Eventual periodicity of solutions for some discrete max-type system of third order

Huili Ma*

College of Business,
Northwest Normal University, Lanzhou, Gansu-730070, Lanzhou, China
Email: mahuili@nwnu.edu.cn
*Corresponding author

Haixia Wang

College of Mathematics and Statistics, Northwest Normal University, Lanzhou, Gansu-730070, Lanzhou, China
Email: 1249864076@qq.com

Abstract

This paper is concerned with the eventually periodicity of the following max-type difference equation system

$$
\begin{aligned}
& x_{n+1}=\max \left\{\frac{A}{x_{n} y_{n-1}}, x_{n-2}\right\} \\
& y_{n+1}=\max \left\{\frac{A}{y_{n} x_{n-1}}, y_{n-2}\right\}
\end{aligned}
$$

where $n \in \mathbb{N}, A \in \mathbb{R}$, and the initial values $x_{-2}, x_{-1}, x_{0}, y_{-2}, y_{-1}, y_{0}$ are arbitrary non-zero numbers.

Keywords: periodic solutions; difference equations; max-type system.
Reference to this paper should be made as follows: Ma, H. and Wang, H. (2022) 'Eventual periodicity of solutions for some discrete max-type system of third order', Int. J. Dynamical Systems and Differential Equations, Vol. 12, No. 1, pp.1-35.
Biographical notes: Huili Ma received her Doctor's degree in Mathematics Department at Northwest Normal University in 2008. Her study interests focus on the theory and the application of difference equations. She is at present working as a Mathematics Teacher at Northwest Normal University in China. She is also working as a Reviewer of American Mathematical Reviews with Reviewer No. 124987.

Haixia Wang is a postgraduate in Northwest Normal University. Her research field focus on difference equation system.

1 Introduction

Difference equations are pervasive in mathematics and understanding the behaviour of such equations gives insight to many interesting problems, see Din et al. (2012), Elsayed et al. (2013), Elsayed and Eleissawy(2012) and Ibrahim andTouafek (2014). Max-type difference equations, which appeared for the first time in control theory, have attracted extensively attention recently (Qin et al., 2012; Xiao and Shi, 2013; Touafek and Haddad, 2015; Yazlik et al., 2015; Ibrahim and Touafek, 2014; Ibrahim, 2016). Ibrahim (2016) examined the periodicity and formularisation of the solutions for a system of semi-max-type difference equations of second order in the form

$$
\begin{align*}
& x_{n+1}=\max \left\{\frac{A_{n}}{y_{n-1}}, x_{n-1}\right\}, \\
& y_{n+1}=\min \left\{\frac{B_{n}}{x_{n-1}}, y_{n-1}\right\}, \tag{1}
\end{align*}
$$

where $n \in \mathbb{N}_{0}, \mathbb{N}_{0}=\mathbb{N} \cup\{0\},\left(A_{n}\right)_{n \in \mathbb{N}_{0}},\left(B_{n}\right)_{n \in \mathbb{N}_{0}}$ are two-periodic positive sequences, and initial values $x_{0}, x_{-1}, y_{0}, y_{-1} \in(0,+\infty)$. Williams (2016) has investigated the general solutions and periodic solutions of the following max-type difference equation system

$$
\begin{align*}
& x_{n+1}=\max \left\{y_{n-1}^{2}, \frac{A}{y_{n-1}}\right\}, \\
& y_{n+1}=\max \left\{x_{n-1}^{2}, \frac{A}{x_{n-1}}\right\}, \tag{2}
\end{align*}
$$

where $n \in \mathbb{N}_{0}, x_{-1}=\alpha, y_{-1}=\beta, x_{0}=\lambda$ and $y_{0}=\mu$ are constants and $A>0$.
In this paper, we study the eventually periodicity of the following max-type difference equation system

$$
\begin{align*}
& x_{n+1}=\max \left\{\frac{A}{x_{n} y_{n-1}}, x_{n-2}\right\}, \\
& y_{n+1}=\max \left\{\frac{A}{y_{n} x_{n-1}}, y_{n-2}\right\}, \tag{3}
\end{align*}
$$

where $n \in \mathbb{N}, A \in \mathbb{R} \backslash\{0\}$, and the initial values $x_{-2}, x_{-1}, x_{0}, y_{-2}, y_{-1}, y_{0}$ are arbitrary non-zero numbers.

2 Preliminaries

Firstly, we give two definitions.
Definition 1: The sequence $\left\{x_{n}, y_{n}\right\}_{n=-k}^{\infty}$ is eventually periodic with period p if there is an $n_{0} \in\{-k, \cdots,-1,0,1, \cdots\}$ such that for all $n \geq n_{0}$,

$$
x_{n+p}=x_{n}, \quad y_{n+p}=y_{n} .
$$

Definition 2: The sequence $\left\{x_{n}, y_{n}\right\}_{n=-k}^{\infty}$ is eventually positive (negative) if there is an $n_{0} \in\{-k, \cdots,-1,0,1, \cdots\}$ such that for all $n \geq n_{0}$,

$$
x_{n}>(<) 0, \quad y_{n}>(<) 0 .
$$

In order to get the eventually periodic solutions of (3), the following lemma is needed.
Lemma 1: Assume that $\left\{x_{n}, y_{n}\right\}_{n=-2}^{\infty}$ is a solution of (3) and there is $k_{0} \in \mathbb{N}_{0} \cup\{-2,-1\}$ such that

$$
\begin{align*}
& x_{k_{0}}=x_{k_{0}+3}, \quad x_{k_{0}+1}=x_{k_{0}+4}, \quad x_{k_{0}+2}=x_{k_{0}+5}, \tag{4}\\
& y_{k_{0}}=y_{k_{0}+3}, \quad y_{k_{0}+1}=y_{k_{0}+4}, \quad y_{k_{0}+2}=y_{k_{0}+5}, \tag{5}
\end{align*}
$$

then this solution is eventually periodic with period three.
Proof: To prove this lemma, we just need to prove that the following equations are true.

$$
\begin{array}{ll}
x_{k_{0}}=x_{k_{0}+3 m}, & x_{k_{0}+1}=x_{k_{0}+1+3 m}, \quad x_{k_{0}+2}=x_{k_{0}+2+3 m}, \\
y_{k_{0}}=y_{k_{0}+3 m}, & y_{k_{0}+1}=y_{k_{0}+1+3 m}, \tag{7}
\end{array} \quad y_{k_{0}+2}=y_{k_{0}+2+3 m},
$$

for every $m \in \mathbb{N}$.
We use the method of induction. For $m=1$, (6) and (7) become (4) and (5), so the result holds. Assume that (4) and (5) hold for $1 \leq m \leq m_{0}$, by using (3)-(7), we have

$$
\begin{aligned}
x_{k_{0}+3\left(m_{0}+1\right)} & =\max \left\{\frac{A}{x_{k_{0}+3 m_{0}+2} y_{k_{0}+3 m_{0}+1}}, x_{k_{0}+3 m_{0}}\right\} \\
& =\max \left\{\frac{A}{x_{k_{0}+2} y_{k_{0}+1}}, x_{k_{0}}\right\}=x_{k_{0}+3}=x_{k_{0}}, \\
y_{k_{0}+3\left(m_{0}+1\right)} & =\max \left\{\frac{A}{y_{k_{0}+3 m_{0}+2} x_{k_{0}+3 m_{0}+1}}, y_{k_{0}+3 m_{0}}\right\} \\
& =\max \left\{\frac{A}{y_{k_{0}+2} x_{k_{0}+1}}, y_{k_{0}}\right\}=y_{k_{0}+3}=y_{k_{0}}, \\
x_{k_{0}+1+3\left(m_{0}+1\right)} & =\max \left\{\frac{A}{x_{k_{0}+3 m_{0}+3} y_{k_{0}+3 m_{0}+2}}, x_{k_{0}+3 m_{0}+1}\right\} \\
& =\max \left\{\frac{A}{x_{k_{0}+3} y_{k_{0}+2}}, x_{k_{0}+1}\right\}=x_{k_{0}+4}=x_{k_{0}+1}, \\
y_{k_{0}+1+3\left(m_{0}+1\right)} & =\max \left\{\frac{A}{y_{k_{0}+3 m_{0}+3} x_{k_{0}+3 m_{0}+2}}, y_{k_{0}+3 m_{0}+1}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\max \left\{\frac{A}{y_{k_{0}+3} x_{k_{0}+2}}, y_{k_{0}+1}\right\}=y_{k_{0}+4}=y_{k_{0}+1}, \\
x_{k_{0}+2+3\left(m_{0}+1\right)} & =\max \left\{\frac{A}{x_{k_{0}+3 m_{0}+4} y_{k_{0}+3 m_{0}+3}}, x_{k_{0}+3 m_{0}+2}\right\} \\
& =\max \left\{\frac{A}{x_{k_{0}+4} y_{k_{0}+3}}, x_{k_{0}+2}\right\}=x_{k_{0}+4}=x_{k_{0}+2} \\
y_{k_{0}+2+3\left(m_{0}+1\right)} & =\max \left\{\frac{A}{y_{k_{0}+3 m_{0}+4} x_{k_{0}+3 m_{0}+3}}, y_{k_{0}+3 m_{0}+2}\right\} \\
& =\max \left\{\frac{A}{y_{k_{0}+4} x_{k_{0}+3}}, y_{k_{0}+2}\right\}=y_{k_{0}+4}=y_{k_{0}+2} .
\end{aligned}
$$

For the sake of argument, we will give the initial values for three different situations as the following.
(H1) All of the initials values $x_{-2}, x_{-1}, x_{0}, y_{-2}, y_{-1}, y_{0}$ are negative;
(H2) All of the initials values $x_{-2}, x_{-1}, x_{0}, y_{-2}, y_{-1}, y_{0}$ are positive;
(H3) At least one of the initials values $x_{-2}, x_{-1}, x_{0}, y_{-2}, y_{-1}, y_{0}$
is greater than zero and at least one of the initial values is less than zero.

3 Periodic solutions of (3) for the case $A>0$

In this section, we will discuss the eventually periodic solutions of (3) for the case $A>0$.
Theorem 1: Suppose that $A>0$ and the initial values $x_{-2}, x_{-1}, x_{0}, y_{-2}, y_{-1}, y_{0}$ satisfy (H1), then every solution of (3) is eventually periodic with period 3 .

Proof: Since $A>0$ and $x_{-2}, x_{-1}, x_{0}, y_{-2}, y_{-1}, y_{0}<0$, then

$$
x_{1}=\max \left\{\frac{A}{x_{0} y_{-1}}, x_{-2}\right\}=\frac{A}{x_{0} y_{-1}}, y_{1}=\max \left\{\frac{A}{y_{0} x_{-1}}, y_{-2}\right\}=\frac{A}{y_{0} x_{-1}} .
$$

(I) Suppose that $x_{0} y_{-1} \geq y_{0} x_{-1}$, and
(i) If $\frac{x_{0}}{y_{0}} \geq 1$, then

$$
\begin{aligned}
& x_{2}=\max \left\{\frac{x_{0} y_{-1}}{y_{0}}, x_{-1}\right\}=x_{-1}, y_{2}=\max \left\{\frac{y_{0} x_{-1}}{x_{0}}, y_{-1}\right\}=\frac{y_{0} x_{-1}}{x_{0}} ; \\
& x_{3}=\max \left\{y_{0}, x_{0}\right\}=y_{0}, y_{3}=\max \left\{\frac{x_{0}^{2} y_{-1}}{y_{0} x_{-1}}, y_{0}\right\}=y_{0} ;
\end{aligned}
$$

$$
\begin{aligned}
& x_{4}=\max \left\{\frac{x_{0} A}{y_{0}^{2} x_{-1}}, \frac{A}{x_{0} y_{-1}}\right\}=\frac{x_{0} A}{y_{0}^{2} x_{-1}}, y_{4}=\max \left\{\frac{A}{y_{0} x_{-1}}, \frac{A}{y_{0} x_{-1}}\right\}=\frac{A}{y_{0} x_{-1}} ; \\
& x_{5}=\max \left\{\frac{y_{0} x_{-1}}{x_{0}}, x_{-1}\right\}=\frac{y_{0} x_{-1}}{x_{0}}, y_{5}=\max \left\{x_{-1}, \frac{y_{0} x_{-1}}{x_{0}}\right\}=\frac{y_{0} x_{-1}}{x_{0}} ; \\
& x_{6}=\max \left\{x_{0}, y_{0}\right\}=y_{0}, y_{6}=\max \left\{y_{0}, y_{0}\right\}=y_{0} ; \\
& x_{7}=\max \left\{\frac{x_{0} A}{y_{0}^{2} x_{-1}}, \frac{x_{0} A}{\left.y_{0}^{2} x_{-1}\right\}=\frac{x_{0} A}{y_{0}^{2} x_{-1}}, y_{7}=\max \left\{\frac{x_{0} A}{y_{0}^{2} x_{-1}}, \frac{A}{y_{0} x_{-1}}\right\}=\frac{x_{0} A}{y_{0}^{2} x_{-1}} ;}\right. \\
& x_{8}=\max \left\{\frac{y_{0} x_{-1}}{x_{0}}, \frac{y_{0} x_{-1}}{x_{0}}\right\}=\frac{y_{0} x_{-1}}{x_{0}}, y_{8}=\max \left\{\frac{y_{0} x_{-1}}{x_{0}}, \frac{y_{0} x_{-1}}{x_{0}}\right\}=\frac{y_{0} x_{-1}}{x_{0}} ; \\
& x_{9}=\max \left\{y_{0}, y_{0}\right\}=y_{0}, y_{9}=\max \left\{y_{0}, y_{0}\right\}=y_{0} ; \\
& x_{10}=\max \left\{\frac{x_{0} A}{y_{0}^{2} x_{-1}}, \frac{x_{0} A}{y_{0}^{2} x_{-1}}\right\}=\frac{x_{0} A}{y_{0}^{2} x_{-1}}, y_{10}=\max \left\{\frac{x_{0} A}{y_{0}^{2} x_{-1}}, \frac{x_{0} A}{y_{0}^{2} x_{-1}}\right\}=\frac{x_{0} A}{y_{0}^{2} x_{-1}} .
\end{aligned}
$$

Hence $x_{5}=y_{5}=x_{8}=y_{8}, x_{6}=y_{6}=x_{9}=y_{9}, x_{7}=y_{7}=x_{10}=y_{10}$, by Lemma 1 and induction method, the solution is eventually periodic with period three as the following
$x_{3 n-1}=y_{3 n-1}=\frac{y_{0} x_{-1}}{x_{0}} ; \quad x_{3 n}=y_{3 n}=y_{0} ; \quad x_{3 n+1}=y_{3 n+1}=\frac{x_{0} A}{y_{0}^{2} x_{-1}}, \quad n=2,3, \ldots$.
(ii) If $0<\frac{x_{0}}{y_{0}}<1$, and
(a) $\frac{x_{0}^{2} y_{-1}}{y_{0} x_{-1}} \leq y_{0}$, then

$$
\begin{aligned}
x_{3} & =\max \left\{y_{0}, x_{0}\right\}=x_{0}, y_{3}=\max \left\{\frac{x_{0}^{2} y_{-1}}{y_{0} x_{-1}}, y_{0}\right\}=y_{0} ; \\
x_{4} & =\max \left\{\frac{A}{y_{0} x_{-1}}, \frac{A}{x_{0} y_{-1}}\right\}=\frac{A}{y_{0} x_{-1}}, y_{4}=\max \left\{\frac{A}{y_{0} x_{-1}}, \frac{A}{y_{0} x_{-1}}\right\}=\frac{A}{y_{0} x_{-1}} ; \\
x_{5} & =\max \left\{x_{-1}, x_{-1}\right\}=x_{-1}, y_{5}=\max \left\{\frac{y_{0} x_{-1}}{x_{0}}, \frac{y_{0} x_{-1}}{x_{0}}\right\}=\frac{y_{0} x_{-1}}{x_{0}} ; \\
x_{6} & =\max \left\{y_{0}, x_{0}\right\}=x_{0}, y_{6}=\max \left\{x_{0}, y_{0}\right\}=x_{0} ; \\
x_{7} & =\max \left\{\frac{A}{y_{0} x_{-1}}, \frac{A}{y_{0} x_{-1}}\right\}=\frac{A}{y_{0} x_{-1}}, y_{7}=\max \left\{\frac{A}{x_{0} x_{-1}}, \frac{A}{y_{0} x_{-1}}\right\}=\frac{A}{x_{0} x_{-1}} ; \\
x_{8} & =\max \left\{\frac{y_{0} x_{-1}}{x_{0}}, x_{-1}\right\}=x_{-1}, y_{8}=\max \left\{x_{-1}, \frac{y_{0} x_{-1}}{x_{0}}\right\}=x_{-1} ; \\
x_{9} & =\max \left\{x_{0}, x_{0}\right\}=x_{0}, y_{9}=\max \left\{y_{0}, x_{0}\right\}=x_{0} ; \\
x_{10} & =\max \left\{\frac{A}{x_{0} x_{-1}}, \frac{A}{y_{0} x_{-1}}\right\}=\frac{A}{x_{0} x_{-1}}, y_{10}=\max \left\{\frac{A}{x_{0} x_{-1}}, \frac{A}{x_{0} x_{-1}}\right\}=\frac{A}{x_{0} x_{-1}} ;
\end{aligned}
$$

$$
\begin{aligned}
x_{11} & =\max \left\{x_{-1}, x_{-1}\right\}=x_{-1}, y_{11}=\max \left\{x_{-1}, x_{-1}\right\}=x_{-1} ; \\
x_{12} & =\max \left\{x_{0}, x_{0}\right\}=x_{0}, y_{12}=\max \left\{x_{0}, x_{0}\right\}=x_{0} ; \\
x_{13}= & \max \left\{\frac{A}{x_{0} x_{-1}}, \frac{A}{x_{0} x_{-1}}\right\}=\frac{A}{x_{0} x_{-1}}, \quad y_{13}=\max \left\{\frac{A}{x_{0} x_{-1}}, \frac{A}{x_{0} x_{-1}}\right\}=\frac{A}{x_{0} x_{-1}} .
\end{aligned}
$$

