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Abstract: This article proposes an analysis procedure of structural mechanics’ 
problem as integral formulation. The methodology is novel which can be 
suitably applied for finding the solution of engineering problems with required 
accuracy either it is linear or nonlinear range (plastic range) of the material 
behaviour. This methodology, which was proposed as a stress-based analysis 
procedure, exploits the unfolded part of the structural analysis problems which 
were not so easy to solve such as geometric and material nonlinearity together 
with simple integration technique (Gaur and Srivastav, 2021). In fracture 
mechanics, it has already unfolded the misery of physically exploiting the 
plastic behaviour of structures before the start of the crack for elastic materials 
(Gaur et al., 2021). The formulation is an integral formulation rather than a 
differential formulation in which whole stress-strain behaviour is utilised in the 
analysis procedure by using a neural network as a regression tool. In this 
article, the one-dimensional problem of uniaxial bar, beam bending problem 
and plane strain axis-symmetric problem of a cylinder subjected to internal 
pressure is solved. The results are compared with the existing differential 
formulation or linear theory. 
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1 Introduction 

Almost all problems in physics and engineering are derived/dealt based on the differential 
formulation in which each problem, based on the physics, has its differential formulation. 
In recent years, considerable development is seen in finding the solution of differential 
equations by machine learning (Lee and Kang, 1990; Meade and Fernadez, 1994a, 
1994b). Applications of machine learning, that are of interest in computational mechanics 
is based on the solution of differential equations by collocation method and was first 
developed by Lagaris et al. (1998). Recently, its applications are further extended to solve 
many other problems in structural mechanics (Raissi et al., 2019; Samaniego et al., 2020; 
Goswami et al., 2020a, 2020b; Guo et al., 2019; Anitescu et al., 2019; Zhuang et al., 
2021). 

Machine learning, the name itself, demonstrates that the computer learns from the 
available data. The artificial neural networks train the model, for the given data and, are 
known to make very accurate predictions. It has shown wide applications in different 
fields such as voice and face recognition, business and commercial applications, etc. 
(Krizhevsky et al., 2012; Lake et al., 2015; Alipanahi et al., 2015). This methodology 
utilises regression, the ability of the neural network to predict accurate numerical value 
based on the available data. The importance of the methodology is observed when it 
solves linear as well nonlinear analysis of the structures with relative ease. 

In this article, we propose the solution of physical problems for which the physical 
response of the system is nonlinear such as problems of structural mechanics. Solution 
based on these problems covers a wide range of engineering applications in mechanical, 
civil and infrastructure engineering. In these nonlinear problems, nonlinearity in the 
physical response comes either from material nonlinearity or geometric nonlinearity 
(Rabczuk et al., 2008; Areias et al., 2018, 2016; Ghorashi et al., 2015; Rabczuk et al., 
2005; Rabczuk and Belytschko, 2007; Talebi et al., 2014). For these kinds of problems, 
we propose integral formulation rather than differential formulation. For the physical 
nonlinear problems, the method has been proved as the most efficient approach of 
analysis (Gaur and Srivastav, 2021). 
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So far, in formulating the structural problems, all problems are modelled as 
displacement-based (Nguyen-Thanh et al., 2017; Nguyen-Thanh et al., 2011a, 2011b, 
2015; Nguyen Huy et al., 2019; Vu-Bac et al., 2018). In these problems, the material 
property is inputted as elastic modulus, which is just the ratio of stress over strain. This 
formulation favours the displacement-based or linear analysis procedure. Hence this 
structural analysis procedure is basically differential formulation. This type of 
formulation leads difficulty in finding the solution of problems when material behaviour 
is nonlinear or enters in the plastic range. To date, this remained unfolded part of the 
research in which no direct solution is applicable. The difficulty can be observed when 
complicated, lengthy and time-consuming methods are available for finding the solution 
of fracture mechanics problems of elastic materials (Kumar, 2014). 

