if y0x−1 ≤ x0y−1, then

x2 = max

{
x0y−1

y0
, x−1

}
=

x0y−1

y0
; y2 = max

{
y0x−1

x0
, y−1

}
= y−1.

(a) x0

y0
≥ 1, we have

x3 = max

{
y20x−1

x0y−1
, x0

}
= x0, y3 = max {x0, y0} = x0;

x4 = max

{
A

x0y−1
,

A

x0y−1

}
=

A

x0y−1
, y4 = max

{
y0A

x2
0y−1

,
A

y0x−1

}
=

A

y0x−1
;

x5 = max

{
y−1,

x0y−1

y0

}
= y−1, y5 = max

{
y0x−1

x0
, y−1

}
= y−1;

x6 = max

{
y0x−1

y−1
, x0

}
=

y0x−1

y−1
, y6 = max {x0, x0} = x0;

x7 = max

{
A

y0x−1
,

A

x0y−1

}
=

A

x0y−1
, y7 = max

{
A

x0y−1
,

A

y0x−1

}
=

A

x0y−1
;

x8 = max {y−1, y−1} = y−1, y8 = max

{
x0y

2
−1

y0x−1
, y−1

}
= y−1;

x9 = max

{
x0,

y0x−1

y−1

}
=

y0x−1

y−1
, y9 = max {x0, x0} = x0;

x10 = max

{
A

y0x−1
,

A

x0y−1

}
=

A

x0y−1
, y10 = max

{
A

x0y−1
,

A

x0y−1

}
=

A

x0y−1
.

Hence x5 = x8, x6 = x9, x7 = x10, y5 = y8, y6 = y9, y7 = y10, by Lemma 1, the
solution is eventually periodic with period three as the following

x3n−1 = y3n−1 = y−1; x3n =
y0x−1

y−1
; y3n = x0;

x3n+1 = y3n+1 =
A

x0y−1
, n = 2, 3, . . . .

(b) 0 < x0

y0
< 1, and



20 H. Ma and H. Wang

(b1) x0 ≤ y2
0x−1

x0y−1
, we have

x3 = max

{
y20x−1

x0y−1
, x0

}
=

y20x−1

x0y−1
, y3 = max {x0, y0} = y0;

x4 = max

{
x0A

y20x−1
,

A

x0y−1

}
=

A

x0y−1
, y4 = max

{
A

x0y−1
,

A

y0x−1

}
=

A

x0y−1
;

x5 = max

{
x0y−1

y0
,
x0y−1

y0

}
=

x0y−1

y0
, y5 = max

{
x2
0y

2
−1

y20x−1
, y−1

}
= y−1;

x6 = max

{
y0,

y20x−1

x0y−1

}
= y0, y6 = max {x0, y0} = y0;

x7 = max

{
A

y0y−1
,

A

x0y−1

}
=

A

x0y−1
, y7 = max

{
A

x0y−1
,

A

x0y−1

}
=

A

x0y−1
;

x8 = max

{
x0y−1

y0
,
x0y−1

y0

}
=

x0y−1

y0
, y8 = max

{
x0y−1

y0
, y−1

}
=

x0y−1

y0
;

x9 = max {y0, y0} = y0, y9 = max {y0, y0} = y0;

x10 = max

{
A

x0y−1
,

A

x0y−1

}
=

A

x0y−1
, y10 = max

{
A

x0y−1
,

A

x0y−1

}
=

A

x0y−1
;

x11 = max

{
x0y−1

y0
,
x0y−1

y0

}
=

x0y−1

y0
, y11 = max

{
x0y−1

y0
,
x0y−1

y0

}
=

x0y−1

y0
.

Hence x6 = y6 = x9 = y9, x7 = y7 = x10 = y10, x8 = y8 = x11 = y11, by Lemma 1,
the solution is eventually periodic with period three as the following

x3n = y3n = y0; x3n+1 = y3n+1 =
A

x0y−1
; x3n+2 = y3n+2 =

x0y−1

y0
, n = 2, 3, . . . .

(b2) x0 ≥ y2
0x−1

x0y−1
, the result is the same as (b1).

x3n = y3n = y0; x3n+1 = y3n+1 =
A

x0y−1
; x3n+2 = y3n+2 =

x0y−1

y0
, n = 2, 3, . . . .