Hence $\quad x_{8}=y_{8}=x_{11}=y_{11}, \quad x_{9}=y_{9}=x_{12}=y_{12}, \quad x_{10}=y_{10}=x_{13}=y_{13}, \quad$ by Lemma 1 , the solution is eventually periodic with period three as the following

$$
x_{3 n-1}=y_{3 n-1}=x_{-1} ; \quad x_{3 n}=y_{3 n}=x_{0} ; \quad x_{3 n+1}=y_{3 n+1}=\frac{A}{x_{0} x_{-1}}, \quad n=3,4, \ldots
$$

(b) $\frac{x_{0}^{2} y_{-1}}{y_{0} x_{-1}} \geq y_{0}$, then

$$
\begin{aligned}
& x_{3}=\max \left\{y_{0}, x_{0}\right\}=x_{0}, y_{3}=\max \left\{\frac{x_{0}^{2} y_{-1}}{y_{0} x_{-1}}, y_{0}\right\}=\frac{x_{0}^{2} y_{-1}}{y_{0} x_{-1}} ; \\
& x_{4}=\max \left\{\frac{A}{y_{0} x_{-1}}, \frac{A}{x_{0} y_{-1}}\right\}=\frac{A}{y_{0} x_{-1}}, y_{4}=\max \left\{\frac{y_{0} A}{x_{0}^{2} y_{-1}}, \frac{A}{y_{0} x_{-1}}\right\}=\frac{y_{0} A}{x_{0}^{2} y_{-1}} ; \\
& x_{5}=\max \left\{\frac{y_{0}^{2} x_{-1}^{2}}{x_{0}^{2} y_{-1}}, x_{-1}\right\}=x_{-1}, y_{5}=\max \left\{\frac{x_{0} y_{-1}}{y_{0}}, \frac{y_{0} x_{-1}}{x_{0}}\right\}=\frac{x_{0} y_{-1}}{y_{0}} ; \\
& x_{6}=\max \left\{\frac{x_{0}^{2} y_{-1}}{y_{0} x_{-1}}, x_{0}\right\}=x_{0}, \quad y_{6}=\max \left\{\frac{y_{0}^{2} x_{-1}}{x_{0} y_{-1}}, \frac{x_{0}^{2} y_{-1}}{y_{0} x_{-1}}\right\}=\frac{y_{0}^{2} x_{-1}}{x_{0} y_{-1}} ; \\
& x_{7}=\max \left\{\frac{y_{0} A}{x_{0}^{2} y_{-1}}, \frac{A}{y_{0} x_{-1}}\right\}=\frac{y_{0} A}{x_{0}^{2} y_{-1}}, y_{7}=\max \left\{\frac{x_{0} y_{-1} A}{y_{0}^{2} x_{-1}^{2}}, \frac{y_{0} A}{x_{0}^{2} y_{-1}}\right\}=\frac{x_{0} y_{-1} A}{y_{0}^{2} x_{-1}^{2}} ; \\
& x_{8}=\max \left\{\frac{x_{0}^{3} y_{-1}^{2}}{y_{0}^{3} x_{-1}}, x_{-1}\right\}=x_{-1}, y_{8}=\max \left\{\frac{y_{0}^{2} x_{-1}^{2}}{x_{0}^{2} y_{-1}}, \frac{x_{0} y_{-1}}{y_{0}}\right\}=\frac{y_{0}^{2} x_{-1}^{2}}{x_{0}^{2} y_{-1}} ; \\
& x_{9}=\max \left\{\frac{y_{0}^{2} x_{-1}}{x_{0} y_{-1}}, x_{0}\right\}=x_{0}, y_{9}=\max \left\{\frac{x_{0}^{4} y_{-1}^{2}}{y_{0}^{3} x_{-1}^{2}}, \frac{y_{0}^{2} x_{-1}}{x_{0} y_{-1}}\right\}=\frac{y_{0}^{2} x_{-1}}{x_{0} y_{-1}} ; \\
& x_{10}=\max \left\{\frac{x_{0} y_{-1} A}{y_{0}^{2} x_{-1}^{2}}, \frac{y_{0} A}{x_{0}^{2} y_{-1}}\right\}=\frac{x_{0} y_{-1} A}{y_{0}^{2} x_{-1}^{2}}, y_{10}=\max \left\{\frac{x_{0} y_{-1} A}{y_{0}^{2} x_{-1}^{2}}, \frac{x_{0} y_{-1} A}{y_{0}^{2} x_{-1}^{2}}\right\}=\frac{x_{0} y_{-1} A}{y_{0}^{2} x_{-1}^{2}} ; \\
& x_{11}=\max \left\{x_{-1}, x_{-1}\right\}=x_{-1}, \quad y_{11}=\max \left\{\frac{y_{0}^{2} x_{-1}^{2}}{x_{0}^{2} y_{-1}}, \frac{y_{0}^{2} x_{-1}^{2}}{x_{0}^{2} y_{-1}}\right\}=\frac{y_{0}^{2} x_{-1}^{2}}{x_{0}^{2} y_{-1}} ; \\
& x_{12}=\max \left\{\frac{y_{0}^{2} x_{-1}}{x_{0} y_{-1}}, x_{0}\right\}=x_{0}, y_{12}=\max \left\{x_{0}, \frac{y_{0}^{2} x_{-1}}{x_{0} y_{-1}}\right\}=x_{0} ; \\
& x_{13}=\max \left\{\frac{x_{0} y_{-1} A}{y_{0}^{2} x_{-1}^{2}}, \frac{x_{0} y_{-1} A}{y_{0}^{2} x_{-1}^{2}}\right\}=\frac{x_{0} y_{-1} A}{y_{0}^{2} x_{-1}^{2}}, y_{13}=\max \left\{\frac{A}{x_{0} x_{-1}}, \frac{x_{0} y_{-1} A}{y_{0}^{2} x_{-1}^{2}}\right\}=\frac{A}{x_{0} x_{-1}} ; \\
& x_{14}=\max \left\{\frac{y_{0}^{2} x_{-1}^{2}}{x_{0}^{2} y_{-1}}, x_{-1}\right\}=x_{-1}, y_{14}=\max \left\{x_{-1}, \frac{y_{0}^{2} x_{-1}^{2}}{x_{0}^{2} y_{-1}}\right\}=x_{-1} ; \\
& x_{15}=\max \left\{x_{0}, x_{0}\right\}=x_{0}, y_{15}=\max \left\{\frac{y_{0}^{2} x_{-1}}{x_{0} y_{-1}}, x_{0}\right\}=x_{0} ; \\
& x_{16}=\max \left\{\frac{A}{x_{0} x_{-1}}, \frac{x_{0} y_{-1} A}{y_{0}^{2} x_{-1}^{2}}\right\}=\frac{A}{x_{0} x_{-1}}, y_{16}=\max \left\{\frac{A}{x_{0} x_{-1}}, \frac{A}{x_{0} x_{-1}}\right\}=\frac{A}{x_{0} x_{-1}} ; \\
& x_{17}=\max \left\{x_{-1}, x_{-1}\right\}=x_{-1}, y_{17}=\max \left\{x_{-1}, x_{-1}\right\}=x_{-1} \text {; } \\
& x_{18}=\max \left\{x_{0}, x_{0}\right\}=x_{0}, y_{18}=\max \left\{x_{0}, x_{0}\right\}=x_{0} \text {; } \\
& x_{19}=\max \left\{\frac{A}{x_{0} x_{-1}}, \frac{A}{x_{0} x_{-1}}\right\}=\frac{A}{x_{0} x_{-1}}, y_{19}=\max \left\{\frac{A}{x_{0} x_{-1}}, \frac{A}{x_{0} x_{-1}}\right\}=\frac{A}{x_{0} x_{-1}} .
\end{aligned}
$$

Hence $x_{14}=y_{14}=x_{17}=y_{17}, \quad x_{15}=y_{15}=x_{18}=y_{18}, \quad x_{16}=y_{16}=x_{19}=y_{19}$, by Lemma 1 , the solution is eventually periodic with period three as the following

$$
x_{3 n-1}=y_{3 n-1}=x_{-1} ; \quad x_{3 n}=y_{3 n}=x_{0} ; \quad x_{3 n+1}=y_{3 n+1}=\frac{A}{x_{0} x_{-1}}, \quad n=5,6, \ldots
$$

(II) Suppose that $x_{0} y_{-1} \leq y_{0} x_{-1}$, the proof is similar to case 1 , so we just give the result.
(i) If $\frac{x_{0}}{y_{0}} \geq 1$, and
(a) $x_{0} \geq \frac{y_{0}^{2} x_{-1}}{x_{0} y_{-1}}$, then the solution is eventually periodic with period three as the following

$$
x_{3 n-1}=y_{3 n-1}=y_{-1} ; \quad x_{3 n}=y_{3 n}=y_{0} ; \quad x_{3 n+1}=y_{3 n+1}=\frac{A}{y_{0} y_{-1}}, \quad n=3,4, \ldots
$$

(b) $x_{0} \leq \frac{y_{0}^{2} x_{-1}}{x_{0} y_{-1}}$, then the solution is eventually periodic with period three as the following $x_{3 n-1}=y_{3 n-1}=y_{-1} ; x_{3 n}=y_{3 n}=y_{0} ; \quad x_{3 n+1}=y_{3 n+1}=\frac{A}{y_{0} y_{-1}}, \quad n=5,6, \ldots$.
(ii) If $0<\frac{x_{0}}{y_{0}}<1$, then the solution is eventually periodic with period three as the following $x_{3 n-1}=y_{3 n-1}=\frac{x_{0} y_{-1}}{y_{0}} ; \quad x_{3 n}=y_{3 n}=x_{0} ; \quad x_{3 n+1}=y_{3 n+1}=\frac{y_{0} A}{x_{0}^{2} y_{-1}}, \quad n=2,3, \ldots$

Remark 1: $A>0$ and (H1) imply that every solution of (3) is eventually sign-changing.
Theorem 2: Suppose that $A>0$ and the initial values $x_{-2}, x_{-1}, x_{0}, y_{-2}, y_{-1}, y_{0}$ satisfy $(H 2)$, then every solution of (3) is eventually periodic with period three.

Proof: As in the proof of Theorem 1, there are several cases which should be discussed because of the maximum property in system (3). While due to the similarity of the proof and the space limitations, here we just show the results of some cases.
(I) Assume that $y_{-2} \geq \frac{A}{y_{0} x_{-1}} \geq \frac{A}{x_{0} y_{-1}} \geq x_{-2}$, and
(i) If $\frac{x_{0}}{y_{0}} \geq 1$, then the solution is eventually periodic with period three as the following

$$
\begin{aligned}
x_{3 n-2}= & \frac{A}{x_{0} y_{-1}} ; x_{3 n-1}=\frac{x_{0} y_{-1}}{y_{0}} ; x_{3 n}=x_{0} ; \quad y_{3 n-2}=y_{-2} ; \quad y_{3 n-1}=y_{-1} \\
& y_{3 n}=x_{0}, \quad n=1,2, \ldots
\end{aligned}
$$

(ii) If $0<\frac{x_{0}}{y_{0}}<1$, and
(a) $x_{0} \geq \frac{y_{0} A}{x_{0} y_{-1} y_{-2}}$, then the solution is eventually periodic with period three as the following

$$
\begin{aligned}
x_{3 n-2}= & \frac{A}{x_{0} y_{-1}} ; x_{3 n-1}=\frac{x_{0} y_{-1}}{y_{0}} ; x_{3 n}=x_{0} ; \\
& y_{3 n-2}=y_{-2} ; \quad y_{3 n-1}=y_{-1} ; \quad y_{3 n}=y_{0}, n=1,2, \ldots .
\end{aligned}
$$

(b) $x_{0} \leq \frac{y_{0} A}{x_{0} y_{-1} y_{-2}}$, then the solution is eventually periodic with period three as the following

$$
\begin{aligned}
& x_{3 n-2}=\frac{A}{x_{0} y_{-1}} ; \quad x_{3 n-1}=\frac{x_{0} y_{-1}}{y_{0}} ; \quad x_{3 n}=\frac{y_{0} A}{x_{0} y_{-1} y_{-2}} ; \\
& y_{3 n-2}=y_{-2} ; \quad y_{3 n-1}=y_{-1} ; \quad y_{3 n}=y_{0}, \quad n=1,2, \ldots
\end{aligned}
$$

(II) Assume that $\frac{A}{y_{0} x_{-1}} \geq \frac{A}{x_{0} y_{-1}} \geq x_{-2} \geq y_{-2}$, and
(i) If $\frac{x_{0}}{y_{0}} \geq 1$, then the solution is eventually periodic with period three as the following

$$
\begin{aligned}
& x_{3 n-2}=\frac{A}{x_{0} y_{-1}} ; x_{3 n-1}=\frac{x_{0} y_{-1}}{y_{0}} ; x_{3 n}=x_{0} ; \\
& \quad y_{3 n-2}=\frac{A}{y_{0} x_{-1}} ; y_{3 n-1}=y_{-1} ; y_{3 n}=x_{0}, n=1,2, \ldots
\end{aligned}
$$

(ii) If $0<\frac{x_{0}}{y_{0}}<1$, and
(a) $x_{0} \geq \frac{y_{0}^{2} x_{-1} A}{x_{0} y_{-1}}$, then the solution is eventually periodic with period three as the following

$$
\begin{aligned}
& x_{3 n-2}=\frac{A}{x_{0} y_{-1}} ; x_{3 n-1}=\frac{x_{0} y_{-1}}{y_{0}} ; x_{3 n}=x_{0} ; \\
& \quad y_{3 n-2}=\frac{A}{y_{0} x_{-1}} ; y_{3 n-1}=y_{-1} ; y_{3 n}=y_{0}, n=1,2, \ldots .
\end{aligned}
$$

(b) $x_{0} \leq \frac{y_{0}^{2} x_{-1} A}{x_{0} y_{-1}}$, then the solution is eventually periodic with period three as the following

$$
\begin{aligned}
& x_{3 n-2}=\frac{A}{x_{0} y_{-1}} ; x_{3 n-1}=\frac{x_{0} y_{-1}}{y_{0}} ; x_{3 n}=\frac{y_{0}^{2} x_{-1}}{x_{0} y_{-1}} \\
& \quad y_{3 n-2}=\frac{A}{y_{0} x_{-1}} ; y_{3 n-1}=y_{-1} ; y_{3 n}=y_{0}, n=1,2, \ldots
\end{aligned}
$$

Remark 2: $A>0$ and (H2) imply that every solution of (3) is positive.
Theorem 3: Suppose that $A>0$ and the initial values $x_{-2}, x_{-1}, x_{0}, y_{-2}, y_{-1}, y_{0}$ satisfy (H3), then every solution of (3) is eventually periodic with period three.