For solving the structural mechanic’s problems, we utilise the capability/property of 
the neural network of properly mapping the nonlinear data. This is done with the help of 
more than one layer (hidden layers) and activation functions. The work of neural 
networks is essentially to optimise weights and biases such that to give accurate output. 
For different applications different neural networks are being used and they are named 
differently in Sharkawy (2020). For our application in continuum mechanics, we wish to 
predict accurate output in our numerical method, so, we have used a fully connected 
neural network as a regression tool to make accurate numerical predictions. The 
architecture and functioning of the neural networks for our application can be understood 
with the help of Figures 6 and 7. 

2 From differential formulation towards integral formulation 

The current state of the art of structural mechanics is basically differential formulation in 
which for solving any typical problem, force balance equations, i.e., equations of 
equilibrium are written which are then solved analytically or by numerical methods such 
as finite element method, mesh-free methods and isogeometric analysis (IGA), etc. 
(Hughes, 2000; Huerta et al., 2018; Nguyen et al., 2008; Nguyen-Thanh et al., 2017). It is 
evident that this formulation has limited capability of solving the problems in nonlinear 
range of material behaviour. 

In this article, we are proposing an integral formulation of analysis for finding 
solutions of the problems of structural mechanics. With the integral formulation, strain 
energy stored in the loaded body is directly found. In the proposed approach, first of all, 
the true stress-strain behaviour of the material is mapped to some third parameter which 
is called as reference coordinate system (r). In the present study, it is taken to be varied 
between –1 to +1. This variation of stress and strain with reference coordinate system can 
be viewed in Figures 11 and 12 for mild steel. The objective of this mapping is to express 
stress and strain in terms of this third parameter (r), by which strain energy can be 
evaluated by simple integration. Once strain energy of the system is found, other desired 
results such as strain, deformation, etc. can be found suitably. The proposed analysis 
procedure is novel and is perhaps inspired by the derivation of Piolla Kirchhoffs stress 
from Green-Lagrange strain (energetic conjugates) of finite element analysis (Steigmann, 
2002). 
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3 Methodology – the basic formulation 

As explained previously, the proposed approach is the integral formulation. By integral 
formulation, we mean to evaluate strain energy of the deformed/stressed body when 
subjected to loading by the following integration. 

= VStrain energy dVσ ε  (1) 

Here, σ and ε are the stress and strain tensors generated in a three-dimensional structural 
body in Cartesian coordinates (Timoshenko and Goodier, 1934). Figure 1 show a typical 
structure loaded with F at the boundary ҐF. It has fixed boundaries at Ґo. Under the 
application of external loads, the total potential (∏) of the structural body can be 
expressed as follows. 

∏ = −U W  (2) 

Here, U is strain energy stored in the deformed/stressed body which can be evaluated by 
equation (1) and W is the work done by the external loads which can be evaluated by the 
expressions below. 

Γ
=  F

W dF u  (3) 

Here, F and u are force and displacement vectors in the three-dimensional coordinate 
system. 

Figure 1 A typical three-dimensional body subjected to loading (see online version for colours) 

  

It will be interesting to observe how the integration of equation (1) is performed for 
finding the solution of any typical structure. For the structure loaded with such a 
magnitude that it deforms the material in plastic range, such as the bar shown in  
Figure 13 with the loading condition. In these cases, stress and strain components vary 
across the volume of the body and hence to evaluate the multiplication, numerical 
integration is performed in basic Python. 
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Considering the special case of the uniaxial rod of sectional area A and length L, 
loaded in the x-direction with the load of Fx as shown in Figure 2. As there will be only 
axial stress σx and strain εx for the given loading condition, total potential of the bar from 
equation (2) can be expressed as, 

∏ = − x x x x
V A
σ ε dV F du  (4) 

Figure 2 A cylindrical bar subjected to axial loading (see online version for colours) 

 

Here ux refers to the deformation of the bar in x-direction. Total potential of the bar can 
further be simplified as follows. 

∏ = − x x x x
L A

A σ ε dx F du  (5) 

Applying stationarity condition δ∏ = 0 (Bathe, 2014), 

( )0 ∂= −
∂

x
x x x

uA σ ε F
x

 (6) 

Since ,∂ −
∂

x
x

u ε
x

 further simplifying, 

=x xAσ F  

or, 

= x
x

Fσ
A

 (7) 

This is the force balance equation which is used in the methodology to find reference 
coordinate system (r), once the stress distribution in the structural body is defined with 
proper/assumed structural idealisation and modelling assumptions. 