(II) Suppose that x0 > 0, x−2, x−1, y−2, y−1, y0 < 0, and
(i) if A

y0x−1
≥ y−2, then

x1 = max

{
A

x0y−1
, x−2

}
=

A

x0y−1
, y1 = max

{
A

y0x−1
, y−2

}
=

A

y0x−1
;

x2 = max

{
x0y−1

y0
, x−1

}
=

x0y−1

y0
; y2 = max

{
y0x−1

x0
, y−1

}
=

y0x−1

x0
.

(a) y2
0x−1

x0y−1
≥ x0, we have

x3 = max

{
y20x−1

x0y−1
, x0

}
=

y20x−1

x0y−1
, y3 = max

{
x2
0y−1

y0x−1
, y0

}
=

x2
0y−1

y0x−1
;
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x4 = max

{
x2
0y−1A

y30x
2
−1

,
A

x0y−1

}
=

A

x0y−1
, y4 = max

{
y20x−1A

x3
0y

2
−1

,
A

y0x−1

}
=

y20x−1A

x3
0y

2
−1

;

x5 = max

{
y0x−1

x0
,
x0y−1

y0

}
=

y0x−1

x0
, y5 = max

{
x4
0y

3
−1

y40x
2
−1

,
y0x−1

x0

}
=

y0x−1

x0
;

x6 = max

{
x4
0y

2
−1

y30x
2
−1

,
y20x−1

x0y−1

}
=

y20x−1

x0y−1
, y6 = max

{
x2
0y−1

y0x−1
,
x2
0y−1

y0x−1

}
=

x2
0y−1

y0x−1
;

x7 = max

{
x2
0y−1A

y30x
2
−1

,
A

x0y−1

}
=

A

x0y−1
, y7 = max

{
A

x0y−1
,
y20x−1A

x3
0y

2
−1

}
=

y20x−1A

x3
0y

2
−1

;

x8 = max

{
y0x−1

x0
,
y0x−1

x0

}
=

y0x−1

x0
, y8 = max

{
x4
0y

3
−1

y40x
2
−1

,
y0x−1

x0

}
=

y0x−1

x0
;

Hence x3 = x6, x4 = x7, x5 = x8, y3 = y6, y4 = y7, y5 = y8, by Lemma 1, the solution
is eventually periodic with period three as the following

x3n =
y20x−1

x0y−1
; x3n+1 =

A

x0y−1
; x3n+2 =

y0x−1

x0
,

y3n =
x2
0y−1

y0x−1
, y3n+1 =

y20x−1A

x3
0y

2
−1

; y3n+2 =
y0x−1

x0
, n = 1, 2, . . . .

(b) y2
0x−1

x0y−1
≤ x0, we have

x3 = max

{
y20x−1

x0y−1
, x0

}
= x0, y3 = max

{
x2
0y−1

y0x−1
, y0

}
= y0;

x4 = max

{
A

y0x−1
,

A

x0y−1

}
=

A

x0y−1
, y4 = max

{
A

x0y−1
,

A

y0x−1

}
=

A

x0y−1
;

x5 = max

{
x0y−1

y0
,
x0y−1

y0

}
=

x0y−1

y0
, y5 = max

{
y−1,

y0x−1

x0

}
=

y0x−1

x0
;

x6 = max {y0, x0} = x0, y6 = max

{
x2
0y−1

y0x−1
, y0

}
= y0;

x7 = max

{
A

y0x−1
,

A

x0y−1

}
=

A

x0y−1
, y7 = max

{
A

x0y−1
,

A

x0y−1

}
=

A

x0y−1
;

x8 = max

{
x0y−1

y0
,
x0y−1

y0

}
=

x0y−1

y0
, y8 = max

{
y−1,

y0x−1

x0

}
=

y0x−1

x0
;

Hence x3 = x6, x4 = x7, x5 = x8, y3 = y6, y4 = y7, y5 = y8, by Lemma 1, the solution
is eventually periodic with period three as the following

x3n = x0; x3n+1 =
A

x0y−1
; x3n+2 =

x0y−1

y0
, y3n = y0, y3n+1 =

A

x0y−1
;

y3n+2 =
y0x−1

x0
, n = 1, 2, . . . .

(ii) if A
y0x−1

≤ y−2, then

x1 = max

{
A

x0y−1
, x−2

}
=

A

x0y−1
, y1 = max

{
A

y0x−1
, y−2

}
= y−2;
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x2 = max

{
x0y−1

y0
, x−1

}
=

x0y−1

y0
; y2 = max

{
A

y−2x0
, y−1

}
=

A

y−2x0
.