Proof: (I) suppose that $x_{-1}, y_{-2}>0, x_{-2}, x_{0}, y_{-1}, y_{0}<0$, then

$$
x_{1}=\max \left\{\frac{A}{x_{0} y_{-1}}, x_{-2}\right\}=\frac{A}{x_{0} y_{-1}}, y_{1}=\max \left\{\frac{A}{y_{0} x_{-1}}, y_{-2}\right\}=y_{-2}
$$

(i) if $\frac{A}{y_{-2} x_{0}} \geq y_{-1}$, then

$$
x_{2}=\max \left\{\frac{x_{0} y_{-1}}{y_{0}}, x_{-1}\right\}=x_{-1}, \quad y_{2}=\max \left\{\frac{A}{y_{-2} x_{0}}, y_{-1}\right\}=\frac{A}{y_{-2} x_{0}}
$$

(a) $\frac{x_{0}^{2} y_{-1} y_{-2}}{A} \geq y_{0}$, we have

$$
\begin{aligned}
& x_{3}=\max \left\{\frac{A}{x_{-1} y_{-2}}, x_{0}\right\}=\frac{A}{x_{-1} y_{-2}}, y_{3}=\max \left\{\frac{x_{0}^{2} y_{-1} y_{-2}}{A}, y_{0}\right\}=\frac{x_{0}^{2} y_{-1} y_{-2}}{A} ; \\
& x_{4}=\max \left\{\frac{y_{-2}^{2} x_{-1} x_{0}}{A}, \frac{A}{x_{0} y_{-1}}\right\}=\frac{A}{x_{0} y_{-1}}, y_{4}=\max \left\{\frac{A^{2}}{x_{0}^{2} y_{-1} y_{-2} x_{-1}}, y_{-2}\right\}=y_{-2} ; \\
& x_{5}=\max \left\{\frac{A}{x_{0} y_{-2}}, x_{-1}\right\}=x_{-1}, y_{5}=\max \left\{x_{-1}, \frac{A}{y_{-2} x_{0}}\right\}=x_{-1} ; \\
& x_{6}=\max \left\{\frac{A}{x_{-1} y_{-2}}, \frac{A}{x_{-1} y_{-2}}\right\}=\frac{A}{x_{-1} y_{-2}}, y_{6}=\max \left\{\frac{x_{0} y_{-1}}{x_{-1}}, \frac{x_{0}^{2} y_{-1} y_{-2}}{A}\right\}=\frac{x_{0} y_{-1}}{x_{-1}} ; \\
& x_{7}=\max \left\{y_{-2}, \frac{A}{x_{0} y_{-1}}\right\}=y_{-2}, y_{7}=\max \left\{\frac{A}{x_{0} y_{-1}}, y_{-2}\right\}=y_{-2} ; \\
& x_{8}=\max \left\{\frac{x_{-1} A}{x_{0} y_{-1} y_{-2}}, x_{-1}\right\}=x_{-1}, y_{8}=\max \left\{x_{-1}, x_{-1}\right\}=x_{-1} ; \\
& x_{9}=\max \left\{\frac{A}{x_{-1} y_{-2}}, \frac{A}{x_{-1} y_{-2}}\right\}=\frac{A}{x_{-1} y_{-2}}, y_{9}=\max \left\{\frac{A}{x_{-1} y_{-2}}, \frac{x_{0} y_{-1}}{x_{-1}}\right\}=\frac{x_{0} y_{-1}}{x_{-1}} ; \\
& x_{10}=\max \left\{y_{-2}, y_{-2}\right\}=y_{-2}, y_{10}=\max \left\{\frac{A}{x_{0} y_{-1}}, y_{-2}\right\}=y_{-2} ;
\end{aligned}
$$

Hence $x_{5}=x_{8}, x_{6}=x_{9}, x_{7}=x_{10}, y_{5}=y_{8}, y_{6}=y_{9}, y_{7}=y_{10}$, by Lemma 1, the solution is eventually periodic with period three as the following

$$
\begin{aligned}
& x_{3 n-1}=x_{-1} ; \quad x_{3 n}=\frac{A}{x_{-1} y_{-2}} ; x_{3 n+1}=y_{-2} ; \\
& y_{3 n-1}=x_{-1} ; \quad y_{3 n}=\frac{x_{0} y_{-1}}{x_{-1}} ; \quad y_{3 n+1}=y_{-2}, \quad n=2,3, \ldots
\end{aligned}
$$

(b) $\frac{x_{0}^{2} y_{-1} y-2}{A} \leq y_{0}$, the results are the same as (a).
(ii) if $\frac{A}{y_{-2} x_{0}} \leq y_{-1}$, then

$$
x_{2}=\max \left\{\frac{x_{0} y_{-1}}{y_{0}}, x_{-1}\right\}=x_{-1}, \quad y_{2}=\max \left\{\frac{A}{y_{-2} x_{0}}, y_{-1}\right\}=y_{-1}
$$

(a) $x_{0} \geq y_{0}$, we have

$$
\begin{aligned}
& x_{3}=\max \left\{\frac{A}{x_{-1} y_{-2}}, x_{0}\right\}=\frac{A}{x_{-1} y_{-2}}, y_{3}=\max \left\{x_{0}, y_{0}\right\}=x_{0} ; \\
& x_{4}=\max \left\{\frac{x_{-1} y_{-2}}{y_{-1}}, \frac{A}{x_{0} y_{-1}}\right\}=\frac{A}{x_{0} y_{-1}}, y_{4}=\max \left\{\frac{A}{x_{0} x_{-1}}, y_{-2}\right\}=y_{-2} ; \\
& x_{5}=\max \left\{y_{-1}, x_{-1}\right\}=x_{-1}, y_{5}=\max \left\{x_{-1}, y_{-1}\right\}=x_{-1} ; \\
& x_{6}=\max \left\{\frac{A}{x_{-1} y_{-2}}, \frac{A}{x_{-1} y_{-2}}\right\}=\frac{A}{x_{-1} y_{-2}}, y_{6}=\max \left\{\frac{x_{0} y_{-1}}{x_{-1}}, x_{0}\right\}=\frac{x_{0} y_{-1}}{x_{-1}} ; \\
& x_{7}=\max \left\{y_{-2}, \frac{A}{x_{0} y_{-1}}\right\}=\frac{A}{x_{0} y_{-1}}, y_{7}=\max \left\{\frac{A}{x_{0} y_{-1}}, y_{-2}\right\}=\frac{A}{x_{0} y_{-1}} ; \\
& x_{8}=\max \left\{x_{-1}, x_{-1}\right\}=x_{-1}, y_{8}=\max \left\{\frac{x_{0} x_{-1} y_{-1} y_{-2}}{A}, x_{-1}\right\}=x_{-1} ;
\end{aligned}
$$

$$
\begin{aligned}
& x_{9}=\max \left\{\frac{x_{0} y_{-1}}{x_{-1}}, \frac{A}{x_{-1} y_{-2}}\right\}=\frac{A}{x_{-1} y_{-2}}, y_{9}=\max \left\{\frac{x_{0} y_{-1}}{x_{-1}}, \frac{x_{0} y_{-1}}{x_{-1}}\right\}=\frac{x_{0} y_{-1}}{x_{-1}} ; \\
& x_{10}=\max \left\{y_{-2}, \frac{A}{x_{0} y_{-1}}\right\}=\frac{A}{x_{0} y_{-1}}, y_{10}=\max \left\{\frac{A}{x_{0} y_{-1}}, \frac{A}{x_{0} y_{-1}}\right\}=\frac{A}{x_{0} y_{-1}} ;
\end{aligned}
$$

Hence $x_{5}=x_{8}, x_{6}=x_{9}, x_{7}=x_{10}, y_{5}=y_{8}, y_{6}=y_{9}, y_{7}=y_{10}$, by Lemma 1 , the solution is eventually periodic with period three as the following

$$
\begin{aligned}
& x_{3 n-1}=x_{-1} ; \quad x_{3 n}=\frac{A}{x_{-1} y_{-2}} ; \quad x_{3 n+1}=\frac{A}{x_{0} y_{-1}} ; \\
& y_{3 n-1}=x_{-1} ; \quad y_{3 n}=\frac{x_{0} y_{-1}}{x_{-1}} ; \quad y_{3 n+1}=\frac{A}{x_{0} y_{-1}}, n=2,3, \ldots .
\end{aligned}
$$

(b) $x_{0} \leq y_{0}$, the results are the same as (a).
(II) Suppose that $y_{0}>0, x_{-2}, x_{-1}, x_{0}, y_{-2}, y_{-1}<0$, and
(i) if $\frac{A}{y_{0} x_{-1}} \geq y_{-2}$, then

$$
\begin{aligned}
& x_{1}=\max \left\{\frac{A}{x_{0} y_{-1}}, x_{-2}\right\}=\frac{A}{x_{0} y_{-1}}, y_{1}=\max \left\{\frac{A}{y_{0} x_{-1}}, y_{-2}\right\}=\frac{A}{y_{0} x_{-1}} ; \\
& x_{2}=\max \left\{\frac{x_{0} y_{-1}}{y_{0}}, x_{-1}\right\}=\frac{x_{0} y_{-1}}{y_{0}}, y_{2}=\max \left\{\frac{y_{0} x_{-1}}{x_{0}}, y_{-1}\right\}=\frac{y_{0} x_{-1}}{x_{0}} ;
\end{aligned}
$$

(a) $\frac{y_{0}^{2} x_{-1}}{x_{0} y_{-1}} \geq x_{0}$, we have

$$
\begin{aligned}
& x_{3}=\max \left\{\frac{y_{0}^{2} x_{-1}}{x_{0} y_{-1}}, x_{0}\right\}=\frac{y_{0}^{2} x_{-1}}{x_{0} y_{-1}}, y_{3}=\max \left\{\frac{x_{0}^{2} y_{-1}}{y_{0} x_{-1}}, y_{0}\right\}=\frac{x_{0}^{2} y_{-1}}{y_{0} x_{-1}} ; \\
& x_{4}=\max \left\{\frac{x_{0}^{2} y_{-1} A}{y_{0}^{3} x_{-1}^{2}}, \frac{A}{x_{0} y_{-1}}\right\}=\frac{A}{x_{0} y_{-1}}, y_{4}=\max \left\{\frac{y_{0}^{2} x_{-1} A}{x_{0}^{3} y_{-1}^{2}}, \frac{A}{y_{0} x_{-1}}\right\}=\frac{y_{0}^{2} x_{-1} A}{x_{0}^{3} y_{-1}^{2}} ; \\
& x_{5}=\max \left\{\frac{y_{0} x_{-1}}{x_{0}}, \frac{x_{0} y_{-1}}{y_{0}}\right\}=\frac{x_{0} y_{-1}}{y_{0}}, y_{5}=\max \left\{\frac{x_{0}^{4} y_{-1}^{3}}{y_{0}^{2} x_{-1}^{2}}, \frac{y_{0} x_{-1}}{x_{0}}\right\}=\frac{y_{0} x_{-1}}{x_{0}} ; \\
& x_{6}=\max \left\{\frac{x_{0}^{2} y_{-1}}{y_{0} x_{-1}}, \frac{y_{0}^{2} x_{-1}}{x_{0} y_{-1}}\right\}=\frac{x_{0}^{2} y_{-1}}{y_{0} x_{-1}}, y_{6}=\max \left\{\frac{x_{0}^{2} y_{-1}}{y_{0} x_{-1}}, \frac{x_{0}^{2} y_{-1}}{y_{0} x_{-1}}\right\}=\frac{x_{0}^{2} y_{-1}}{y_{0} x_{-1}} ; \\
& x_{7}=\max \left\{\frac{A}{x_{0} y_{-1}}, \frac{A}{x_{0} y_{-1}}\right\}=\frac{A}{x_{0} y_{-1}}, y_{7}=\max \left\{\frac{y_{0}^{2} x_{-1} A}{x_{0}^{3} y_{-1}^{2}}, \frac{y_{0}^{2} x_{-1} A}{x_{0}^{3} y_{-1}^{2}}\right\}=\frac{y_{0}^{2} x_{-1} A}{x_{0}^{3} y_{-1}^{2}} ; \\
& x_{8}=\max \left\{\frac{y_{0} x_{-1}}{x_{0}}, \frac{x_{0} y_{-1}}{y_{0}}\right\}=\frac{x_{0} y_{-1}}{y_{0}}, y_{8}=\max \left\{\frac{x_{0} y_{-1}}{y_{0}}, \frac{y_{0} x_{-1}}{x_{0}}\right\}=\frac{x_{0} y_{-1}}{y_{0}} ; \\
& x_{9}=\max \left\{\frac{x_{0}^{2} y_{-1}}{y_{0} x_{-1}}, \frac{x_{0}^{2} y_{-1}}{y_{0} x_{-1}}\right\}=\frac{x_{0}^{2} y_{-1}}{y_{0} x_{-1}}, y_{9}=\max \left\{y_{0}, \frac{x_{0}^{2} y_{-1}}{y_{0} x_{-1}}\right\}=\frac{x_{0}^{2} y_{-1}}{y_{0} x_{-1}} ; \\
& x_{10}=\max \left\{\frac{y_{0}^{2} x_{-1} A}{x_{0}^{3} y_{-1}^{2}}, \frac{A}{x_{0} y_{-1}}\right\}=\frac{A}{x_{0} y_{-1}}, y_{10}=\max \left\{\frac{y_{0}^{2} x_{-1} A}{x_{0}^{3} y_{-1}^{2}}, \frac{y_{0}^{2} x_{-1} A}{x_{0}^{3} y_{-1}^{2}}\right\}=\frac{y_{0}^{2} x_{-1} A}{x_{0}^{3} y_{-1}^{2}} ; \\
& x_{11}=\max \left\{\frac{y_{0} x_{-1}}{x_{0} y_{-1}}\right\}=\frac{x_{0} y_{-1}}{y_{0}}, y_{11}=\max \left\{\frac{x_{0} y_{-1}}{x_{0} y_{-1}}\right\}=\frac{x_{0} y_{-1}}{y_{0}} ;
\end{aligned}
$$

Hence $x_{6}=x_{9}, x_{7}=x_{10}, x_{8}=x_{11}, y_{6}=y_{9}, y_{7}=y_{10}, y_{9}=y_{11}$, by Lemma 1, the solution is eventually periodic with period three as the following

$$
\begin{aligned}
& x_{3 n}=\frac{x_{0}^{2} y_{-1}}{y_{0} x_{-1}} ; \quad x_{3 n+1}=\frac{A}{x_{0} y_{-1}} ; \quad x_{3 n+2}=\frac{x_{0} y_{-1}}{y_{0}} ; \\
& y_{3 n}=\frac{x_{0}^{2} y_{-1}}{y_{0} x_{-1}} ; y_{3 n+1}=\frac{y_{0}^{2} x_{-1} A}{x_{0}^{3} y_{-1}^{2}} ; \quad y_{3 n+2}=\frac{x_{0} y_{-1}}{y_{0}}, n=2,3, \ldots
\end{aligned}
$$

(b) $\frac{y_{0}^{2} x_{-1}}{x_{0} y_{-1}} \leq x_{0}$, we have

$$
\begin{aligned}
& x_{3}=\max \left\{\frac{y_{0}^{2} x_{-1}}{x_{0} y_{-1}}, x_{0}\right\}=x_{0}, y_{3}=\max \left\{\frac{x_{0}^{2} y_{-1}}{y_{0} x_{-1}}, y_{0}\right\}=y_{0} ; \\
& x_{4}=\max \left\{\frac{A}{y_{0} x_{-1}}, \frac{A}{x_{0} y_{-1}}\right\}=\frac{A}{x_{0} y_{-1}}, y_{4}=\max \left\{\frac{A}{x_{0} y_{-1}}, \frac{A}{y_{0} x_{-1}}\right\}=\frac{A}{x_{0} y_{-1}} ; \\
& x_{5}=\max \left\{\frac{x_{0} y_{-1}}{y_{0}}, \frac{x_{0} y_{-1}}{y_{0}}\right\}=\frac{x_{0} y_{-1}}{y_{0}}, y_{5}=\max \left\{y_{-1}, \frac{y_{0} x_{-1}}{x_{0}}\right\}=\frac{y_{0} x_{-1}}{x_{0}} ; \\
& x_{6}=\max \left\{y_{0}, x_{0}\right\}=y_{0}, y_{6}=\max \left\{\frac{x_{0}^{2} y_{-1}}{y_{0} x_{-1}}, y_{0}\right\}=y_{0} ; \\
& x_{7}=\max \left\{\frac{x_{0} A}{y_{0}^{2} x_{-1}}, \frac{A}{x_{0} y_{-1}}\right\}=\frac{A}{x_{0} y_{-1}}, y_{7}=\max \left\{\frac{A}{x_{0} y_{-1}}, \frac{A}{x_{0} y_{-1}}\right\}=\frac{A}{x_{0} y_{-1}} ; \\
& x_{8}=\max \left\{\frac{x_{0} y_{-1}}{y_{0}}, \frac{x_{0} y_{-1}}{y_{0}}\right\}=\frac{x_{0} y_{-1}}{y_{0}}, y_{8}=\max \left\{\frac{x_{0} y_{-1}}{y_{0}}, \frac{y_{0} x_{-1}}{x_{0}}\right\}=\frac{y_{0} x_{-1}}{x_{0}} ; \\
& x_{9}=\max \left\{y_{0}, y_{0}\right\}=y_{0}, y_{9}=\max \left\{\frac{x_{0}^{2} y_{-1}}{y_{0} x_{-1}}, y_{0}\right\}=y_{0} ;
\end{aligned}
$$

Hence $x_{4}=x_{7}, x_{5}=x_{8}, x_{6}=x_{9}, y_{4}=y_{7}, y_{5}=y_{8}, y_{6}=y_{9}$, by Lemma 1 , the solution is eventually periodic with period three as the following

$$
\begin{aligned}
& x_{3 n+1}=\frac{A}{x_{0} y_{-1}} ; \quad x_{3 n+2}=\frac{x_{0} y_{-1}}{y_{0}} ; \quad x_{3 n+3}=y_{0} ; \\
& y_{3 n+1}=\frac{A}{x_{0} y_{-1}} ; \quad y_{3 n+2}=\frac{y_{0} x_{-1}}{x_{0}} ; y_{3 n+3}=y_{0}, n=1,2, \ldots
\end{aligned}
$$

(ii) if $\frac{A}{y_{0} x_{-1}} \leq y_{-2}$, then

$$
\begin{aligned}
& x_{1}=\max \left\{\frac{A}{x_{0} y_{-1}}, x_{-2}\right\}=\frac{A}{x_{0} y_{-1}}, y_{1}=\max \left\{\frac{A}{y_{0} x_{-1}}, y_{-2}\right\}=y_{-2} \\
& x_{2}=\max \left\{\frac{x_{0} y_{-1}}{y_{0}}, x_{-1}\right\}=\frac{x_{0} y_{-1}}{y_{0}}, y_{2}=\max \left\{\frac{A}{y_{-2} x_{0}}, y_{-1}\right\}=\frac{A}{y_{-2} x_{0}}
\end{aligned}
$$