3.1 Modelling and structural idealisation 

The proposed methodology is regarded as the stress-based analysis procedure as it is 
required to know the stress distribution within the body of the structure so that strain 
energy can be calculated (Gaur and Srivastav, 2021). Stress distribution within the loaded 
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body is determined from the proper structural idealisation and hence the accuracy of the 
solution depends upon the proper modelling assumptions. 

Our assumptions for modelling and structural idealisations are the same as those 
found in the strength of material theory. For example, Euler-Bernoulli’s beam bending 
theory, torsion theory, etc. Hence, the result obtained from the methodology can suitably 
be applied and used for engineering applications. 

Once the stress distribution within the loaded structural element is determined, strain 
energy stored within the body can simply be evaluated by the equations as explained in 
the methodology part. 

3.2 Definition of stress and strain 

As the proposed integral approach is a complete approach, i.e., the results are valid for 
linear as well as nonlinear range of the material behaviour. We are using true stress and 
true strain in order to accommodate the behaviour of large deformation. Therefore, it 
should be noticed that the results are valid before necking starts in the tension specimen 
of elastic material used for measuring stress-strain behaviour. 

4 Analysis procedure by machine learning as a regression tool 

The neural network is used as the nonlinear regression tool in the analysis procedure. For 
any structural problem, geometric parameters such as area of cross-section, length do not 
produce nonlinearity in the solution. Nonlinearity essentially comes from the material 
behaviour. Therefore, in the neural network, the material property is the only parameter 
that is trained in the neural network. 

The basic idea behind the analysis procedure is to find reference coordinate system 
(r), or to say, locating the point on the stress-strain diagram (Figure 3). Force balance 
equation such as equation (7) is used to find reference coordinate system (r) from the 
known stresses. Once the reference coordinate is known, strain can also be located by 
stress-strain graph. Once stress and strain are known, strain energy stored in the structural 
body can simply be evaluated by integration. 

Figure 3 A typical stress-strain behaviour of material (see online version for colours) 

 

The overall analysis procedure of the methodology is summarised with the help of the 
flowchart shown in Figure 4. 
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Figure 4 Flowchart of overall analysis procedure employed 

 

4.1 Construction of neural network 

Figure 6 shows a fully connected feed-forward neural network that is used in the analysis. 
Three hidden layers are found to be performing well in comparison to the two, or more 
than three hidden layers. It is found that changing the number of neurons in the hidden 
layer did not give any influence on the output. In this study, 64 neurons are used for each 
hidden layer. Nonlinear mapping is achieved by the ReLU activation function which is 
used for all hidden layers. For the last hidden layer, which yields the output layer, a linear 
activation function is used (Figures 6 and 7). 

First of all, for each neuron weights are initialised randomly as per standard normal 
distribution and all biases are set to zero. Python code used for generating a layer can be 
glanced underneath. 

Figure 5 Weights and bias initialisation in a dense layer (see online version for colours) 

 

Data flow following the code can be glanced with the help of the neural network drawn in 
Figure 6. In this neural network output from any particular neuron, i in the lth layer can be 
expressed as follows. 

( )1 1
1 ,1

− −
−=

= ∗ + lnl l l l
li i j j ij

σ a w σ b  (8) 
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Here, 1−l
jσ  is the input from each neuron of the previous layer (l – 1) to any particular 

neuron of the current layer (l). l
ib  is the bias used for neuron i in layer l and al–1 is the 

activation function used for the layer l – 1. 

Figure 6 Architecture and functioning of neural network (see online version for colours) 

 

Figure 7 Schematics of (a) ReLU activation function and (b) linear activation functions  
(see online version for colours) 

  
(a)     (b) 
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Because of randomly chosen weights and biases, the output of the forward pass yields a 
big error. This error has to be minimised by properly tuning weights and biases, which is 
done in the backward pass. Backward pass is performed for training the neural network, 
or to say, adjusting/tuning the weights and biases to produce the accurate output. This is 
done based on the error function (loss or cost function) which is taken as root mean 
square error (MSE). This root mean squared error is evaluated by the following 
mathematical formula. 