(a) y0A
x0y−1y−2

≥ x0, we have

x3 = max

{
y0A

x0y−1y−2
, x0

}
=

y0A

x0y−1y−2
, y3 = max

{
x2
0y−1y−2

A
, y0

}
=

x2
0y−1y−2

A
;

x4 = max

{
x2
0y−1y

2
−2

y0A
,

A

x0y−1

}
=

A

x0y−1
, y4 = max

{
y0A

2

x3
0y

2
−1y−2

, y−2

}
=

y0A
2

x3
0y

2
−1y−2

;

x5 = max

{
A

x0y−2
,
x0y−1

y0

}
=

A

x0y−2
, y5 = max

{
x4
0y

3
−1y

2
−2

y2
0A

2
,

A

y−2x0

}
=

A

y−2x0
;

x6 = max

{
x4
0y

2
−1y

2
−2

y0A2
,

y0A

x0y−1y−2

}
=

y0A

x0y−1y−2
,

y6 = max

{
x2
0y−1y−2

A
,
x2
0y−1y−2

A

}
=

x2
0y−1y−2

A
;

x7 = max

{
x2
0y−1y

2
−2

y0A
,

A

x0y−1

}
=

A

x0y−1
, y7 = max

{
A

x0y−1
,

y0A
2

x3
0y

2
−1y−2

}
=

y0A
2

x3
0y

2
−1y−2

;

x8 = max

{
A

x0y−2
,

A

x0y−2

}
=

A

x0y−2
, y8 = max

{
x4
0y

3
−1y

2
−2

y2
0A

2
,

A

y−2x0

}
=

A

y−2x0
;

Hence x3 = x6, x4 = x7, x5 = x8, y3 = y6, y4 = y7, y5 = y8, by Lemma 1, the solution
is eventually periodic with period three as the following

x3n =
y0A

x0y−1y−2
; x3n+1 =

A

x0y−1
; x3n+2 =

A

x0y−2
,

y3n =
x2
0y−1y−2

A
, y3n+1 =

y0A
2

x3
0y

2
−1y−2

; y3n+2 =
A

y−2x0
, n = 1, 2, . . . .

(b) y0A
x0y−1y−2

≤ x0, we have

x3 = max

{
y0A

x0y−1y−2
, x0

}
= x0, y3 = max

{
x2
0y−1y−2

A
, y0

}
= y0;

x4 = max

{
y−2,

A

x0y−1

}
=

A

x0y−1
, y4 = max

{
A

x0y−1
, y−2

}
=

A

x0y−1
;

x5 = max

{
x0y−1

y0
,
x0y−1

y0

}
=

x0y−1

y0
, y5 = max

{
y−1,

A

y−2x0

}
=

A

y−2x0
;

x6 = max {y0, x0} = x0, y6 = max

{
x2
0y−1y−2

A
, y0

}
= y0;

x7 = max

{
y−2,

A

x0y−1

}
=

A

x0y−1
, y7 = max

{
A

x0y−1
,

A

x0y−1

}
=

A

x0y−1
;

x8 = max

{
x0y−1

y0
,
x0y−1

y0

}
=

x0y−1

y0
, y8 = max

{
y−1,

A

y−2x0

}
=

A

y−2x0
;
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Hence x3 = x6, x4 = x7, x5 = x8, y3 = y6, y4 = y7, y5 = y8, by Lemma 1, the solution
is eventually periodic with period three as the following

x3n = x0; x3n+1 =
A

x0y−1
; x3n+2 =

x0y−1

y0
, y3n = y0,

y3n+1 =
A

x0y−1
; y3n+2 =

A

y−2x0
, n = 1, 2, . . . .

(III) Suppose that x−2, x−1, x0, y0 > 0, y−2, y−1 < 0, and

(i) if A
x0y−1

≥ x−2, A
y0x−1

≥ y−2, then

x1 = max

{
A

x0y−1
, x−2

}
=

A

x0y−1
, y1 = max

{
A

y0x−1
, y−2

}
=

A

y0x−1
;

x2 = max

{
x0y−1

y0
, x−1

}
= x−1; y2 = max {x−1, y−1} = x−1.