(a) $\frac{y_{0} A}{x_{0} y_{-1} y_{-2}} \geq x_{0}$, we have

$$
x_{3}=\max \left\{\frac{y_{0} A}{x_{0} y_{-1} y_{-2}}, x_{0}\right\}=\frac{y_{0} A}{x_{0} y_{-1} y_{-2}}, y_{3}=\max \left\{\frac{x_{0}^{2} y_{-1} y_{-2}}{A}, y_{0}\right\}=\frac{x_{0}^{2} y_{-1} y_{-2}}{A}
$$

$$
\begin{aligned}
& x_{4}= \max \left\{\frac{x_{0}^{2} y_{-1} y_{-2}^{2}}{y_{0} A}, \frac{A}{x_{0} y_{-1}}\right\}=\frac{A}{x_{0} y_{-1}}, y_{4}=\max \left\{\frac{y_{0} A^{2}}{x_{0}^{3} y_{-1}^{2} y_{-2}}, y_{-2}\right\}=\frac{y_{0} A^{2}}{x_{0}^{3} y_{-1}^{2} y_{-2}} ; \\
& x_{5}= \max \left\{\frac{A}{x_{0} y_{-2}}, \frac{x_{0} y_{-1}}{y_{0}}\right\}=\frac{x_{0} y_{-1}}{y_{0}}, y_{5}=\max \left\{\frac{x_{0}^{4} y_{-1}^{3} y_{-2}^{2}}{y_{0}^{2} A^{2}}, \frac{A}{y_{-2} x_{0}}\right\}=\frac{A}{y_{-2} x_{0}} ; \\
& x_{6}=\max \left\{\frac{x_{0}^{2} y_{-1} y_{-2}}{A}, \frac{y_{0} A}{x_{0} y_{-1} y_{-2}}\right\}=\frac{x_{0}^{2} y_{-1} y_{-2}}{A}, \\
& y_{6}=\max \left\{\frac{x_{0}^{2} y_{-1} y_{-2}}{A}, \frac{x_{0}^{2} y_{-1} y_{-2}}{A}\right\}=\frac{x_{0}^{2} y_{-1} y_{-2}}{A} ; \\
& x_{7}=\max \left\{\frac{A}{x_{0} y_{-1}}, \frac{A}{x_{0} y_{-1}}\right\}=\frac{A}{x_{0} y_{-1}}, y_{7}=\max \left\{\frac{y_{0} A^{2}}{x_{0}^{3} y_{-1}^{2} y_{-2}}, \frac{y_{0} A^{2}}{x_{0}^{3} y_{-1}^{2} y_{-2}}\right\}=\frac{y_{0} A^{2}}{x_{0}^{3} y_{-1}^{2} y_{-2}} ; \\
& x_{8}=\max \left\{\frac{A}{x_{0} y_{-2}}, \frac{x_{0} y_{-1}}{y_{0}}\right\}=\frac{x_{0} y_{-1}}{y_{0}}, y_{8}=\max \left\{\frac{x_{0} y_{-1}}{y_{0}}, \frac{A}{x_{0} y_{-2}}\right\}=\frac{x_{0} y_{-1}}{y_{0}} ; \\
& x_{9}=\max \left\{\frac{x_{0}^{2} y_{-1} y_{-2}}{A}, \frac{x_{0}^{2} y_{-1} y_{-2}}{A}\right\}=\frac{x_{0}^{2} y_{-1} y_{-2}}{A}, \\
& y_{9}=\max \left\{y_{0}, \frac{x_{0}^{2} y_{-1} y_{-2}}{A}\right\}=\frac{x_{0}^{2} y_{-1} y_{-2}}{A} ; \\
& x_{10}=\max \left\{\frac{y_{0} A^{2}}{x_{0}^{3} y_{-1}^{2} y_{-2}}, \frac{A}{x_{0} y_{-1}}\right\}=\frac{A}{x_{0} y_{-1}}, \\
& y_{10}=\max \left\{\frac{y_{0} A^{2}}{x_{0}^{3} y_{-1}^{2} y_{-2}}, \frac{y_{0} A^{2}}{x_{0}^{3} y_{-1}^{2} y_{-2}}\right\}=\frac{y_{0} A^{2}}{x_{0}^{3} y_{-1}^{2} y_{-2}} ; \\
& x_{11}=\max \left\{\frac{A}{x_{0} y_{-2}}, \frac{x_{0} y_{-1}}{\left.y_{0}\right\}=\frac{x_{0} y_{-1}}{y_{0}}, y_{11}=\max \left\{\frac{x_{0} y_{-1}}{y_{0}}, \frac{x_{0} y_{-1}}{y_{0}}\right\}=\frac{x_{0} y_{-1}}{y_{0}} ;}\right.
\end{aligned}
$$

Hence $x_{6}=x_{9}, x_{7}=x_{10}, x_{8}=x_{11}, y_{6}=y_{9}, y_{7}=y_{10}, y_{8}=y_{11}$, by Lemma 1, the solution is eventually periodic with period three as the following

$$
\begin{aligned}
& x_{3 n}=\frac{x_{0}^{2} y_{-1} y_{-2}}{A} ; x_{3 n+1}=\frac{A}{x_{0} y_{-1}} ; x_{3 n+2}=\frac{x_{0} y_{-1}}{y_{0}} ; \\
& y_{3 n}=\frac{x_{0}^{2} y_{-1} y_{-2}}{A} ; y_{3 n+1}=\frac{y_{0} A^{2}}{x_{0}^{3} y_{-1}^{2} y_{-2}} ; y_{3 n+2}=\frac{x_{0} y_{-1}}{y_{0}}, n=2,3, \ldots .
\end{aligned}
$$

(b) $\frac{y_{0} A}{x_{0} y_{-1} y_{-2}} \leq x_{0}$, we have

$$
\begin{aligned}
& x_{3}=\max \left\{\frac{y_{0} A}{x_{0} y_{-1} y_{-2}}, x_{0}\right\}=x_{0}, y_{3}=\max \left\{\frac{x_{0}^{2} y_{-1} y_{-2}}{A}, y_{0}\right\}=y_{0} ; \\
& x_{4}=\max \left\{y_{-2}, \frac{A}{x_{0} y_{-1}}\right\}=\frac{A}{x_{0} y_{-1}}, y_{4}=\max \left\{\frac{A}{x_{0} y_{-1}}, y_{-2}\right\}=\frac{A}{x_{0} y_{-1}} ; \\
& x_{5}=\max \left\{\frac{x_{0} y_{-1}}{y_{0}}, \frac{x_{0} y_{-1}}{y_{0}}\right\}=\frac{x_{0} y_{-1}}{y_{0}}, y_{5}=\max \left\{y_{-1}, \frac{A}{y_{-2} x_{0}}\right\}=\frac{A}{y_{-2} x_{0}} ; \\
& x_{6}=\max \left\{y_{0}, x_{0}\right\}=y_{0}, y_{6}=\max \left\{\frac{x_{0}^{2} y_{-1} y_{-2}}{A}, y_{0}\right\}=y_{0} ; \\
& x_{7}=\max \left\{\frac{y_{-2} x_{0}}{y_{0}}, \frac{A}{x_{0} y_{-1}}\right\}=\frac{A}{x_{0} y_{-1}}, y_{7}=\max \left\{\frac{A}{x_{0} y_{-1}}, \frac{A}{x_{0} y_{-1}}\right\}=\frac{A}{x_{0} y_{-1}} ; \\
& x_{8}=\max \left\{\frac{x_{0} y_{-1}}{y_{0}}, \frac{x_{0} y_{-1}}{y_{0}}\right\}=\frac{x_{0} y_{-1}}{y_{0}}, y_{8}=\max \left\{\frac{x_{0} y_{-1}}{y_{0}}, \frac{A}{x_{0} y_{-2}}\right\}=\frac{A}{x_{0} y_{-2}} ;
\end{aligned}
$$

$$
x_{9}=\max \left\{y_{0}, y_{0}\right\}=y_{0}, y_{9}=\max \left\{\frac{x_{0}^{2} y_{-1} y_{-2}}{A}, y_{0}\right\}=y_{0}
$$

Hence $x_{4}=x_{7}, x_{5}=x_{8}, x_{6}=x_{9}, y_{4}=y_{7}, y_{5}=y_{8}, y_{6}=y_{9}$, by Lemma 1 , the solution is eventually periodic with period three as the following

$$
\begin{aligned}
& x_{3 n+1}=\frac{A}{x_{0} y_{-1}} ; \quad x_{3 n+2}=\frac{x_{0} y_{-1}}{y_{0}} ; \quad x_{3 n+3}=y_{0} ; \\
& y_{3 n+1}=\frac{A}{x_{0} y_{-1}} ; \quad y_{3 n+2}=\frac{A}{x_{0} y_{-2}} ; \quad y_{3 n+3}=y_{0}, n=1,2, \ldots
\end{aligned}
$$

(III) Suppose that $x_{-1}, x_{0}, y_{-1}>0, x_{-2}, y_{-2}, y_{0}<0$, and
(i) if $\frac{A}{y_{0} x_{-1}} \geq y_{-2}$, then

$$
\begin{aligned}
& x_{1}=\max \left\{\frac{A}{x_{0} y_{-1}}, x_{-2}\right\}=\frac{A}{x_{0} y_{-1}}, y_{1}=\max \left\{\frac{A}{y_{0} x_{-1}}, y_{-2}\right\}=\frac{A}{y_{0} x_{-1}} ; \\
& x_{2}=\max \left\{\frac{x_{0} y_{-1}}{y_{0}}, x_{-1}\right\}=x_{-1}, y_{2}=\max \left\{\frac{y_{0} x_{-1}}{x_{0}}, y_{-1}\right\}=y_{-1} ; \\
& x_{3}=\max \left\{y_{0}, x_{0}\right\}=x_{0}, y_{3}=\max \left\{x_{0}, y_{0}\right\}=x_{0} ; \\
& x_{4}=\max \left\{\frac{A}{x_{0} y_{-1}}, \frac{A}{x_{0} y_{-1}}\right\}=\frac{A}{x_{0} y_{-1}}, y_{4}=\max \left\{\frac{A}{x_{0} x_{-1}}, \frac{A}{y_{0} x_{-1}}\right\}=\frac{A}{x_{0} x_{-1}} ;
\end{aligned}
$$

(a) $x_{-1} \geq y_{-1}$, we have

$$
\begin{aligned}
& x_{5}=\max \left\{y_{-1}, x_{-1}\right\}=x_{-1}, \quad y_{5}=\max \left\{x_{-1}, y_{-1}\right\}=x_{-1} ; \\
& x_{6}=\max \left\{x_{0}, x_{0}\right\}=x_{0}, y_{6}=\max \left\{\frac{x_{0} y_{-1}}{x_{-1}}, x_{0}\right\}=x_{0} ; \\
& x_{7}=\max \left\{\frac{A}{x_{0} x_{-1}}, \frac{A}{x_{0} y_{-1}}\right\}=\frac{A}{x_{0} y_{-1}}, y_{7}=\max \left\{\frac{A}{x_{0} x_{-1}}, \frac{A}{x_{0} x_{-1}}\right\}=\frac{A}{x_{0} x_{-1}} ; \\
& x_{8}=\max \left\{y_{-1}, x_{-1}\right\}=x_{-1}, y_{8}=\max \left\{x_{-1}, x_{-1}\right\}=x_{-1} ;
\end{aligned}
$$

Hence $x_{3}=x_{6}, x_{4}=x_{7}, x_{5}=x_{8}, y_{3}=y_{6}, y_{4}=y_{7}, y_{5}=y_{8}$, by Lemma 1 , the solution is eventually periodic with period three as the following

$$
\begin{aligned}
& x_{3 n}=x_{0} ; \quad x_{3 n+1}=\frac{A}{x_{0} y_{-1}} ; \quad x_{3 n+2}=x_{-1} \\
& y_{3 n}=x_{0} ; \quad y_{3 n+1}=\frac{A}{x_{0} x_{-1}} ; \quad y_{3 n+2}=x_{-1}, \quad n=1,2, \ldots
\end{aligned}
$$

(b) $x_{-1} \leq y_{-1}$, we have

$$
\begin{aligned}
& x_{5}=\max \left\{y_{-1}, x_{-1}\right\}=y_{-1}, y_{5}=\max \left\{x_{-1}, y_{-1}\right\}=y_{-1} ; \\
& x_{6}=\max \left\{\frac{x_{0} x_{-1}}{y_{-1}}, x_{0}\right\}=x_{0}, y_{6}=\max \left\{x_{0}, x_{0}\right\}=x_{0} ; \\
& x_{7}=\max \left\{\frac{A}{x_{0} y_{-1}}, \frac{A}{x_{0} y_{-1}}\right\}=\frac{A}{x_{0} y_{-1}}, y_{7}=\max \left\{\frac{A}{x_{0} y_{-1}}, \frac{A}{x_{0} x_{-1}}\right\}=\frac{A}{x_{0} x_{-1}} ; \\
& x_{8}=\max \left\{y_{-1}, y_{-1}\right\}=y_{-1}, y_{8}=\max \left\{x_{-1}, y_{-1}\right\}=y_{-1} ;
\end{aligned}
$$

Hence $x_{3}=x_{6}, x_{4}=x_{7}, x_{5}=x_{8}, y_{3}=y_{6}, y_{4}=y_{7}, y_{5}=y_{8}$, by Lemma 1, the solution is eventually periodic with period three as the following

$$
\begin{aligned}
& x_{3 n}=x_{0} ; \quad x_{3 n+1}=\frac{A}{x_{0} y_{-1}} ; \quad x_{3 n+2}=y_{-1} ; \\
& y_{3 n}=x_{0} ; \quad y_{3 n+1}=\frac{A}{x_{0} x_{-1}} ; \quad y_{3 n+2}=y_{-1}, \quad n=1,2, \ldots
\end{aligned}
$$

(ii) if $\frac{A}{y_{0} x_{-1}} \leq y_{-2}$, the results are the same as (i). We omit other cases since they are similar in proof of induction.

Remark 3: $A>0$ and (H3) imply that (3) could have either eventually positive or eventually negative or eventually sign-changing solutions.

4 Periodic solutions of (3) for the case $A<0$

In this section, we will discuss the eventually periodic solutions of (3) for the case $A<0$.
Theorem 4: Suppose that $A<0$ and the initial values $x_{-2}, x_{-1}, x_{0}, y_{-2}, y_{-1}, y_{0}$ satisfy (H1), then every solution of (3) is eventually periodic with period three.

Proof: Since $A<0$ and $x_{-2}, x_{-1}, x_{0}, y_{-2}, y_{-1}, y_{0}<0$, by the induction and iterative method, we can obtain that $x_{n}, y_{n}<0$ for every $n \in \mathbb{N}$. We let $B=-A, u_{n}=-x_{n}, v_{n}=$ $-y_{n}$, then (3) becomes

$$
\begin{align*}
& u_{n+1}=\min \left\{\frac{B}{u_{n} v_{n-1}}, u_{n-2}\right\}, \\
& v_{n+1}=\min \left\{\frac{B}{v_{n} u_{n-1}}, v_{n-2}\right\}, \tag{8}
\end{align*}
$$

where $u_{n}, v_{n}>0$ for $n=-2,-1,0, \ldots$.
Now in order to prove the theorem, we only need to prove that the solutions of (8) are eventually periodic with period three. Similarly as in the proof of Theorem 1, considering the limit length of the paper, we shall go with the following one case, other cases can be treated similarly. Assume that $\frac{B}{u_{0} v_{-1}} \geq v_{-2} \geq u_{-2} \geq \frac{B}{v_{0} u_{-1}}$, then we have

$$
\begin{aligned}
& u_{1}=\min \left\{\frac{B}{u_{0} v_{-1}}, u_{-2}\right\}=u_{-2}, v_{1}=\min \left\{\frac{B}{v_{0} u_{-1}}, v_{-2}\right\}=\frac{B}{v_{0} u_{-1}} \\
& u_{2}=\min \left\{\frac{B}{u_{-2} v_{0}}, u_{-1}\right\}=\frac{B}{u_{-2} v_{0}}, \quad v_{2}=\min \left\{\frac{v_{0} u_{-1}}{u_{0}}, v_{-1}\right\}=v_{-1}
\end{aligned}
$$

(i) If $\frac{u_{0}}{v_{0}} \geq 1$, and
(a) $u_{0} \geq \frac{v_{0}^{2} u_{-1} u_{-2}}{B}$, then

$$
u_{3}=\min \left\{\frac{v_{0}^{2} u_{-1} u_{-2}}{B}, u_{0}\right\}=\frac{v_{0}^{2} u_{-1} u_{-2}}{B}, v_{3}=\min \left\{\frac{B}{v_{-1} u_{-2}}, v_{0}\right\}=v_{0}
$$

$$
\begin{aligned}
& u_{4}=\min \left\{\frac{B^{2}}{v_{0}^{2} v_{-1} u_{-1} u_{-2}}, u_{-2}\right\}=u_{-2}, \quad v_{4}=\min \left\{u_{-2}, \frac{B}{v_{0} u_{-1}}\right\}=\frac{B}{v_{0} u_{-1}} ; \\
& u_{5}=\min \left\{\frac{B}{u_{-2} v_{0}}, \frac{B}{u_{-2} v_{0}}\right\}=\frac{B}{u_{-2} v_{0}}, \quad v_{5}=\min \left\{\frac{B}{u_{-2} v_{0}}, v_{-1}\right\}=v_{-1} ; \\
& u_{6}=\min \left\{\frac{v_{0}^{2} u_{-1} u_{-2}}{B}, \frac{v_{0}^{2} u_{-1} u_{-2}}{B}\right\}=\frac{v_{0}^{2} u_{-1} u_{-2}}{B}, v_{6}=\min \left\{\frac{B}{v_{-1} u_{-2}}, v_{0}\right\}=v_{0} .
\end{aligned}
$$