( ) ( ) 2

1

1ˆ ˆ( ) , , , ,
=
 = = − n

ii
Loss function MSE y w b Y y w b

n
   (9) 

Here, Yi are the target values which neural network is supposed to predict and 
( )ˆ, ,y w b  are the current predicted values by the neural network. MSE of equation (9) 

is the function of inputs ˆ( )y  weights (w) and biases (b). Python code employed for 
evaluating loss is given in the snippets. 

Figure 8 Loss calculation in the forward pass (see online version for colours) 

 

Weights and biases are updated in the backward pass. For this purpose, gradient ∇  of 
this loss function is evaluated. 

( )

( )( )

( )( )

( )( )

ˆ, ,

ˆ ˆ, , , ,

ˆ, ,

∂ 
 ∂ 

∂ ∇ =  ∂
 ∂ 
 ∂ 

y w b
σ

y w b y w b
w

y w b
b



 



 (10) 

Derivatives of this loss function with respect to weights and biases are used to update 
weights and biases, and derivatives with respect to inputs are used to chain with the 
previous layer (Kinsley and Kukieła, 2020). Adaptive momentum (Adam) optimiser is 
used to train the model (Kingma and Ba, 2014). 

To check the accuracy in the regression model, a limiting value is defined which is 
the standard deviation of the target values. This standard deviation is divided by 250 (our 
choice, this value defines the desired precision in obtaining the accuracy). Following 
python code is implemented to check the accuracy of the output from the neural network. 

It is found that, with this code, even 80% accuracy gave satisfactory results that were 
required in the analysis. Full Python code used in the study can be accessed from this 
Github page [online] https://github.com/hgaur0007/Solution-of-Structural-Mechanics-
problems-by-ML-. 
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Figure 9 Accuracy adopted in neural network (see online version for colours) 

 

4.2 Implementation of neural network in the analysis 

In the analysis procedure, basically, two neural networks are used. One, which maps true 
stress to reference coordinate system, and is expressed by equation (11) and another one, 
which maps reference coordinate system to true strain, and is expressed by equation (12). 
The flowchart of the analysis procedure using the neural network as regression tool can 
be viewed in Figure 10. Neural networks are trained with 100% data available from 
stress-strain behaviour and mapping. Variation of the reference coordinate system (test 
data which is different from the training data) with true stress can be observed in  
Figure 10 and the variation of true strain (test data) with reference coordinate system can 
be observed in Figure 11. 

Figure 10 Flowchart of analysis procedure with neural network as regression tool (see online 
version for colours) 

  

As explained previously, for solving the problem, the methodology requires proper stress 
distribution across the structural body with proper structural idealisation and modelling 
assumptions. Once stress distribution in the structural body is defined, corresponding 
reference coordinate (r) is determined from the output of the neural network, which is 
expressed by the following equation. 

( ), ,= r r rr σ w b  (11) 

Here, r  referees the neural network used for regression analysis from stress to 
reference coordinate (r), σ refers to the true stress (input value), wr and br refers to 
weights and biases of the neural network obtained after running the optimisation by 
Adam optimiser. For training this neural network, weights and biases were updated by 
around 10,000,000 times (iterations). Even 80% accuracy gave satisfactory results. The 
accuracy of the output values from this neural network could be observed in Figure 11. 
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Once reference coordinate (r) is obtained, true strain can be obtained with the 
regression analysis of neural network ( ),ε  which maps reference coordinate to strains 
expressed by the following equation. 

( ), ,= ε ε εε r w b  (12) 

Here wε and bε are weights and biases of this neural network after training and, r is the 
input value of the neural network. This mapping is linear, which could be observed with 
the help of Figure 12. Around 1,000 iterations sufficiently/satisfactorily tuned the weights 
and biases, which produced accurate results. 

Figure 11 Variation of true stress with reference coordinate system (r) of mid steel (see online 
version for colours) 

 

Figure 12 Variation of true strain with reference coordinate system (r) of mid steel (see online 
version for colours) 
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5 Numerical problems 

In this section, uniaxial bar loaded with point and uniform load acting axially, beam 
bending problem and plane strain axis-symmetric problem of a long cylinder subjected to 
internal pressure are solved. 