(a) x0 ≥ y0, we have

x3 = max {y0, x0} = x0, y3 = max

{
x0y−1

x−1
, y0

}
= y0;

x4 = max

{
A

x0y−1
,

A

x0y−1

}
=

A

x0y−1
, y4 = max

{
A

y0x−1
,

A

y0x−1

}
=

A

y0x−1
;

x5 = max

{
x0y−1

y0
, x−1

}
= x−1, y5 = max

{
y0x−1

x0
, x−1

}
= x−1;

x6 = max {y0, x0} = x0, y6 = max

{
x0y−1

x−1
, y0

}
= y0;

Hence x1 = x4, x2 = x5, x3 = x6, y1 = y4, y2 = y5, y3 = y6, by Lemma 1, the solution
is periodic with period three as the following

x3n−2 =
A

x0y−1
; x3n−1 = x−1; x3n = x0,

y3n−2 =
A

y0x−1
, y3n−1 = x−1; y3n = y0, n = 1, 2, . . . .

(b) x0 ≤ y0, we have

x3 = max {y0, x0} = y0, y3 = max

{
x0y−1

x−1
, y0

}
= y0;

x4 = max

{
A

y0x−1
,

A

x0y−1

}
=

A

x0y−1
, y4 = max

{
A

y0x−1
,

A

y0x−1

}
=

A

y0x−1
;

x5 = max

{
x0y−1

y0
, x−1

}
= x−1, y5 = max {x−1, x−1} = x−1;

x6 = max {y0, y0} = y0, y6 = max

{
x0y−1

x−1
, y0

}
= y0;
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Hence x1 = x4, x2 = x5, x3 = x6, y1 = y4, y2 = y5, y3 = y6, by Lemma 1, the solution
is periodic with period three as the following

x3n−2 =
A

x0y−1
; x3n−1 = x−1; x3n = y0, y3n−2 =

A

y0x−1
,

y3n−1 = x−1; y3n = y0, n = 1, 2, . . . .

(ii) if A
x0y−1

≥ x−2, A
y0x−1

≤ y−2, then

x1 = max

{
A

x0y−1
, x−2

}
=

A

x0y−1
, y1 = max

{
A

y0x−1
, y−2

}
= y−2;

x2 = max

{
x0y−1

y0
, x−1

}
= x−1; y2 = max

{
A

y−2x0
, y−1

}
=

A

y−2x0
.

(a) A
x−1y−2

≥ x0, we have

x3 = max

{
A

x−1y−2
, x0

}
=

A

x−1y−2
, y3 = max

{
x2
0y−1y−2

A
, y0

}
= y0;

x4 = max

{
x−1y

2
−2x0

A
,

A

x0y−1

}
=

A

x0y−1
, y4 = max

{
A

y0x−1
, y−2

}
= y−2;

x5 = max

{
x0y−1

y0
, x−1

}
= x−1, y5 = max

{
x−1,

A

y−2x0

}
=

A

y−2x0
;

x6 = max

{
A

x−1y−2
,

A

x−1y−2

}
=

A

x−1y−2
, y6 = max

{
x2
0y−1y−2

A
, y0

}
= y0;

Hence x1 = x4, x2 = x5, x3 = x6, y1 = y4, y2 = y5, y3 = y6, by Lemma 1, the solution
is periodic with period three as the following

x3n−2 =
A

x0y−1
; x3n−1 = x−1; x3n =

A

x−1y−2
,

y3n−2 = y−2, y3n−1 =
A

y−2x0
; y3n = y0, n = 1, 2, . . . .

(b) A
x−1y−2

≤ x0, we have

x3 = max

{
A

x−1y−2
, x0

}
= x0, y3 = max

{
x2
0y−1y−2

A
, y0

}
= y0;

x4 = max

{
y−2,

A

x0y−1

}
=

A

x0y−1
, y4 = max

{
A

y0x−1
, y−2

}
= y−2;

x5 = max

{
x0y−1

y0
, x−1

}
= x−1, y5 = max

{
A

y−2x0
,

A

y−2x0

}
=

A

y−2x0
;

x6 = max

{
A

x−1y−2
, x0

}
= x0, y6 = max

{
x2
0y−1y−2

A
, y0

}
= y0;
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Hence x1 = x4, x2 = x5, x3 = x6, y1 = y4, y2 = y5, y3 = y6, by Lemma 1, the solution
is periodic with period three as the following

x3n−2 =
A

x0y−1
; x3n−1 = x−1; x3n = x0, y3n−2 = y−2,

y3n−1 =
A

y−2x0
; y3n = y0, n = 1, 2, . . . .