Hence $u_{1}=u_{4}, u_{2}=u_{5}, u_{3}=u_{6}, v_{1}=v_{4}, v_{2}=v_{5}, v_{3}=v_{6}$, by Lemma 1 , the solution is eventually periodic with period three as the following

$$
\begin{aligned}
& u_{3 n-2}=u_{-2} ; \quad u_{3 n-1}=\frac{B}{u_{-2} v_{0}} ; \quad u_{3 n}=\frac{v_{0}^{2} u_{-1} u_{-2}}{B} ; \quad v_{3 n-2}=\frac{B}{v_{0} u_{-1}} \\
& v_{3 n-1}=v_{-1} ; \quad v_{3 n}=v_{0}, \quad n=1,2, \ldots
\end{aligned}
$$

i.e.

$$
\begin{aligned}
& x_{3 n-2}=x_{-2} ; \quad x_{3 n-1}=\frac{B}{x_{-2} y_{0}} ; \quad x_{3 n}=\frac{y_{0}^{2} x_{-1} x_{-2}}{B} ; \quad y_{3 n-2}=\frac{B}{y_{0} x_{-1}} ; \\
& y_{3 n-1}=y_{-1} ; \quad y_{3 n}=y_{0}, \quad n=1,2, \ldots .
\end{aligned}
$$

(b) $u_{0} \leq \frac{v_{0}^{2} u_{-1} u_{-2}}{B}$, then

$$
\begin{aligned}
& u_{3}=\min \left\{\frac{v_{0}^{2} u_{-1} u_{-2}}{B}, u_{0}\right\}=u_{0}, v_{3}=\min \left\{\frac{B}{v_{-1} u_{-2}}, v_{0}\right\}=v_{0} ; \\
& u_{4}=\min \left\{\frac{B}{u_{0} v_{-1}}, u_{-2}\right\}=u_{-2}, v_{4}=\min \left\{u_{-2}, \frac{B}{v_{0} u_{-1}}\right\}=\frac{B}{v_{0} u_{-1}} ; \\
& u_{5}=\min \left\{\frac{B}{u_{-2} v_{0}}, \frac{B}{u_{-2} v_{0}}\right\}=\frac{B}{u_{-2} v_{0}}, \quad v_{5}=\min \left\{\frac{v_{0} u_{-1}}{u_{0}}, v_{-1}\right\}=v_{-1} ; \\
& u_{6}=\min \left\{\frac{v_{0}^{2} u_{-1} u_{-2}}{B}, u_{0}\right\}=u_{0}, v_{6}=\min \left\{\frac{B}{v_{-1} u_{-2}}, v_{0}\right\}=v_{0} .
\end{aligned}
$$

Hence $u_{1}=u_{4}, u_{2}=u_{5}, u_{3}=u_{6}, v_{1}=v_{4}, v_{2}=v_{5}, v_{3}=v_{6}$, by Lemma 1 , the solution is eventually periodic with period three as the following

$$
\begin{aligned}
& u_{3 n-2}=u_{-2} ; \quad u_{3 n-1}=\frac{B}{u_{-2} v_{0}} ; \quad u_{3 n}=u_{0} ; \quad v_{3 n-2}=\frac{B}{v_{0} u_{-1}} ; \\
& v_{3 n-1}=v_{-1} ; \quad v_{3 n}=v_{0}, \quad n=1,2, \ldots .
\end{aligned}
$$

i.e.

$$
\begin{aligned}
& x_{3 n-2}=x_{-2} ; \quad x_{3 n-1}=\frac{B}{x_{-2} y_{0}} ; x_{3 n}=x_{0} ; \quad y_{3 n-2}=\frac{B}{y_{0} x_{-1}} ; \\
& y_{3 n-1}=y_{-1} ; \quad y_{3 n}=y_{0}, \quad n=1,2, \ldots .
\end{aligned}
$$

(ii) If $0<\frac{u_{0}}{v_{0}}<1$, and
(a) $v_{0} \geq \frac{B}{v_{-1} u_{-2}}$, then

$$
\begin{aligned}
& u_{3}=\min \left\{\frac{v_{0}^{2} u_{-1} u_{-2}}{B}, u_{0}\right\}=u_{0}, v_{3}=\min \left\{\frac{B}{v_{-1} u_{-2}}, v_{0}\right\}=\frac{B}{v_{-1} u_{-2}} ; \\
& u_{4}=\min \left\{\frac{B}{u_{0} v_{-1}}, u_{-2}\right\}=u_{-2}, v_{4}=\min \left\{\frac{v_{0} v_{-1} u_{-2}^{2}}{B}, \frac{B}{v_{0} u_{-1}}\right\}=\frac{B}{v_{0} u_{-1}} ; \\
& u_{5}=\min \left\{v_{-1}, \frac{B}{u_{-2} v_{0}}\right\}=\frac{B}{u_{-2} v_{0}}, v_{5}=\min \left\{\frac{v_{0} u_{-1}}{u_{0}}, v_{-1}\right\}=v_{-1} ; \\
& u_{6}=\min \left\{\frac{v_{0}^{2} u_{-1} u_{-2}}{B}, u_{0}\right\}=u_{0}, v_{6}=\min \left\{\frac{B}{v_{-1} u_{-2}}, \frac{B}{v_{-1} u_{-2}}\right\}=\frac{B}{v_{-1} u_{-2}} .
\end{aligned}
$$

Hence $u_{1}=u_{4}, u_{2}=u_{5}, u_{3}=u_{6}, v_{1}=v_{4}, v_{2}=v_{5}, v_{3}=v_{6}$, by Lemma 1 , the solution is eventually periodic with period three as the following

$$
\begin{aligned}
& u_{3 n-2}=u_{-2} ; \quad u_{3 n-1}=\frac{B}{u_{-2} v_{0}} ; \quad u_{3 n}=u_{0} \\
& v_{3 n-2}=\frac{B}{v_{0} u_{-1}} ; \quad v_{3 n-1}=v_{-1} ; \quad v_{3 n}=\frac{B}{v_{-1} u_{-2}}, \quad n=1,2, \cdots
\end{aligned}
$$

i.e.

$$
\begin{aligned}
& x_{3 n-2}=x_{-2} ; x_{3 n-1}=\frac{B}{x_{-2} y_{0}} ; x_{3 n}=x_{0} ; \\
& y_{3 n-2}=\frac{B}{y_{0} x_{-1}} ; y_{3 n-1}=y_{-1} ; \quad y_{3 n}=\frac{B}{y_{-1} x_{-2}}, n=1,2, \cdots .
\end{aligned}
$$

(b) $v_{0} \leq \frac{B}{v_{-1} u_{-2}}$, then

$$
\begin{aligned}
& u_{3}=\min \left\{\frac{v_{0}^{2} u_{-1} u_{-2}}{B}, u_{0}\right\}=u_{0}, v_{3}=\min \left\{\frac{B}{v_{-1} u_{-2}}, v_{0}\right\}=v_{0} \\
& u_{4}=\min \left\{\frac{B}{u_{0} v_{-1}}, u_{-2}\right\}=u_{-2}, v_{4}=\min \left\{u_{-2}, \frac{B}{v_{0} u_{-1}}\right\}=\frac{B}{v_{0} u_{-1}} \\
& u_{5}=\min \left\{\frac{B}{u_{-2} v_{0}}, \frac{B}{u_{-2} v_{0}}\right\}=\frac{B}{u_{-2} v_{0}}, \quad v_{5}=\min \left\{\frac{v_{0} u_{-1}}{u_{0}}, v_{-1}\right\}=v_{-1} \\
& u_{6}=\min \left\{\frac{v_{0}^{2} u_{-1} u_{-2}}{B}, u_{0}\right\}=u_{0}, v_{6}=\min \left\{\frac{B}{v_{-1} u_{-2}}, v_{0}\right\}=v_{0} .
\end{aligned}
$$

Hence $u_{1}=u_{4}, u_{2}=u_{5}, u_{3}=u_{6}, v_{1}=v_{4}, v_{2}=v_{5}, v_{3}=v_{6}$, by Lemma 1 , the solution is periodic with period three as the following

$$
\begin{aligned}
& u_{3 n-2}=u_{-2} ; \quad u_{3 n-1}=\frac{B}{u_{-2} v_{0}} ; \quad u_{3 n}=u_{0} \\
& v_{3 n-2}=\frac{B}{v_{0} u_{-1}} ; \quad v_{3 n-1}=v_{-1} ; \quad v_{3 n}=v_{0}, \quad n=1,2, \cdots
\end{aligned}
$$

i.e.

$$
\begin{aligned}
& x_{3 n-2}=x_{-2} ; \quad x_{3 n-1}=\frac{B}{x_{-2} y_{0}} ; \quad x_{3 n}=x_{0} ; \\
& y_{3 n-2}=\frac{B}{y_{0} x_{-1}} ; \quad y_{3 n-1}=y_{-1} ; \quad y_{3 n}=y_{0}, \quad n=1,2, \ldots
\end{aligned}
$$

Remark 4: $A<0$ and (H1) imply that every solution of (3) is negative.
Theorem 5: Suppose that $A<0$ and the initial values $x_{-2}, x_{-1}, x_{0}, y_{-2}, y_{-1}, y_{0}$ satisfy (H2), then every solution of (3) is periodic with period three.

Proof: Since $A<0$ and $x_{-2}, x_{-1}, x_{0}, y_{-2}, y_{-1}, y_{0}>0$, then we have

$$
\begin{aligned}
& x_{1}=\max \left\{\frac{A}{x_{0} y_{-1}}, x_{-2}\right\}=x_{-2}, y_{1}=\max \left\{\frac{A}{y_{0} x_{-1}}, y_{-2}\right\}=y_{-2} ; \\
& x_{2}=\max \left\{\frac{A}{x_{-2} y_{0}}, x_{-1}\right\}=x_{-1}, y_{2}=\max \left\{\frac{A}{y_{-2} x_{0}}, y_{-1}\right\}=y_{-1} ; \\
& x_{3}=\max \left\{\frac{A}{x_{-1} y_{-2}}, x_{0}\right\}=x_{0}, y_{3}=\max \left\{\frac{A}{y_{-1} x_{-2}}, y_{0}\right\}=y_{0},
\end{aligned}
$$

from this and by induction we have $x_{n}, y_{n}>0$ for $n \in \mathbb{N}$. Hence by Lemma 1,

$$
\begin{aligned}
& x_{3 n-2}=x_{-2} ; \quad x_{3 n-1}=x_{-1} ; \quad x_{3 n}=x_{0} ; \quad y_{3 n-2}=y_{-2} ; \quad y_{3 n-1}=y_{-1} ; \\
& y_{3 n}=y_{0}, n=1,2, \ldots
\end{aligned}
$$

Remark 5: $A<0$ and (H2) imply that every solution of (3) is positive.
Theorem 6: Suppose that $A<0$ and the initial values $x_{-2}, x_{-1}, x_{0}, y_{-2}, y_{-1}, y_{0}$ satisfy (H3), then every solution of (3) is eventually periodic with period three.

Proof: Since there are many categories, we will discuss only four situations, other cases can be treated similarly.
(I) Suppose that $x_{0}, y_{0}>0, x_{-2}, x_{-1}, y_{-2}, y_{-1}<0$, then

$$
x_{1}=\max \left\{\frac{A}{x_{0} y_{-1}}, x_{-2}\right\}=\frac{A}{x_{0} y_{-1}}, \quad y_{1}=\max \left\{\frac{A}{y_{0} x_{-1}}, y_{-2}\right\}=\frac{A}{y_{0} x_{-1}} ;
$$

(i) if $y_{0} x_{-1} \geq x_{0} y_{-1}$, then

$$
x_{2}=\max \left\{\frac{x_{0} y_{-1}}{y_{0}}, x_{-1}\right\}=x_{-1} ; y_{2}=\max \left\{\frac{y_{0} x_{-1}}{x_{0}}, y_{-1}\right\}=\frac{y_{0} x_{-1}}{x_{0}} .
$$

(a) $\frac{x_{0}}{y_{0}} \geq 1$, and
(a1) $y_{0} \geq \frac{x_{0}^{2} y_{-1}}{y_{0} x_{-1}}$, we have

$$
\begin{aligned}
& x_{3}=\max \left\{y_{0}, x_{0}\right\}=x_{0}, y_{3}=\max \left\{\frac{x_{0}^{2} y_{-1}}{y_{0} x_{-1}}, y_{0}\right\}=y_{0} ; \\
& x_{4}=\max \left\{\frac{A}{y_{0} x_{-1}}, \frac{A}{x_{0} y_{-1}}\right\}=\frac{A}{y_{0} x_{-1}}, y_{4}=\max \left\{\frac{A}{y_{0} x_{-1}}, \frac{A}{y_{0} x_{-1}}\right\}=\frac{A}{y_{0} x_{-1}} ; \\
& x_{5}=\max \left\{x_{-1}, x_{-1}\right\}=x_{-1}, y_{5}=\max \left\{\frac{y_{0} x_{-1}}{x_{0}}, \frac{y_{0} x_{-1}}{x_{0}}\right\}=\frac{y_{0} x_{-1}}{x_{0}} ; \\
& x_{6}=\max \left\{y_{0}, x_{0}\right\}=x_{0}, y_{6}=\max \left\{x_{0}, y_{0}\right\}=x_{0} ; \\
& x_{7}=\max \left\{\frac{A}{y_{0} x_{-1}}, \frac{A}{y_{0} x_{-1}}\right\}=\frac{A}{y_{0} x_{-1}}, y_{7}=\max \left\{\frac{A}{x_{0} x_{-1}}, \frac{A}{y_{0} x_{-1}}\right\}=\frac{A}{y_{0} x_{-1}} ; \\
& x_{8}=\max \left\{\frac{y_{0} x_{-1}}{x_{0}}, x_{-1}\right\}=\frac{y_{0} x_{-1}}{x_{0}}, y_{8}=\max \left\{\frac{y_{0} x_{-1}}{x_{0}}, \frac{y_{0} x_{-1}}{x_{0}}\right\}=\frac{y_{0} x_{-1}}{x_{0}} ; \\
& x_{9}=\max \left\{x_{0}, x_{0}\right\}=x_{0}, y_{9}=\max \left\{x_{0}, x_{0}\right\}=x_{0} ; \\
& x_{10}=\max \left\{\frac{A}{y_{0} x_{-1}}, \frac{A}{y_{0} x_{-1}}\right\}=\frac{A}{y_{0} x_{-1}}, y_{10}=\max \left\{\frac{A}{y_{0} x_{-1}}, \frac{A}{y_{0} x_{-1}}\right\}=\frac{A}{y_{0} x_{-1}} ; \\
& x_{11}=\max \left\{\frac{y_{0} x_{-1}}{x_{0}}, \frac{y_{0} x_{-1}}{x_{0}}\right\}=\frac{y_{0} x_{-1}}{x_{0}}, y_{11}=\max \left\{\frac{y_{0} x_{-1}}{x_{0}}, \frac{y_{0} x_{-1}}{x_{0}}\right\}=\frac{y_{0} x_{-1}}{x_{0}} .
\end{aligned}
$$

Hence $x_{6}=y_{6}=x_{9}=y_{9}, x_{7}=y_{7}=x_{10}=y_{10}, x_{8}=y_{8}=x_{11}=y_{11}$, by Lemma 1, the solution is eventually periodic with period three as the following

$$
x_{3 n}=y_{3 n}=x_{0} ; \quad x_{3 n+1}=y_{3 n+1}=\frac{A}{y_{0} x_{-1}} ; \quad x_{3 n+2}=y_{3 n+2}=\frac{y_{0} x_{-1}}{x_{0}}, \quad n=2,3, \ldots .
$$

(a2) $y_{0} \leq \frac{x_{0}^{2} y_{-1}}{y_{0} x_{-1}}$, the result is the same as (a1).

$$
x_{3 n}=y_{3 n}=x_{0} ; \quad x_{3 n+1}=y_{3 n+1}=\frac{A}{y_{0} x_{-1}} ; \quad x_{3 n+2}=y_{3 n+2}=\frac{y_{0} x_{-1}}{x_{0}}, \quad n=2,3, \ldots
$$