5.1 Uniaxial bar loaded with varying load 

Figure 13 shows the uniaxial bar loaded at the free end by the traction force F acting at 
the free end and a uniform load f(x) acting along the length of the bar downward in  
X-direction. Considering the magnitude of load combination is such that the material of 
the bar experiences plastic deformation. One of the possible stress distributions in this 
condition is shown in Figure 13(b). Stress at the free and fixed end can be evaluated by 
the following expressions. 

=free end
Fσ
A

 (13) 

( )+=fixed end
F f x Lσ

A
 (14) 

Figure 13 (a) Uniaxial bar with loading condition (b) Stress distribution across the length of the 
bar is shown (see online version for colours) 

  
(a)   (b) 

Once the stress distribution across the body is defined, strain energy stored in the body 
can be evaluated by the volume integral of equation (1). As per the loading, the only 
stress which is acting in the bar is σx and at any particular section stress remains constant 
throughout the area, this strain energy expression is modified as follows. 

=  x x
L

Strain energy A σ ε dx  (15) 
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As the stress varies across the length, this volume integral can further be modified as 
follows. 

2

1
= 

r
x x

r
Strain energy AL σ ε dr  (16) 

Here, the multiplication σxεx is integrated because it is not constant and varies across the 
length with the lower and upper bound of r1 and r2 which can be obtained from the neural 
network ,r  expressed with equation (11) with known stress values (σx) across the 
length of the bar by expressions (13) and (14). True strain εx can also be obtained by the 
neural network ε  expressed with equation (12) by known values of reference 
coordinate. Numerical integration is performed with the Python code. Once strain energy 
stored in the bar is evaluated, its deformation can be evaluated by the Castigliano’s 
Theorem expressed as follows. 

∂=
∂i

i

UD
F

 (17) 

Analytical solution (deformation at the free end) by differential formulation (linear 
theory) of this problem is given by the following equation (Allen, 2013). 

2( )
2

 = − + 
 

f x x Fu Lx x
EA EA

 (18) 

Considering, the area of cross-section of the bar as 20 cm2 and length as 50 cm. In this 
analysis, uniform load f(x) is kept constant and taken as 0.4 MN/m. Point load at free end 
varies in magnitude. Variation of strain energy as well as deformation of the bar at free 
end, versus the point load F can be glanced in Figures 14 and 15. 

Figure 14 Variation of strain energy versus the point load F at free end (see online version  
for colours) 

 

Note: Static of energy dissipated in plasticity is shown. 
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Figure 15 Variation of deflection at free end versus the point load F at free end (see online 
version for colours) 
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Results of this uniaxial bar are compared with the linear theory in which Young’s 
modulus is taken as 184,128.9683 MPa which is evaluated from the stress-strain curve of 
the material. It is important to notice the results in linear range, which are very accurately 
matching with linear theory. In nonlinear range, strain energy, as well as deformation of 
the bar increases rapidly, this is because of the plastic deformation of the bar as per the 
material behaviour. Strain energy dissipated because of plasticity is also shown in  
Figure 14. 

5.2 Two dimensional problem of beam bending 

Figure 16 shows a two-dimensional problem of a simply supported beam of length L, 
width b and depth h, loaded with a concentrated load F at the mid span. 

Figure 16 Simply supported beam with concentrated load at mid span (see online version  
for colours) 

 

The current state of art of beam bending theory assumes linear variation of the stresses 
across the depth of the beam. Interestingly, this methodology is capable of analysing 
structures in the nonlinear range of the material behaviour as well. If the beam is loaded 
such that it generates stresses corresponding to the plastic/nonlinear range of the material 
behaviour, it is reasonable to understand that the stress variation across the depth of the 
beam at any particular section would resemble the variation shown in Figure 17. 
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Figure 17 Variation of stress across depth of the beam at a particular section (see online version 
for colours) 

 

Stress variation across the length (for the simply supported beam of Figure 16) is 
depicted with the help of Figure 18. Its variation, simply depends upon the variation of 
bending moment across the length. 