(iii) if A
x0y−1

≤ x−2, A
y0x−1

≥ y−2, then

x1 = max

{
A

x0y−1
, x−2

}
= x−2, y1 = max

{
A

y0x−1
, y−2

}
=

A

y0x−1
;

x2 = max

{
A

x−2y0
, x−1

}
= x−1; y2 = max

{
y0x−1

x0
, y−1

}
=

y0x−1

x0
.

(a) x0 ≥ y0, we have

x3 = max {y0, x0} = x0, y3 = max

{
x0A

y0x−1x−2
, y0

}
= y0;

x4 = max

{
A

y0x−1
, x−2

}
= x−2, y4 = max

{
A

y0x−1
,

A

y0x−1

}
=

A

y0x−1
;

x5 = max

{
A

x−2y0
, x−1

}
= x−1, y5 = max

{
y0x−1

x0
,
y0x−1

x0

}
=

y0x−1

x0
;

x6 = max {y0, x0} = x0, y6 = max

{
x0A

y0x−1x−2
, y0

}
= y0;

Hence x1 = x4, x2 = x5, x3 = x6, y1 = y4, y2 = y5, y3 = y6, by Lemma 1, the solution
is periodic with period three as the following

x3n−2 = x−2; x3n−1 = x−1; x3n = x0, y3n−2 =
A

y0x−1
,

y3n−1 =
y0x−1

x0
; y3n = y0, n = 1, 2, . . . .

(b) x0 ≤ y0, we have

x3 = max {y0, x0} = y0, y3 = max

{
x0A

y0x−1x−2
, y0

}
= y0;

x4 = max

{
x0A

y20x−1
, x−2

}
= x−2, y4 = max

{
A

y0x−1
,

A

y0x−1

}
=

A

y0x−1
;

x5 = max

{
A

x−2y0
, x−1

}
= x−1, y5 = max

{
x−1,

y0x−1

x0

}
=

y0x−1

x0
;

x6 = max {y0, y0} = y0, y6 = max

{
x0A

y0x−1x−2
, y0

}
= y0;
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Hence x1 = x4, x2 = x5, x3 = x6, y1 = y4, y2 = y5, y3 = y6, by Lemma 1, the solution
is periodic with period three as the following

x3n−2 = x−2; x3n−1 = x−1; x3n = y0, y3n−2 =
A

y0x−1
,

y3n−1 =
y0x−1

x0
; y3n = y0, n = 1, 2, . . . .

(iv) if A
x0y−1

≤ x−2, A
y0x−1

≤ y−2, then

x1 = max

{
A

x0y−1
, x−2

}
= x−2, y1 = max

{
A

y0x−1
, y−2

}
= y−2;

x2 = max

{
A

x−2y0
, x−1

}
= x−1; y2 = max

{
A

y−2x0
, y−1

}
=

A

y−2x0
.

(a) A
x−1y−2

≥ x0, we have

x3 = max

{
A

x−1y−2
, x0

}
=

A

x−1y−2
, y3 = max

{
x0y−2

x−2
, y0

}
= y0;

x4 = max

{
x−1y

2
−2x0

A
, x−2

}
= x−2, y4 = max

{
A

y0x−1
, y−2

}
= y−2;

x5 = max

{
A

x−2y0
, x−1

}
= x−1, y5 = max

{
x−1,

A

y−2x0

}
=

A

y−2x0
;

x6 = max

{
A

x−1y−2
,

A

x−1y−2

}
=

A

x−1y−2
, y6 = max

{
x0y−2

x−2
, y0

}
= y0;

Hence x1 = x4, x2 = x5, x3 = x6, y1 = y4, y2 = y5, y3 = y6, by Lemma 1, the solution
is periodic with period three as the following

x3n−2 = x−2; x3n−1 = x−1; x3n =
A

x−1y−2
, y3n−2 = y−2,

y3n−1 =
A

y−2x0
; y3n = y0, n = 1, 2, . . . .

(b) A
x−1y−2

≤ x0, we have

x3 = max

{
A

x−1y−2
, x0

}
= x0, y3 = max

{
x0y−2

x−2
, y0

}
= y0;

x4 = max {y−2, x−2} = x−2, y4 = max

{
A

y0x−1
, y−2

}
= y−2;

x5 = max

{
A

x−2y0
, x−1

}
= x−1, y5 = max

{
A

y−2x0
,

A

y−2x0

}
=

A

y−2x0
;

x6 = max

{
A

x−1y−2
, x0

}
= x0, y6 = max

{
x0y−2

x−2
, y0

}
= y0;
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Hence x1 = x4, x2 = x5, x3 = x6, y1 = y4, y2 = y5, y3 = y6, by Lemma 1, the solution
is periodic with period three as the following

x3n−2 = x−2; x3n−1 = x−1; x3n = x0, y3n−2 = y−2,

y3n−1 =
A

y−2x0
; y3n = y0, n = 1, 2, . . . .