(b) $0<\frac{x_{0}}{y_{0}}<1$, we have

$$
\begin{aligned}
& x_{3}=\max \left\{y_{0}, x_{0}\right\}=y_{0}, y_{3}=\max \left\{\frac{x_{0}^{2} y_{-1}}{y_{0} x_{-1}}, y_{0}\right\}=y_{0} ; \\
& x_{4}=\max \left\{\frac{x_{0} A}{y_{0}^{2} x_{-1}}, \frac{A}{x_{0} y_{-1}}\right\}=\frac{A}{x_{0} y_{-1}}, y_{4}=\max \left\{\frac{A}{y_{0} x_{-1}}, \frac{A}{y_{0} x_{-1}}\right\}=\frac{A}{y_{0} x_{-1}} ; \\
& x_{5}=\max \left\{\frac{x_{0} y_{-1}}{y_{0}}, x_{-1}\right\}=x_{-1}, y_{5}=\max \left\{x_{-1}, \frac{y_{0} x_{-1}}{x_{0}}\right\}=x_{-1} ; \\
& x_{6}=\max \left\{y_{0}, y_{0}\right\}=y_{0}, y_{6}=\max \left\{\frac{x_{0} y_{-1}}{x_{-1}}, y_{0}\right\}=\frac{x_{0} y_{-1}}{x_{-1}} ; \\
& x_{7}=\max \left\{\frac{A}{y_{0} x_{-1}}, \frac{A}{x_{0} y_{-1}}\right\}=\frac{A}{y_{0} x_{-1}}, y_{7}=\max \left\{\frac{A}{x_{0} y_{-1}}, \frac{A}{y_{0} x_{-1}}\right\}=\frac{A}{y_{0} x_{-1}} ; \\
& x_{8}=\max \left\{\frac{y_{0} x_{-1}^{2}}{x_{0} y_{-1}}, x_{-1}\right\}=x_{-1}, y_{8}=\max \left\{x_{-1}, x_{-1}\right\}=x_{-1} ;
\end{aligned}
$$

$$
\begin{aligned}
& x_{9}=\max \left\{y_{0}, y_{0}\right\}=y_{0}, y_{9}=\max \left\{y_{0}, \frac{x_{0} y_{-1}}{x_{-1}}\right\}=\frac{x_{0} y_{-1}}{x_{-1}} ; \\
& x_{10}=\max \left\{\frac{A}{y_{0} x_{-1}}, \frac{A}{y_{0} x_{-1}}\right\}=\frac{A}{y_{0} x_{-1}}, y_{10}=\max \left\{\frac{A}{x_{0} y_{-1}}, \frac{A}{y_{0} x_{-1}}\right\}=\frac{A}{y_{0} x_{-1}} .
\end{aligned}
$$

Hence $x_{5}=x_{8}, x_{6}=x_{9}, x_{7}=x_{10}, y_{5}=y_{8}, y_{6}=y_{9}, y_{7}=y_{10}$, by Lemma 1, the solution is eventually periodic with period three as the following

$$
\begin{aligned}
& x_{3 n-1}=y_{3 n-1}=x_{-1} ; x_{3 n}=y_{0} ; \quad y_{3 n}=\frac{x_{0} y_{-1}}{x_{-1}} ; \\
& x_{3 n+1}=y_{3 n+1}=\frac{A}{y_{0} x_{-1}}, n=2,3, \ldots
\end{aligned}
$$

(ii) if $y_{0} x_{-1} \leq x_{0} y_{-1}$, then

$$
x_{2}=\max \left\{\frac{x_{0} y_{-1}}{y_{0}}, x_{-1}\right\}=\frac{x_{0} y_{-1}}{y_{0}} ; y_{2}=\max \left\{\frac{y_{0} x_{-1}}{x_{0}}, y_{-1}\right\}=y_{-1} .
$$

(a) $\frac{x_{0}}{y_{0}} \geq 1$, we have

$$
\begin{aligned}
& x_{3}=\max \left\{\frac{y_{0}^{2} x_{-1}}{x_{0} y_{-1}}, x_{0}\right\}=x_{0}, y_{3}=\max \left\{x_{0}, y_{0}\right\}=x_{0} ; \\
& x_{4}=\max \left\{\frac{A}{x_{0} y_{-1}}, \frac{A}{x_{0} y_{-1}}\right\}=\frac{A}{x_{0} y_{-1}}, y_{4}=\max \left\{\frac{y_{0} A}{x_{0}^{2} y_{-1}}, \frac{A}{y_{0} x_{-1}}\right\}=\frac{A}{y_{0} x_{-1}} ; \\
& x_{5}=\max \left\{y_{-1}, \frac{x_{0} y_{-1}}{y_{0}}\right\}=y_{-1}, y_{5}=\max \left\{\frac{y_{0} x_{-1}}{x_{0}}, y_{-1}\right\}=y_{-1} ; \\
& x_{6}=\max \left\{\frac{y_{0} x_{-1}}{y_{-1}}, x_{0}\right\}=\frac{y_{0} x_{-1}}{y_{-1}}, y_{6}=\max \left\{x_{0}, x_{0}\right\}=x_{0} ; \\
& x_{7}=\max \left\{\frac{A}{y_{0} x_{-1}}, \frac{A}{x_{0} y_{-1}}\right\}=\frac{A}{x_{0} y_{-1}}, \quad y_{7}=\max \left\{\frac{A}{x_{0} y_{-1}}, \frac{A}{y_{0} x_{-1}}\right\}=\frac{A}{x_{0} y_{-1}} ; \\
& x_{8}=\max \left\{y_{-1}, y_{-1}\right\}=y_{-1}, y_{8}=\max \left\{\frac{x_{0} y_{-1}^{2}}{y_{0} x_{-1}}, y_{-1}\right\}=y_{-1} ; \\
& x_{9}=\max \left\{x_{0}, \frac{y_{0} x_{-1}}{y_{-1}}\right\}=\frac{y_{0} x_{-1}}{y_{-1}}, y_{9}=\max \left\{x_{0}, x_{0}\right\}=x_{0} ; \\
& x_{10}=\max \left\{\frac{A}{y_{0} x_{-1}}, \frac{A}{x_{0} y_{-1}}\right\}=\frac{A}{x_{0} y_{-1}}, y_{10}=\max \left\{\frac{A}{x_{0} y_{-1}}, \frac{A}{x_{0} y_{-1}}\right\}=\frac{A}{x_{0} y_{-1}} .
\end{aligned}
$$

Hence $x_{5}=x_{8}, x_{6}=x_{9}, x_{7}=x_{10}, y_{5}=y_{8}, y_{6}=y_{9}, y_{7}=y_{10}$, by Lemma 1, the solution is eventually periodic with period three as the following

$$
\begin{aligned}
& x_{3 n-1}=y_{3 n-1}=y_{-1} ; x_{3 n}=\frac{y_{0} x_{-1}}{y_{-1}} ; y_{3 n}=x_{0} \\
& x_{3 n+1}=y_{3 n+1}=\frac{A}{x_{0} y_{-1}}, n=2,3, \ldots
\end{aligned}
$$

(b) $0<\frac{x_{0}}{y_{0}}<1$, and
(b1) $x_{0} \leq \frac{y_{0}^{2} x_{-1}}{x_{0} y_{-1}}$, we have

$$
\begin{aligned}
& x_{3}=\max \left\{\frac{y_{0}^{2} x_{-1}}{x_{0} y_{-1}}, x_{0}\right\}=\frac{y_{0}^{2} x_{-1}}{x_{0} y_{-1}}, y_{3}=\max \left\{x_{0}, y_{0}\right\}=y_{0} ; \\
& x_{4}=\max \left\{\frac{x_{0} A}{y_{0}^{2} x_{-1}}, \frac{A}{x_{0} y_{-1}}\right\}=\frac{A}{x_{0} y_{-1}}, y_{4}=\max \left\{\frac{A}{x_{0} y_{-1}}, \frac{A}{y_{0} x_{-1}}\right\}=\frac{A}{x_{0} y_{-1}} ; \\
& x_{5}=\max \left\{\frac{x_{0} y_{-1}}{y_{0}}, \frac{x_{0} y_{-1}}{y_{0}}\right\}=\frac{x_{0} y_{-1}}{y_{0}}, y_{5}=\max \left\{\frac{x_{0}^{2} y_{-1}^{2}}{y_{0}^{2} x_{-1}}, y_{-1}\right\}=y_{-1} ; \\
& x_{6}=\max \left\{y_{0}, \frac{y_{0}^{2} x_{-1}}{x_{0} y_{-1}}\right\}=y_{0}, y_{6}=\max \left\{x_{0}, y_{0}\right\}=y_{0} ; \\
& x_{7}=\max \left\{\frac{A}{y_{0} y_{-1}}, \frac{A}{x_{0} y_{-1}}\right\}=\frac{A}{x_{0} y_{-1}}, y_{7}=\max \left\{\frac{A}{x_{0} y_{-1}}, \frac{A}{x_{0} y_{-1}}\right\}=\frac{A}{x_{0} y_{-1}} ; \\
& x_{8}=\max \left\{\frac{x_{0} y_{-1}}{y_{0}}, \frac{x_{0} y_{-1}}{y_{0}}\right\}=\frac{x_{0} y_{-1}}{y_{0}}, y_{8}=\max \left\{\frac{x_{0} y_{-1}}{y_{0}}, y_{-1}\right\}=\frac{x_{0} y_{-1}}{y_{0}} ; \\
& x_{9}=\max \left\{y_{0}, y_{0}\right\}=y_{0}, y_{9}=\max \left\{y_{0}, y_{0}\right\}=y_{0} ; \\
& x_{10}=\max \left\{\frac{A}{x_{0} y_{-1}}, \frac{A}{x_{0} y_{-1}}\right\}=\frac{A}{x_{0} y_{-1}}, y_{10}=\max \left\{\frac{A}{x_{0} y_{-1}}, \frac{A}{x_{0} y_{-1}}\right\}=\frac{A}{x_{0} y_{-1}} ; \\
& x_{11}=\max \left\{\frac{x_{0} y_{-1}}{y_{0}}, \frac{x_{0} y_{-1}}{y_{0}}\right\}=\frac{x_{0} y_{-1}}{y_{0}}, y_{11}=\max \left\{\frac{x_{0} y_{-1}}{y_{0}}, \frac{x_{0} y_{-1}}{y_{0}}\right\}=\frac{x_{0} y_{-1}}{y_{0}} .
\end{aligned}
$$

Hence $x_{6}=y_{6}=x_{9}=y_{9}, x_{7}=y_{7}=x_{10}=y_{10}, x_{8}=y_{8}=x_{11}=y_{11}$, by Lemma 1, the solution is eventually periodic with period three as the following
$x_{3 n}=y_{3 n}=y_{0} ; \quad x_{3 n+1}=y_{3 n+1}=\frac{A}{x_{0} y_{-1}} ; \quad x_{3 n+2}=y_{3 n+2}=\frac{x_{0} y_{-1}}{y_{0}}, \quad n=2,3, \ldots$.
(b2) $x_{0} \geq \frac{y_{0}^{2} x_{-1}}{x_{0} y_{-1}}$, the result is the same as (b1).
$x_{3 n}=y_{3 n}=y_{0} ; x_{3 n+1}=y_{3 n+1}=\frac{A}{x_{0} y_{-1}} ; \quad x_{3 n+2}=y_{3 n+2}=\frac{x_{0} y_{-1}}{y_{0}}, n=2,3, \ldots$.
(II) Suppose that $x_{0}>0, x_{-2}, x_{-1}, y_{-2}, y_{-1}, y_{0}<0$, and
(i) if $\frac{A}{y_{0} x_{-1}} \geq y_{-2}$, then

$$
\begin{aligned}
& x_{1}=\max \left\{\frac{A}{x_{0} y_{-1}}, x_{-2}\right\}=\frac{A}{x_{0} y_{-1}}, y_{1}=\max \left\{\frac{A}{y_{0} x_{-1}}, y_{-2}\right\}=\frac{A}{y_{0} x_{-1}} ; \\
& x_{2}=\max \left\{\frac{x_{0} y_{-1}}{y_{0}}, x_{-1}\right\}=\frac{x_{0} y_{-1}}{y_{0}} ; y_{2}=\max \left\{\frac{y_{0} x_{-1}}{x_{0}}, y_{-1}\right\}=\frac{y_{0} x_{-1}}{x_{0}} .
\end{aligned}
$$

(a) $\frac{y_{0}^{2} x_{-1}}{x_{0} y_{-1}} \geq x_{0}$, we have

$$
x_{3}=\max \left\{\frac{y_{0}^{2} x_{-1}}{x_{0} y_{-1}}, x_{0}\right\}=\frac{y_{0}^{2} x_{-1}}{x_{0} y_{-1}}, y_{3}=\max \left\{\frac{x_{0}^{2} y_{-1}}{y_{0} x_{-1}}, y_{0}\right\}=\frac{x_{0}^{2} y_{-1}}{y_{0} x_{-1}} ;
$$

$$
\begin{aligned}
& x_{4}=\max \left\{\frac{x_{0}^{2} y_{-1} A}{y_{0}^{3} x_{-1}^{2}}, \frac{A}{x_{0} y_{-1}}\right\}=\frac{A}{x_{0} y_{-1}}, y_{4}=\max \left\{\frac{y_{0}^{2} x_{-1} A}{x_{0}^{3} y_{-1}^{2}}, \frac{A}{y_{0} x_{-1}}\right\}=\frac{y_{0}^{2} x_{-1} A}{x_{0}^{3} y_{-1}^{2}} ; \\
& x_{5}=\max \left\{\frac{y_{0} x_{-1}}{x_{0}}, \frac{x_{0} y_{-1}}{y_{0}}\right\}=\frac{y_{0} x_{-1}}{x_{0}}, y_{5}=\max \left\{\frac{x_{0}^{4} y_{-1}^{3}}{y_{0}^{4} x_{-1}^{2}}, \frac{y_{0} x_{-1}}{x_{0}}\right\}=\frac{y_{0} x_{-1}}{x_{0}} ; \\
& x_{6}=\max \left\{\frac{x_{0}^{4} y_{-1}^{2}}{y_{0}^{3} x_{-1}^{2}}, \frac{y_{0}^{2} x_{-1}}{x_{0} y_{-1}}\right\}=\frac{y_{0}^{2} x_{-1}}{x_{0} y_{-1}}, y_{6}=\max \left\{\frac{x_{0}^{2} y_{-1}}{y_{0} x_{-1}}, \frac{x_{0}^{2} y_{-1}}{y_{0} x_{-1}}\right\}=\frac{x_{0}^{2} y_{-1}}{y_{0} x_{-1}} ; \\
& x_{7}=\max \left\{\frac{x_{0}^{2} y_{-1} A}{y_{0}^{3} x_{-1}^{2}}, \frac{A}{x_{0} y_{-1}}\right\}=\frac{A}{x_{0} y_{-1}}, y_{7}=\max \left\{\frac{A}{x_{0} y_{-1}}, \frac{y_{0}^{2} x_{-1} A}{x_{0}^{3} y_{-1}^{2}}\right\}=\frac{y_{0}^{2} x_{-1} A}{x_{0}^{3} y_{-1}^{2}} ; \\
& x_{8}=\max \left\{\frac{y_{0} x_{-1}}{x_{0}}, \frac{y_{0} x_{-1}}{x_{0}}\right\}=\frac{y_{0} x_{-1}}{x_{0}}, y_{8}=\max \left\{\frac{x_{0}^{4} y_{-1}^{3}}{y_{0}^{4} x_{-1}^{2}}, \frac{y_{0} x_{-1}}{x_{0}}\right\}=\frac{y_{0} x_{-1}}{x_{0}} ;
\end{aligned}
$$

Hence $x_{3}=x_{6}, x_{4}=x_{7}, x_{5}=x_{8}, y_{3}=y_{6}, y_{4}=y_{7}, y_{5}=y_{8}$, by Lemma 1 , the solution is eventually periodic with period three as the following

$$
\begin{aligned}
& x_{3 n}=\frac{y_{0}^{2} x_{-1}}{x_{0} y_{-1}} ; \quad x_{3 n+1}=\frac{A}{x_{0} y_{-1}} ; \quad x_{3 n+2}=\frac{y_{0} x_{-1}}{x_{0}} \\
& y_{3 n}=\frac{x_{0}^{2} y_{-1}}{y_{0} x_{-1}}, \quad y_{3 n+1}=\frac{y_{0}^{2} x_{-1} A}{x_{0}^{3} y_{-1}^{2}} ; \quad y_{3 n+2}=\frac{y_{0} x_{-1}}{x_{0}}, \quad n=1,2, \ldots
\end{aligned}
$$

(b) $\frac{y_{0}^{2} x_{-1}}{x_{0} y_{-1}} \leq x_{0}$, we have

$$
\begin{aligned}
& x_{3}=\max \left\{\frac{y_{0}^{2} x_{-1}}{x_{0} y_{-1}}, x_{0}\right\}=x_{0}, y_{3}=\max \left\{\frac{x_{0}^{2} y_{-1}}{y_{0} x_{-1}}, y_{0}\right\}=y_{0} ; \\
& x_{4}=\max \left\{\frac{A}{y_{0} x_{-1}}, \frac{A}{x_{0} y_{-1}}\right\}=\frac{A}{x_{0} y_{-1}}, y_{4}=\max \left\{\frac{A}{x_{0} y_{-1}}, \frac{A}{y_{0} x_{-1}}\right\}=\frac{A}{x_{0} y_{-1}} ; \\
& x_{5}=\max \left\{\frac{x_{0} y_{-1}}{y_{0}}, \frac{x_{0} y_{-1}}{y_{0}}\right\}=\frac{x_{0} y_{-1}}{y_{0}}, y_{5}=\max \left\{y_{-1}, \frac{y_{0} x_{-1}}{x_{0}}\right\}=\frac{y_{0} x_{-1}}{x_{0}} ; \\
& x_{6}=\max \left\{y_{0}, x_{0}\right\}=x_{0}, y_{6}=\max \left\{\frac{x_{0}^{2} y_{-1}}{y_{0} x_{-1}}, y_{0}\right\}=y_{0} ; \\
& x_{7}=\max \left\{\frac{A}{y_{0} x_{-1}}, \frac{A}{x_{0} y_{-1}}\right\}=\frac{A}{x_{0} y_{-1}}, \quad y_{7}=\max \left\{\frac{A}{x_{0} y_{-1}}, \frac{A}{x_{0} y_{-1}}\right\}=\frac{A}{x_{0} y_{-1}} ; \\
& x_{8}=\max \left\{\frac{x_{0} y_{-1}}{y_{0}}, \frac{x_{0} y_{-1}}{y_{0}}\right\}=\frac{x_{0} y_{-1}}{y_{0}}, y_{8}=\max \left\{y_{-1}, \frac{y_{0} x_{-1}}{\left.x_{0}\right\}}=\frac{y_{0} x_{-1}}{x_{0}} ;\right.
\end{aligned}
$$