Figure 18 Variation of stress along the depth (a) and length (b) at different sections of the beam 
(see online version for colours) 

 

Since the simply supported beam shown in Figure 16 is loaded with the concentrated load 

at the mid-span, its bending moment at any particular section within the range 0
2

≤ ≤ Lx  

can be calculated as, 

=x BM R x  (19) 

where RB is the reaction at support. Let Mx be the bending moment ant any particular 
section. Considering stress σx in a fibre at any particular depth y from the neutral axis, 
bending moment at that section can be calculated as, 

= x x
A

M σ y dA  (20) 

or, 
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= x x
A

M σ y dz dy  

or, 
/2 /22 2

/2/2
2 4

+ +

−−

 = = =  
h h

x x x x
hh

y bhM bσ ydy bσ σ  

Rearranging, 

2
4= x

x
Mσ

bh
 (21) 

It is to be noted that 
2

4
bh  resembles with the moment of inertia of the section 

3

12
 
 
 

bh  

which is found in the derivation of beam bending equations with linear theory of 

elasticity. Here, 
2

4
bh  avoids any linearity assumption in derivation. 

Now, bending energy stored in the beam can be calculated as (Timoshenko and 
Goodier, 1934), 

= VBending energy σεdV  (22) 

As the stress distribution across the with b remains constant at any section, bending 
energy can be evaluated as, 

= A
Bending energy b σεdx dy  

Now, consider stress variation across the length of the beam as depicted in Figure 18. 

2
= y

LBending energy b σεdy  

Now, consider stress variation across the depth of the beam as portrayed with the help of 
Figure 17. Stress varies from zero at the neutral axis (r = –1) and it becomes maximum at 
the outer layer. Hence, for this variation of stress, the integral modifies as follows. 

1
2

2 2 −
= ∗ ∗ 

r
x x

L hBending energy b σ ε dr  (23) 

Here, the integral is multiplied by 
2
h  as it is calculating strain energy starting from 

neutral axis to the extreme fibre, either in compression or tension zone. The expression is 
multiplied again by two because the same energy will be stored, either it is compression 
or tension zone. 

Considering length of the beam as L = 2 m, b = 300 mm and h = 400 mm. If the beam 
is loaded with a concentrated load of magnitude 2 MN, maximum stress generated (σx) at 
the extreme fibre of the middle span (x = 1 m) can be evaluated by equations (19) and 
(21). For the known stress, corresponding value of reference coordinate system (r) could 
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be obtained by neural network ,r  expressed by equation (11). Once the value of 
reference coordinate value (r) is known, corresponding value of strain (εx) could be 
evaluated by the neural network ε  expressed by equation (12). Finally, strain energy 
stored in the beam bending is evaluated by expression (23) for different magnitudes of 
load. Deformation in the beam at the mid-span is evaluated by Castigliano’s theorem 
expressed with equation (17). The results are compared with the linear theory and can be 
glanced Figures 19 and 20. Deformation at mid span for this beam with linear theory is 
evaluated by following expression of equation (24) 

3

48
= FLy

EI
 (24) 

Figure 19 Bending energy stored in the beam for different magnitudes of loads (see online 
version for colours) 
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Figure 20 Deflection at the mid span of the beam for different magnitudes of loads (see online 
version for colours) 
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It is worthy to note that this approach of structural analysis has given very accurate 
results, which resembles material behaviour (stress-strain curve). In comparison to linear 
theory, which is valid until the linear range of the material behaviour, this method is 
giving accurate results not only in linear range, but in nonlinear range as well. 
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5.3 Plane strain axis-symmetric problem 

Consider a long cylinder of inner and outer radius as a and b respectively, which is 
subjected to the internal pressure of pi. Figure 21 shows a cross-section of the cylinder in 
XY-plane in which length of the cylinder is along Z-axis. This is quite a practical 
problem simulating an infinitely long pipeline subjected to internal pressure from the 
liquid. This is a plane strain axis-symmetric problem in which deformation is in radial 
direction only and is constant along the circumferential direction. From the force 
equilibrium equations, variation of radial (σρ) and hoop ( )σ  stresses along the thickness 
of the cylinder are derived as follows (Timoshenko, 1940). 