Since there are too many cases according to the signs of initial values and they have the
similar proof by induction, we will not list all of them by the limit length of the paper.

Remark 6: A < 0 and (H3) imply that (3) have either eventually positive or eventually
sign-changing solutions.

5 Examples

Example 1: Let A = 1, x−2 = −1/2, x−1 = −4, x0 = −1/4, y−2 = −1, y−1 =
−12, y0 = −1/2.Then, by Theorem 1, (3) has eventually three-periodic solutions described
as Figures 1 and 2.

Figure 1 Plot of x(n) (see online version for colours)

Example 2: Let A = 2/3, x−2 = 4, x−1 = 6, x0 = 2, y−2 = 5/2, y−1 = 5, y0 = 5/6.
Then, by Theorem 2, (3) has eventually three-periodic solutions described as Figures 3 and
4.

Example 3: Let A = 1/4, x−2 = 4, x−1 = −7/2, x0 = −2/3, y−2 = −4, y−1 =
−1/2, y0 = 5/3.Then, by Theorem 3, (3) has eventually three-periodic solutions described
as Figures 5 and 6.

Example 3’: Let A = 3, x−2 = −3/5, x−1 = −8, x0 = −4/3, y−2 = 5, y−1 =
6/7, y0 = 3. Then, by Theorem 3, (3) has eventually three-periodic solutions described as
Figures 7 and 8.
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Figure 2 Plot of y(n) (see online version for colours)

Figure 3 Plot of x(n) (see online version for colours)

Figure 4 Plot of y(n) (see online version for colours)
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Figure 5 Plot of x(n) (see online version for colours)

Figure 6 Plot of y(n) (see online version for colours)

Figure 7 Plot of x(n) (see online version for colours)

Example 3”: LetA = 3, x−2 = 2, x−1 = −5, x0 = −6, y−2 = 1, y−1 = −4, y0 = −8.
Then, by Theorem 3, (3) has eventually three-periodic solutions described as Figures 9
and 10.
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Figure 8 Plot of y(n) (see online version for colours)

Figure 9 Plot of x(n) (see online version for colours)

Figure 10 Plot of y(n) (see online version for colours)

Example 4: Let A = −1/3, x−2 = −3, x−1 = −5/2, x0 = −7/2, y−2 = −2, y−1 =
−6, y0 = −3/2. Then, by Theorem 4, (3) has eventually three-periodic solutions described
as Figures 11 and 12.
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Figure 11 Plot of x(n) (see online version for colours)

Figure 12 Plot of y(n) (see online version for colours)

Example 5: LetA = −1/2, x−2 = 2, x−1 = 3/2, x0 = 2/3, y−2 = 1, y−1 = 7/3, y0 =
4. Then, by Theorem 5, (3) has eventually three-periodic solutions described as Figures 13
and 14.

Figure 13 Plot of x(n) (see online version for colours)
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Figure 14 Plot of y(n) (see online version for colours)

Example 6: Let A = −5/3, x−2 = −2, x−1 = −4, x0 = −3/2, y−2 = −7/5, y−1 =
2/5, y0 = −1. Then, by Theorem 6, (3) has eventually three-periodic solutions described
as Figures 15 and 16.

Figure 15 Plot of x(n) (see online version for colours)

Example 6’: Let A = −5, x−2 = 8/3, x−1 = −5/7, x0 = 2, y−2 = −3, y−1 =
−4, y0 = 2. Then, by Theorem 6, (3) has eventually three-periodic solutions described as
Figures 17 and 18.

Example 6”: Let A = −3, x−2 = −11, x−1 = −2, x0 = −4, y−2 = 3, y−1 =
−1/4, y0 = −5. Then, by Theorem 6, (3) has eventually three-periodic solutions described
as Figures 19 and 20.
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Figure 16 Plot of y(n) (see online version for colours)

Figure 17 Plot of x(n) (see online version for colours)

Figure 18 Plot of y(n) (see online version for colours)



34 H. Ma and H. Wang

Figure 19 Plot of x(n) (see online version for colours)

Figure 20 Plot of y(n) (see online version for colours)
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