Hence $x_{3}=x_{6}, x_{4}=x_{7}, x_{5}=x_{8}, y_{3}=y_{6}, y_{4}=y_{7}, y_{5}=y_{8}$, by Lemma 1 , the solution is eventually periodic with period three as the following

$$
\begin{aligned}
& x_{3 n}=x_{0} ; x_{3 n+1}=\frac{A}{x_{0} y_{-1}} ; x_{3 n+2}=\frac{x_{0} y_{-1}}{y_{0}}, y_{3 n}=y_{0}, y_{3 n+1}=\frac{A}{x_{0} y_{-1}} \\
& y_{3 n+2}=\frac{y_{0} x_{-1}}{x_{0}}, n=1,2, \ldots
\end{aligned}
$$

(ii) if $\frac{A}{y_{0} x_{-1}} \leq y_{-2}$, then

$$
x_{1}=\max \left\{\frac{A}{x_{0} y_{-1}}, x_{-2}\right\}=\frac{A}{x_{0} y_{-1}}, y_{1}=\max \left\{\frac{A}{y_{0} x_{-1}}, y_{-2}\right\}=y_{-2}
$$

$$
x_{2}=\max \left\{\frac{x_{0} y_{-1}}{y_{0}}, x_{-1}\right\}=\frac{x_{0} y_{-1}}{y_{0}} ; y_{2}=\max \left\{\frac{A}{y_{-2} x_{0}}, y_{-1}\right\}=\frac{A}{y_{-2} x_{0}} .
$$

(a) $\frac{y_{0} A}{x_{0} y_{-1} y_{-2}} \geq x_{0}$, we have

$$
\begin{aligned}
& x_{3}=\max \left\{\frac{y_{0} A}{x_{0} y_{-1} y_{-2}}, x_{0}\right\}=\frac{y_{0} A}{x_{0} y_{-1} y_{-2}}, y_{3}=\max \left\{\frac{x_{0}^{2} y_{-1} y_{-2}}{A}, y_{0}\right\}=\frac{x_{0}^{2} y_{-1} y_{-2}}{A} ; \\
& x_{4}=\max \left\{\frac{x_{0}^{2} y_{-1} y_{-2}^{2}}{y_{0} A}, \frac{A}{x_{0} y_{-1}}\right\}=\frac{A}{x_{0} y_{-1}}, y_{4}=\max \left\{\frac{y_{0} A^{2}}{x_{0}^{3} y_{-1}^{2} y_{-2}}, y_{-2}\right\}=\frac{y_{0} A^{2}}{x_{0}^{3} y_{-1}^{2} y_{-2}} ; \\
& x_{5}=\max \left\{\frac{A}{x_{0} y_{-2}}, \frac{x_{0} y_{-1}}{y_{0}}\right\}=\frac{A}{x_{0} y_{-2}}, y_{5}=\max \left\{\frac{x_{0}^{4} y_{-1}^{3} y_{-2}^{2}}{y_{0}^{2} A^{2}}, \frac{A}{y_{-2} x_{0}}\right\}=\frac{A}{y_{-2} x_{0}} ; \\
& x_{6}=\max \left\{\frac{x_{0}^{4} y_{-1}^{2} y_{-2}^{2}}{y_{0} A^{2}}, \frac{y_{0} A}{x_{0} y_{-1} y_{-2}}\right\}=\frac{y_{0} A}{x_{0} y_{-1} y_{-2}}, \\
& y_{6}=\max \left\{\frac{x_{0}^{2} y_{-1} y_{-2}}{A}, \frac{x_{0}^{2} y_{-1} y_{-2}}{A}\right\}=\frac{x_{0}^{2} y_{-1} y_{-2}}{A} ; \\
& x_{7}=\max \left\{\frac{x_{0}^{2} y_{-1} y_{-2}^{2}}{y_{0} A}, \frac{A}{x_{0} y_{-1}}\right\}=\frac{A}{x_{0} y_{-1}}, y_{7}=\max \left\{\frac{A}{x_{0} y_{-1}}, \frac{y_{0} A^{2}}{\left.x_{0}^{3} y_{-1}^{2} y_{-2}\right\}=\frac{y_{0} A^{2}}{x_{0}^{3} y_{-1}^{2} y_{-2}} ;}\right. \\
& x_{8}=\max \left\{\frac{A}{x_{0} y_{-2}}, \frac{A}{x_{0} y_{-2}}\right\}=\frac{A}{x_{0} y_{-2}}, y_{8}=\max \left\{\frac{x_{0}^{4} y_{-1}^{3} y_{-2}^{2}}{y_{0}^{2} A^{2}}, \frac{A}{y_{-2} x_{0}}\right\}=\frac{A}{y_{-2} x_{0}} ;
\end{aligned}
$$

Hence $x_{3}=x_{6}, x_{4}=x_{7}, x_{5}=x_{8}, y_{3}=y_{6}, y_{4}=y_{7}, y_{5}=y_{8}$, by Lemma 1 , the solution is eventually periodic with period three as the following

$$
\begin{aligned}
& x_{3 n}=\frac{y_{0} A}{x_{0} y_{-1} y_{-2}} ; x_{3 n+1}=\frac{A}{x_{0} y_{-1}} ; x_{3 n+2}=\frac{A}{x_{0} y_{-2}}, \\
& y_{3 n}=\frac{x_{0}^{2} y_{-1} y_{-2}}{A}, y_{3 n+1}=\frac{y_{0} A^{2}}{x_{0}^{3} y_{-1}^{2} y_{-2}} ; y_{3 n+2}=\frac{A}{y_{-2} x_{0}}, n=1,2, \ldots
\end{aligned}
$$

(b) $\frac{y_{0} A}{x_{0} y_{-1} y_{-2}} \leq x_{0}$, we have

$$
\begin{aligned}
& x_{3}=\max \left\{\frac{y_{0} A}{x_{0} y_{-1} y_{-2}}, x_{0}\right\}=x_{0}, y_{3}=\max \left\{\frac{x_{0}^{2} y_{-1} y_{-2}}{A}, y_{0}\right\}=y_{0} ; \\
& x_{4}=\max \left\{y_{-2}, \frac{A}{x_{0} y_{-1}}\right\}=\frac{A}{x_{0} y_{-1}}, y_{4}=\max \left\{\frac{A}{x_{0} y_{-1}}, y_{-2}\right\}=\frac{A}{x_{0} y_{-1}} ; \\
& x_{5}=\max \left\{\frac{x_{0} y_{-1}}{y_{0}}, \frac{x_{0} y_{-1}}{y_{0}}\right\}=\frac{x_{0} y_{-1}}{y_{0}}, y_{5}=\max \left\{y_{-1}, \frac{A}{y_{-2} x_{0}}\right\}=\frac{A}{y_{-2} x_{0}} ; \\
& x_{6}=\max \left\{y_{0}, x_{0}\right\}=x_{0}, y_{6}=\max \left\{\frac{x_{0}^{2} y_{-1} y_{-2}}{A}, y_{0}\right\}=y_{0} ; \\
& x_{7}=\max \left\{y_{-2}, \frac{A}{x_{0} y_{-1}}\right\}=\frac{A}{x_{0} y_{-1}}, y_{7}=\max \left\{\frac{A}{x_{0} y_{-1}}, \frac{A}{x_{0} y_{-1}}\right\}=\frac{A}{x_{0} y_{-1}} ; \\
& x_{8}=\max \left\{\frac{x_{0} y_{-1}}{y_{0}}, \frac{x_{0} y_{-1}}{y_{0}}\right\}=\frac{x_{0} y_{-1}}{y_{0}}, y_{8}=\max \left\{y_{-1}, \frac{A}{y_{-2} x_{0}}\right\}=\frac{A}{y_{-2} x_{0}} ;
\end{aligned}
$$

Hence $x_{3}=x_{6}, x_{4}=x_{7}, x_{5}=x_{8}, y_{3}=y_{6}, y_{4}=y_{7}, y_{5}=y_{8}$, by Lemma 1 , the solution is eventually periodic with period three as the following

$$
\begin{gathered}
x_{3 n}=x_{0} ; \quad x_{3 n+1}=\frac{A}{x_{0} y_{-1}} ; \quad x_{3 n+2}=\frac{x_{0} y_{-1}}{y_{0}}, y_{3 n}=y_{0} \\
y_{3 n+1}=\frac{A}{x_{0} y_{-1}} ; y_{3 n+2}=\frac{A}{y_{-2} x_{0}}, n=1,2, \ldots
\end{gathered}
$$

(III) Suppose that $x_{-2}, x_{-1}, x_{0}, y_{0}>0, y_{-2}, y_{-1}<0$, and
(i) if $\frac{A}{x_{0} y_{-1}} \geq x_{-2}, \frac{A}{y_{0} x_{-1}} \geq y_{-2}$, then

$$
\begin{aligned}
& x_{1}=\max \left\{\frac{A}{x_{0} y_{-1}}, x_{-2}\right\}=\frac{A}{x_{0} y_{-1}}, y_{1}=\max \left\{\frac{A}{y_{0} x_{-1}}, y_{-2}\right\}=\frac{A}{y_{0} x_{-1}} ; \\
& x_{2}=\max \left\{\frac{x_{0} y_{-1}}{y_{0}}, x_{-1}\right\}=x_{-1} ; y_{2}=\max \left\{x_{-1}, y_{-1}\right\}=x_{-1} .
\end{aligned}
$$

(a) $x_{0} \geq y_{0}$, we have

$$
\begin{aligned}
& x_{3}=\max \left\{y_{0}, x_{0}\right\}=x_{0}, y_{3}=\max \left\{\frac{x_{0} y_{-1}}{x_{-1}}, y_{0}\right\}=y_{0} ; \\
& x_{4}=\max \left\{\frac{A}{x_{0} y_{-1}}, \frac{A}{x_{0} y_{-1}}\right\}=\frac{A}{x_{0} y_{-1}}, y_{4}=\max \left\{\frac{A}{y_{0} x_{-1}}, \frac{A}{y_{0} x_{-1}}\right\}=\frac{A}{y_{0} x_{-1}} ; \\
& x_{5}=\max \left\{\frac{x_{0} y_{-1}}{y_{0}}, x_{-1}\right\}=x_{-1}, y_{5}=\max \left\{\frac{y_{0} x_{-1}}{x_{0}}, x_{-1}\right\}=x_{-1} ; \\
& x_{6}=\max \left\{y_{0}, x_{0}\right\}=x_{0}, y_{6}=\max \left\{\frac{x_{0} y_{-1}}{x_{-1}}, y_{0}\right\}=y_{0} ;
\end{aligned}
$$

Hence $x_{1}=x_{4}, x_{2}=x_{5}, x_{3}=x_{6}, y_{1}=y_{4}, y_{2}=y_{5}, y_{3}=y_{6}$, by Lemma 1 , the solution is periodic with period three as the following

$$
\begin{aligned}
x_{3 n-2}= & \frac{A}{x_{0} y_{-1}} ; x_{3 n-1}=x_{-1} ; x_{3 n}=x_{0}, \\
& y_{3 n-2}=\frac{A}{y_{0} x_{-1}}, y_{3 n-1}=x_{-1} ; y_{3 n}=y_{0}, n=1,2, \ldots
\end{aligned}
$$

(b) $x_{0} \leq y_{0}$, we have

$$
\begin{aligned}
& x_{3}=\max \left\{y_{0}, x_{0}\right\}=y_{0}, y_{3}=\max \left\{\frac{x_{0} y_{-1}}{x_{-1}}, y_{0}\right\}=y_{0} ; \\
& x_{4}=\max \left\{\frac{A}{y_{0} x_{-1}}, \frac{A}{x_{0} y_{-1}}\right\}=\frac{A}{x_{0} y_{-1}}, y_{4}=\max \left\{\frac{A}{y_{0} x_{-1}}, \frac{A}{y_{0} x_{-1}}\right\}=\frac{A}{y_{0} x_{-1}} ; \\
& x_{5}=\max \left\{\frac{x_{0} y_{-1}}{y_{0}}, x_{-1}\right\}=x_{-1}, y_{5}=\max \left\{x_{-1}, x_{-1}\right\}=x_{-1} ; \\
& x_{6}=\max \left\{y_{0}, y_{0}\right\}=y_{0}, y_{6}=\max \left\{\frac{x_{0} y_{-1}}{x_{-1}}, y_{0}\right\}=y_{0} ;
\end{aligned}
$$

Hence $x_{1}=x_{4}, x_{2}=x_{5}, x_{3}=x_{6}, y_{1}=y_{4}, y_{2}=y_{5}, y_{3}=y_{6}$, by Lemma 1 , the solution is periodic with period three as the following

$$
\begin{aligned}
& x_{3 n-2}=\frac{A}{x_{0} y_{-1}} ; x_{3 n-1}=x_{-1} ; \quad x_{3 n}=y_{0}, \quad y_{3 n-2}=\frac{A}{y_{0} x_{-1}}, \\
& y_{3 n-1}=x_{-1} ; \quad y_{3 n}=y_{0}, \quad n=1,2, \ldots
\end{aligned}
$$

(ii) if $\frac{A}{x_{0} y_{-1}} \geq x_{-2}, \frac{A}{y_{0} x_{-1}} \leq y_{-2}$, then

$$
\begin{aligned}
& x_{1}=\max \left\{\frac{A}{x_{0} y_{-1}}, x_{-2}\right\}=\frac{A}{x_{0} y_{-1}}, y_{1}=\max \left\{\frac{A}{y_{0} x_{-1}}, y_{-2}\right\}=y_{-2} ; \\
& x_{2}=\max \left\{\frac{x_{0} y_{-1}}{y_{0}}, x_{-1}\right\}=x_{-1} ; y_{2}=\max \left\{\frac{A}{y_{-2} x_{0}}, y_{-1}\right\}=\frac{A}{y_{-2} x_{0}} .
\end{aligned}
$$

(a) $\frac{A}{x_{-1} y_{-2}} \geq x_{0}$, we have

$$
\begin{aligned}
& x_{3}=\max \left\{\frac{A}{x_{-1} y_{-2}}, x_{0}\right\}=\frac{A}{x_{-1} y_{-2}}, y_{3}=\max \left\{\frac{x_{0}^{2} y_{-1} y_{-2}}{A}, y_{0}\right\}=y_{0} ; \\
& x_{4}=\max \left\{\frac{x_{-1} y_{-2}^{2} x_{0}}{A}, \frac{A}{x_{0} y_{-1}}\right\}=\frac{A}{x_{0} y_{-1}}, y_{4}=\max \left\{\frac{A}{y_{0} x_{-1}}, y_{-2}\right\}=y_{-2} \\
& x_{5}=\max \left\{\frac{x_{0} y_{-1}}{y_{0}}, x_{-1}\right\}=x_{-1}, y_{5}=\max \left\{x_{-1}, \frac{A}{y_{-2} x_{0}}\right\}=\frac{A}{y_{-2} x_{0}} ; \\
& x_{6}=\max \left\{\frac{A}{x_{-1} y_{-2}}, \frac{A}{x_{-1} y_{-2}}\right\}=\frac{A}{x_{-1} y_{-2}}, y_{6}=\max \left\{\frac{x_{0}^{2} y_{-1} y_{-2}}{A}, y_{0}\right\}=y_{0}
\end{aligned}
$$

Hence $x_{1}=x_{4}, x_{2}=x_{5}, x_{3}=x_{6}, y_{1}=y_{4}, y_{2}=y_{5}, y_{3}=y_{6}$, by Lemma 1 , the solution is periodic with period three as the following

$$
\begin{aligned}
& x_{3 n-2}=\frac{A}{x_{0} y_{-1}} ; \quad x_{3 n-1}=x_{-1} ; \quad x_{3 n}=\frac{A}{x_{-1} y_{-2}}, \\
& y_{3 n-2}=y_{-2}, \quad y_{3 n-1}=\frac{A}{y_{-2} x_{0}} ; y_{3 n}=y_{0}, \quad n=1,2, \ldots
\end{aligned}
$$

(b) $\frac{A}{x_{-1} y_{-2}} \leq x_{0}$, we have

$$
\begin{aligned}
& x_{3}=\max \left\{\frac{A}{x_{-1} y_{-2}}, x_{0}\right\}=x_{0}, y_{3}=\max \left\{\frac{x_{0}^{2} y_{-1} y_{-2}}{A}, y_{0}\right\}=y_{0} ; \\
& x_{4}=\max \left\{y_{-2}, \frac{A}{x_{0} y_{-1}}\right\}=\frac{A}{x_{0} y_{-1}}, y_{4}=\max \left\{\frac{A}{y_{0} x_{-1}}, y_{-2}\right\}=y_{-2} ; \\
& x_{5}=\max \left\{\frac{x_{0} y_{-1}}{y_{0}}, x_{-1}\right\}=x_{-1}, y_{5}=\max \left\{\frac{A}{y_{-2} x_{0}}, \frac{A}{y_{-2} x_{0}}\right\}=\frac{A}{y_{-2} x_{0}} ; \\
& x_{6}=\max \left\{\frac{A}{x_{-1} y_{-2}}, x_{0}\right\}=x_{0}, y_{6}=\max \left\{\frac{x_{0}^{2} y_{-1} y_{-2}}{A}, y_{0}\right\}=y_{0} ;
\end{aligned}
$$