2 2

2 2 2
1 = − −  

i
ρ

a p bσ
b a ρ

 (25) 

2 2

2 2 2
1 = + −  

ia p bσ
b a ρ  (26) 

Figure 21 Section of the cylinder across Z-plane (see online version for colours) 

 

From equations (25) and (26), as there are two different stresses acting, strain energy 
stored in the cylindrical body can be evaluated as follows. 

= +ρU U U  (27) 

Here Uρ is the strain energy stored because of radial stress and U  is the strain energy 
stored because of hoop stress. Strain energy stored per unit length of the cylinder because 
of radial stress only Uρ, can be evaluated as, 

= ρ ρ ρ
A

U σ ε dA  (28) 

As stresses vary from the inner surface to outer surface, this integration can be modified 
as, 
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2

1
=  

r
ρ ρ ρ

A r
U dA σ ε dρ  (29) 

Here, r1 and r2 are the values of the reference coordinate system at the inner and outer 
layer of the cylinder which are obtained from the output of the neural network of 
equation (11) by input values of stress from equation (25) at inner and outer layer 
respectively. Further simplifying the expression of equation (29). 

( ) 2

1

2 2= − 
r

ρ ρ ρ
r

U π b a σ ε dr  (30) 

Similarly, strain energy stored because of hoop stress, per unit length of the cylinder, can 
be evaluated by the following expression. 

( ) 2

1

2 2= − 
r

r
U π b a σ ε dr    (31) 

Here, r1 and r2 can be obtained from the output of the neural network of equation (11) by 
input values of stress from equation (26) at inner and outer layer respectively. Numerical 
integration is performed in basic Python code. Once total strain energy of the system by 
equation (27) is evaluated, displacement in radial direction is evaluated by Castigliano’s 
Theorem of equation (17). The exact radial deformation Dρ of this problem at the inner 
layer by the linear theory is given by the expression (Timoshenko, 1940). 

2 2

2 2
( ) =

+ = + − 
i

ρ a
ap a bD v
E b a

 (32) 

Here E is Young’s modulus of linear theory which is evaluated from the stress-strain 
curve in the linear range, v is Poisson’s ratio which is taken as 0.3 for mild steel. Taking 
inner radius a as 10 cm and outer radius as 20 cm, total strain energy of the cylinder, as 
well as displacement in the radial direction at inner layer is evaluated by Castigliano’s 
theorem. Radial deformation at the inner layer of the cylinder is compared with linear 
theory. These results can be glanced in Figures 22 and 23 with varying internal pressure. 

Figure 22 Variation of strain energy versus internal pressure inside the long cylinder (see online 
version for colours) 

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 100 200 300 400

St
ra

in
 E

ne
rg

y,
 M

J

Internal pressure, MPa

Total Strain Energy
(MJ)

 



   

 

   

   
 

   

   

 

   

    Solution of structural mechanic’s problems by machine learning 41    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 23 Variation of radial deformation as internal pressure increases inside the cylinder  
(see online version for colours) 
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From the results of Figure 23, it is important to notice the accuracy of the results which 
are matching with linear theory, in the linear range of the material behaviour. In the 
plastic range, deformation explodes as per the material behaviour. 

6 Conclusions 

The methodology solves the uniaxial bar, either linear or nonlinear range of the material 
behaviour, with just one simple integration. It is important to notice the accuracy of the 
results which are matching with the linear theory in Figures 14 and 15. The beam bending 
problem of the simply-supported beam is also solved by evaluating simple integral. 
Results in the linear range are in a good match with the linear theory (Figures 19 and 20). 
From the results of the cylinder which is subjected to internal pressure only, radial 
deformation at the inner layer is found to be in accurate match with the results of linear 
theory (Figure 23). 

It should be noticed that finding the solution of these problems in the plastic range is 
not an easy task. It requires step by step method in which the secant modulus changes 
with each step, which is a long and cost consuming method. The analysis procedure also 
evaluates strain energy dissipated in plasticity by evaluating one simple integration 
(Figure 14). From the results of the uniaxial bar and plane strain axis-symmetric problem, 
it is important to notice the accuracy of the results, which matched with the linear theory. 
This proves the validity and accuracy of the method. 
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