Hence $x_{1}=x_{4}, x_{2}=x_{5}, x_{3}=x_{6}, y_{1}=y_{4}, y_{2}=y_{5}, y_{3}=y_{6}$, by Lemma 1 , the solution is periodic with period three as the following

$$
\begin{aligned}
& x_{3 n-2}=\frac{A}{x_{0} y_{-1}} ; x_{3 n-1}=x_{-1} ; x_{3 n}=x_{0}, y_{3 n-2}=y_{-2} \\
& y_{3 n-1}=\frac{A}{y_{-2} x_{0}} ; \quad y_{3 n}=y_{0}, \quad n=1,2, \ldots
\end{aligned}
$$

(iii) if $\frac{A}{x_{0} y_{-1}} \leq x_{-2}, \frac{A}{y_{0} x_{-1}} \geq y_{-2}$, then

$$
\begin{aligned}
& x_{1}=\max \left\{\frac{A}{x_{0} y_{-1}}, x_{-2}\right\}=x_{-2}, \quad y_{1}=\max \left\{\frac{A}{y_{0} x_{-1}}, y_{-2}\right\}=\frac{A}{y_{0} x_{-1}} \\
& x_{2}=\max \left\{\frac{A}{x_{-2} y_{0}}, x_{-1}\right\}=x_{-1} ; y_{2}=\max \left\{\frac{y_{0} x_{-1}}{x_{0}}, y_{-1}\right\}=\frac{y_{0} x_{-1}}{x_{0}} .
\end{aligned}
$$

(a) $x_{0} \geq y_{0}$, we have

$$
\begin{aligned}
& x_{3}=\max \left\{y_{0}, x_{0}\right\}=x_{0}, y_{3}=\max \left\{\frac{x_{0} A}{y_{0} x_{-1} x_{-2}}, y_{0}\right\}=y_{0} ; \\
& x_{4}=\max \left\{\frac{A}{y_{0} x_{-1}}, x_{-2}\right\}=x_{-2}, y_{4}=\max \left\{\frac{A}{y_{0} x_{-1}}, \frac{A}{y_{0} x_{-1}}\right\}=\frac{A}{y_{0} x_{-1}} ; \\
& x_{5}=\max \left\{\frac{A}{x_{-2} y_{0}}, x_{-1}\right\}=x_{-1}, y_{5}=\max \left\{\frac{y_{0} x_{-1}}{x_{0}}, \frac{y_{0} x_{-1}}{x_{0}}\right\}=\frac{y_{0} x_{-1}}{x_{0}} ; \\
& x_{6}=\max \left\{y_{0}, x_{0}\right\}=x_{0}, y_{6}=\max \left\{\frac{x_{0} A}{y_{0} x_{-1} x_{-2}}, y_{0}\right\}=y_{0} ;
\end{aligned}
$$

Hence $x_{1}=x_{4}, x_{2}=x_{5}, x_{3}=x_{6}, y_{1}=y_{4}, y_{2}=y_{5}, y_{3}=y_{6}$, by Lemma 1 , the solution is periodic with period three as the following

$$
\begin{aligned}
& x_{3 n-2}=x_{-2} ; \quad x_{3 n-1}=x_{-1} ; \quad x_{3 n}=x_{0}, \quad y_{3 n-2}=\frac{A}{y_{0} x_{-1}} \\
& y_{3 n-1}=\frac{y_{0} x_{-1}}{x_{0}} ; \quad y_{3 n}=y_{0}, \quad n=1,2, \ldots
\end{aligned}
$$

(b) $x_{0} \leq y_{0}$, we have

$$
\begin{aligned}
& x_{3}=\max \left\{y_{0}, x_{0}\right\}=y_{0}, \quad y_{3}=\max \left\{\frac{x_{0} A}{y_{0} x_{-1} x_{-2}}, y_{0}\right\}=y_{0} \\
& x_{4}=\max \left\{\frac{x_{0} A}{y_{0}^{2} x_{-1}}, x_{-2}\right\}=x_{-2}, \quad y_{4}=\max \left\{\frac{A}{y_{0} x_{-1}}, \frac{A}{y_{0} x_{-1}}\right\}=\frac{A}{y_{0} x_{-1}} \\
& x_{5}=\max \left\{\frac{A}{x_{-2} y_{0}}, x_{-1}\right\}=x_{-1}, \quad y_{5}=\max \left\{x_{-1}, \frac{y_{0} x_{-1}}{x_{0}}\right\}=\frac{y_{0} x_{-1}}{x_{0}} \\
& x_{6}=\max \left\{y_{0}, y_{0}\right\}=y_{0}, \quad y_{6}=\max \left\{\frac{x_{0} A}{y_{0} x_{-1} x_{-2}}, y_{0}\right\}=y_{0}
\end{aligned}
$$

Hence $x_{1}=x_{4}, x_{2}=x_{5}, x_{3}=x_{6}, y_{1}=y_{4}, y_{2}=y_{5}, y_{3}=y_{6}$, by Lemma 1 , the solution is periodic with period three as the following

$$
\begin{aligned}
& x_{3 n-2}=x_{-2} ; x_{3 n-1}=x_{-1} ; \quad x_{3 n}=y_{0}, \quad y_{3 n-2}=\frac{A}{y_{0} x_{-1}}, \\
& y_{3 n-1}=\frac{y_{0} x_{-1}}{x_{0}} ; y_{3 n}=y_{0}, n=1,2, \ldots
\end{aligned}
$$

(iv) if $\frac{A}{x_{0} y_{-1}} \leq x_{-2}, \frac{A}{y_{0} x_{-1}} \leq y_{-2}$, then

$$
\begin{aligned}
& x_{1}=\max \left\{\frac{A}{x_{0} y_{-1}}, x_{-2}\right\}=x_{-2}, y_{1}=\max \left\{\frac{A}{y_{0} x_{-1}}, y_{-2}\right\}=y_{-2} \\
& x_{2}=\max \left\{\frac{A}{x_{-2} y_{0}}, x_{-1}\right\}=x_{-1} ; y_{2}=\max \left\{\frac{A}{y_{-2} x_{0}}, y_{-1}\right\}=\frac{A}{y_{-2} x_{0}} .
\end{aligned}
$$

(a) $\frac{A}{x_{-1} y_{-2}} \geq x_{0}$, we have

$$
\begin{aligned}
& x_{3}=\max \left\{\frac{A}{x_{-1} y_{-2}}, x_{0}\right\}=\frac{A}{x_{-1} y_{-2}}, y_{3}=\max \left\{\frac{x_{0} y_{-2}}{x_{-2}}, y_{0}\right\}=y_{0} ; \\
& x_{4}=\max \left\{\frac{x_{-1} y_{-2}^{2} x_{0}}{A}, x_{-2}\right\}=x_{-2}, y_{4}=\max \left\{\frac{A}{y_{0} x_{-1}}, y_{-2}\right\}=y_{-2} \\
& x_{5}=\max \left\{\frac{A}{x_{-2} y_{0}}, x_{-1}\right\}=x_{-1}, y_{5}=\max \left\{x_{-1}, \frac{A}{y_{-2} x_{0}}\right\}=\frac{A}{y_{-2} x_{0}} \\
& x_{6}=\max \left\{\frac{A}{x_{-1} y_{-2}}, \frac{A}{x_{-1} y_{-2}}\right\}=\frac{A}{x_{-1} y_{-2}}, y_{6}=\max \left\{\frac{x_{0} y_{-2}}{x_{-2}}, y_{0}\right\}=y_{0} ;
\end{aligned}
$$

Hence $x_{1}=x_{4}, x_{2}=x_{5}, x_{3}=x_{6}, y_{1}=y_{4}, y_{2}=y_{5}, y_{3}=y_{6}$, by Lemma 1, the solution is periodic with period three as the following

$$
\begin{aligned}
& x_{3 n-2}=x_{-2} ; \quad x_{3 n-1}=x_{-1} ; \quad x_{3 n}=\frac{A}{x_{-1} y_{-2}}, \quad y_{3 n-2}=y_{-2} \\
& y_{3 n-1}=\frac{A}{y_{-2} x_{0}} ; \quad y_{3 n}=y_{0}, \quad n=1,2, \ldots
\end{aligned}
$$

(b) $\frac{A}{x_{-1} y_{-2}} \leq x_{0}$, we have

$$
\begin{aligned}
& x_{3}=\max \left\{\frac{A}{x_{-1} y_{-2}}, x_{0}\right\}=x_{0}, y_{3}=\max \left\{\frac{x_{0} y_{-2}}{x_{-2}}, y_{0}\right\}=y_{0} ; \\
& x_{4}=\max \left\{y_{-2}, x_{-2}\right\}=x_{-2}, y_{4}=\max \left\{\frac{A}{y_{0} x_{-1}}, y_{-2}\right\}=y_{-2} ; \\
& x_{5}=\max \left\{\frac{A}{x_{-2} y_{0}}, x_{-1}\right\}=x_{-1}, y_{5}=\max \left\{\frac{A}{y_{-2} x_{0}}, \frac{A}{y_{-2} x_{0}}\right\}=\frac{A}{y_{-2} x_{0}} ; \\
& x_{6}=\max \left\{\frac{A}{x_{-1} y_{-2}}, x_{0}\right\}=x_{0}, y_{6}=\max \left\{\frac{x_{0} y_{-2}}{x_{-2}}, y_{0}\right\}=y_{0} ;
\end{aligned}
$$

Hence $x_{1}=x_{4}, x_{2}=x_{5}, x_{3}=x_{6}, y_{1}=y_{4}, y_{2}=y_{5}, y_{3}=y_{6}$, by Lemma 1, the solution is periodic with period three as the following

$$
\begin{aligned}
& x_{3 n-2}=x_{-2} ; x_{3 n-1}=x_{-1} ; \quad x_{3 n}=x_{0}, \quad y_{3 n-2}=y_{-2}, \\
& y_{3 n-1}=\frac{A}{y_{-2} x_{0}} ; y_{3 n}=y_{0}, \quad n=1,2, \ldots .
\end{aligned}
$$

Since there are too many cases according to the signs of initial values and they have the similar proof by induction, we will not list all of them by the limit length of the paper.

Remark 6: $A<0$ and (H3) imply that (3) have either eventually positive or eventually sign-changing solutions.

5 Examples

Example 1: Let $A=1, x_{-2}=-1 / 2, x_{-1}=-4, x_{0}=-1 / 4, y_{-2}=-1, \quad y_{-1}=$ $-12, y_{0}=-1 / 2$. Then, by Theorem 1, (3) has eventually three-periodic solutions described as Figures 1 and 2.

Figure 1 Plot of $x(n)$ (see online version for colours)

Example 2: Let $A=2 / 3, x_{-2}=4, x_{-1}=6, x_{0}=2, y_{-2}=5 / 2, y_{-1}=5, y_{0}=5 / 6$. Then, by Theorem 2, (3) has eventually three-periodic solutions described as Figures 3 and 4.

Example 3: Let $A=1 / 4, x_{-2}=4, x_{-1}=-7 / 2, x_{0}=-2 / 3, \quad y_{-2}=-4, \quad y_{-1}=$ $-1 / 2, y_{0}=5 / 3$. Then, by Theorem 3, (3) has eventually three-periodic solutions described as Figures 5 and 6.

Example 3': Let $A=3, x_{-2}=-3 / 5, x_{-1}=-8, x_{0}=-4 / 3, \quad y_{-2}=5, \quad y_{-1}=$ $6 / 7, y_{0}=3$. Then, by Theorem 3, (3) has eventually three-periodic solutions described as Figures 7 and 8.

Figure 2 Plot of $y(n)$ (see online version for colours)

Figure 3 Plot of $x(n)$ (see online version for colours)

Figure 4 Plot of $y(n)$ (see online version for colours)

Figure 5 Plot of $x(n)$ (see online version for colours)

Figure 6 Plot of $y(n)$ (see online version for colours)

Figure 7 Plot of $x(n)$ (see online version for colours)

Example 3": Let $A=3, x_{-2}=2, x_{-1}=-5, x_{0}=-6, y_{-2}=1, y_{-1}=-4, y_{0}=-8$. Then, by Theorem 3, (3) has eventually three-periodic solutions described as Figures 9 and 10 .

Figure 8 Plot of $y(n)$ (see online version for colours)

Figure 9 Plot of $x(n)$ (see online version for colours)

Figure 10 Plot of $y(n)$ (see online version for colours)

Example 4: Let $A=-1 / 3, x_{-2}=-3, x_{-1}=-5 / 2, x_{0}=-7 / 2, y_{-2}=-2, y_{-1}=$ $-6, y_{0}=-3 / 2$. Then, by Theorem 4, (3) has eventually three-periodic solutions described as Figures 11 and 12.

Figure 11 Plot of $x(n)$ (see online version for colours)

Figure 12 Plot of $y(n)$ (see online version for colours)

Example 5: Let $A=-1 / 2, x_{-2}=2, x_{-1}=3 / 2, x_{0}=2 / 3, y_{-2}=1, y_{-1}=7 / 3, y_{0}=$ 4. Then, by Theorem 5, (3) has eventually three-periodic solutions described as Figures 13 and 14 .

Figure 13 Plot of $x(n)$ (see online version for colours)

Figure 14 Plot of $y(n)$ (see online version for colours)

Example 6: Let $A=-5 / 3, x_{-2}=-2, x_{-1}=-4, x_{0}=-3 / 2, y_{-2}=-7 / 5, y_{-1}=$ $2 / 5, y_{0}=-1$. Then, by Theorem 6, (3) has eventually three-periodic solutions described as Figures 15 and 16.

Figure 15 Plot of $x(n)$ (see online version for colours)

Example 6': Let $A=-5, x_{-2}=8 / 3, \quad x_{-1}=-5 / 7, \quad x_{0}=2, \quad y_{-2}=-3, \quad y_{-1}=$ $-4, y_{0}=2$. Then, by Theorem 6, (3) has eventually three-periodic solutions described as Figures 17 and 18.

Example 6": Let $A=-3, x_{-2}=-11, \quad x_{-1}=-2, \quad x_{0}=-4, \quad y_{-2}=3, \quad y_{-1}=$ $-1 / 4, y_{0}=-5$. Then, by Theorem 6, (3) has eventually three-periodic solutions described as Figures 19 and 20.

Figure 16 Plot of $y(n)$ (see online version for colours)

Figure 17 Plot of $x(n)$ (see online version for colours)

Figure 18 Plot of $y(n)$ (see online version for colours)

Figure 19 Plot of $x(n)$ (see online version for colours)

Figure 20 Plot of $y(n)$ (see online version for colours)

Acknowledgements

This paper was funded by the National Natural Science Foundation of China(11861059), Natural Science Foundation of Gansu Province(145RJZA232,145RJYA259) and Promotion Funds for Young Teachers in Northwest Normal University (NWNULKQN-18-16).

References

Din, Q., Qureshi, M.N. and Qadeer Khan, A. (2012) ‘Dynamics of a fourth-order system of rational difference equations', Adv. Differ. Eqs., Vol. 1, pp.1-15.
Elsayed, E.M. and Eleissawy, S.M. (2012) 'Periodicity and stability of solutions of rational difference systems', J. Appl. Comput. Math., DOI:10.1080/23311835.2016.1269597(2012).
Elsayed, E.M., El-Dessoky, M.M. and Alghamdi, M.A. (2013) 'On the solutions of some systems of diffeerence equations', Arch. Sci., Vol. 5, pp.369-378(2013).
Grove, E.A., Ladas, G. and Presdescu, M. (2002) 'On the periodic character of the difference equation $x_{n}=\frac{p+x_{n-(2 k+1)}}{1+x_{n-2 l}}$, Math. Sci. Res. J., Vol. 6, pp.221-233.
Ibrahim, T.F. and Touafek, N. (2014) 'Max-type system of difference equations with positive twoprriodic sequences', Math. Meth. Appl. Sci., Vol. 37, pp.2451-2553.

Ibrahim, T.F. and Touafek, N. (2014) 'Max-type system of difference equations with positive twoperiodic sequences’, Math. Meth. Appl. Sci., Vol. 37, pp.2541-2553.
Ibrahim, T.F. (2016) 'Closed form expression of tractable semi-max-type two-dimensional system of difference equation with variable coefficients', J. Egyp. Math. Soc., Vol. 24, pp.538-544.
Qin, B., Sun, T.X. and Xi, H.J. (2012) 'Dynamics of the max-type difference equation $x_{n+1}=$ $\max \left\{\frac{A}{x_{n}}, x_{n-k}\right\} ’$, Comput. Anal. Appl., Vol. 14, pp.856-861.
Touafek, N. and Haddad, N. (2015) 'On a mixed max-type rational system of difference equations', Electron. J. Math. Anal. Appl., Vol. 3, pp.164-169.
Williams, J.L. (2016) 'On a class of nonlinear max-type difference equations', Cong. Math, DOI: 10.1080/23311835.2016.1269597.

Xiao, Q. and Shi, Q. (2013) 'Eventually periodic solutions of a max-type equation', Math. Com. Model, Vol. 57, pp.992-996.
Yazlik, Y., Tollu, D.T. and Taskara, N. (2015) 'On the solutions of a max-type difference equation system', Math. Meth. Appl. Sci., Vol. 38, pp.4388-4410.

