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Abstract: An innovative edge detection method based on model polynomial 
fitting and calculation of first order derivative of two-dimensional images is 
here proposed. The two partial first order derivatives of the model function are 
calculated. The square root of the sum of the squares of the partial first order 
derivatives is called FOD and is calculated at the intra-pixel point (x, y). The 
image is thus re-sampled using the surface of the FOD. The methodology is 
tested with theoretical images and with Magnetic Resonance Images. Results 
are compared within a set of five model polynomial functions designed to have 
three gradients: two along the main spatial coordinates; and one along the 
covariate direction. FOD images provide clear and sharp edges and similar 
edge detection behaviour. The implications of this methodology are in image 
processing and more specifically in edge detection. The advantage of the 
method is to be computationally fast. 

Keywords: model polynomial function; first order derivative; FOD; gradient; 
edge detection. 
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1 Introduction 

1.1 Significance of edge detection 

Computer vision encompasses a wide array of disciplines and since its inception has been 
object of study by many researchers. One area of application of computer vision is edge 
detection. This application embeds a great significance in image processing. The basic 
idea in edge detection is the extraction of boundaries existing between objects that are 
imaged and represented in digital form. Normally, an edge is a high frequency 
component of an image and that is because the gradient of the signal in between two 
objects is a spike signal with abrupt passage from one value to another value. Low 
frequency components identifiable as noise are also likely to be in the image to process. 
That is why many algorithms for edge detection start processing the image with a 
threshold operation that achieves to select the image points which are candidate edges 
and to separate them from image points that are not edges. The detection of an object or a 
surface in a digital image is pivotal in image segmentation (Dolz et al., 2015). Indeed, 
many image processing algorithms in magnetic resonance image processing depart from 
segmented image which represent the object surface to be used for further processing. 
This paper acknowledges the significance of edge detection in magnetic resonance 
imaging (MRI) and proceeds in the next sections to explore the state of the art and to 
present a novel technique which is based on model polynomial fitting (Ciulla et al., 2015) 
and calculation of first order derivative (FOD) for edge detection (Yahaya, 2017). The 
application of edge detection in this paper is through FOD of the model polynomial 
function fitted to image data, and is geared to demonstrating feasibility when using 
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theoretical images and also magnetic resonance images. A characteristic problem of edge 
detection in MRI is noise. Since its inception, edge detection has been developed to avoid 
that noise would become a confounding factor when choosing image points as edges 
candidates. The most immediate solution to this problem is the use of gradients to process 
the image objects and surfaces. A gradient is sensitive to a change in pixel intensity and 
as such is a well-behaved instrument to detect both noise and edge points. There is need 
of a criterion in order to distinguish between gradients of noise signal and gradients of 
edge signal. The literature reports that threshold is a valuable option to perform such 
distinction. It will become manifest through this paper that the technique here proposed 
does not make use of preprocessing operations as threshold because of the mathematical 
nature of the model function chosen to be fitted to images. The nature of the model 
functions here presented is such to devise three gradients: one along the spatial 
coordinate ‘x’, one along the spatial coordinate ‘y’ and one along the covariate direction 
‘x y’. By doing so, to survive the gradients, noise needs to persist in ‘x’ and ‘y’ directions 
simultaneously. If otherwise, noise is detectable along the three directions simultaneously 
is then featured as if it was signal. Figures 2, 3 and 4 illustrate this concept and open up 
to the presentation of the edge detection technique here proposed. 

1.2 Discussion of the state of the art 

Since its inception, edge detection has been driven by pioneering techniques that 
approximate the FOD of the image. These techniques rely on convolution masks used to 
filter the image. The most important of these techniques are Roberts, Prewitt and Sobel 
operators (Roberts, 1963; Prewitt, 1970; Sobel, 1990). In their simple most inception 
these operators were one dimensional arrays of convolving factors covering ‘x’ and ‘y’ 
direction separately, thus to cover the diagonal direction ‘x y’ these operators evolved 
into two-dimensional masks. A common procedure adopted by these methods was to 
filter the image through convolution mask so to approximate the FOD. Then, it follows 
computation of gradient magnitude image, and threshold the gradient magnitude image so 
to obtain output binary image (Spontón and Cardelino, 2015). 

Algorithms that have evolved from the pioneer methods are based on calculation of 
second order derivative of the image. They generally employ a preprocessing step aimed 
to reduce noise in the image. Marr-Hildreth algorithm is based on finding zero crossing 
points of second order derivative of the image (Spontón and Cardelino, 2015). The 
algorithm proposes the use of Gaussian smoothing operator to filter the high-frequency 
noise and then uses Laplacian operator for edge detection (Marr and Hildreth, 1980). In 
practice, the first step consists of convolving the image with Laplacian of Gaussian (LoG) 
operator, or in alternative the image is first convolved with the Gaussian kernel and then 
convolved with the Laplacian operator. The second step involves the search for zero 
crossing points in the filtered image, which is a threshold operation that outputs the final 
binary image comprising of the edges (Spontón and Cardelino, 2015). 

Haralick’s (1984) method is also based on the idea to find zeros in the second order 
derivative of the image. The approach is however carried out with model polynomial 
fitting. In the specifics, the author fits a bi-cubic polynomial to the image and then 
equates to zero the second order derivative of the polynomial. By doing so, is possible to 
obtain the constraint to enforce in order to find the zeros in the second order derivative of 
the image. According to Haralick’s definition, a pixel will be an edge if the following 
three conditions hold true: 
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1 the FOD is non-zero 

2 the second order derivative is zero 

3 the third order derivative is negative (Spontón and Cardelino, 2015). 

Haralick’s method is not quite the same as our method for what pertains the polynomial 
model fitting. Normally, the determination of the polynomial coefficient requires a larger 
number of data points so that the resulting nonlinear system is over-determined and 
requires least-square solutions, which are solved through convolutions of the image with 
masks. As opposed to Haralick’s method, our method fits locally (pixel-by-pixel) a model 
polynomial function. Then it calculates the first order partial derivatives of the model 
function, and it calculates the magnitude of the FOD, which is the edge detection image. 

In Canny’s edge detection idea, edges are marked at maxima in gradient magnitude of 
Gaussian-smoothed image. The detection problem starts with an edge which is bathed in 
white Gaussian noise. The edge is convolved with a filter having impulse response: a 
difference of boxes operator; or a FOD of the Gaussian operator. The results of these two 
convolutions are marked at the local maximum, and the local maximum is marked as the 
centre of an edge (see Figure 1 in Canny, 1986). 

Current trends indicate that edge detection and more generally object recognition is 
achieved with convolutional neural networks (CNNs) within the deep learning framework 
(Zhao et al., 2019). Moreover, edge detection can be attained with dilated convolutions 
networks (as opposed to deeper CNNs), which keep the spatial resolution of the image 
while encoding the edge information (He et al., 2019). The advantage of CNNs 
approaches is to avoid extracting features from the images and to use high level 
information readily available when coding the image in full into the network (Liu et al., 
2017). A drawback of the use of CNNs for edge detection is determined when the image 
includes small perturbations, which may cause holistic edge detection methods to be 
unsuccessful (Xie and Tu, 2015; Cosgrove and Yuille, 2020). Edge detection can also be 
achieved by inverse Fourier transformation of images pre-processed with phase-shifting 
techniques (Ren et al., 2018). The literature also reports on metrics for quality assessment 
of edge detection (Sadykova and James, 2017). To alleviate false edge detection is 
possible with preprocessing steps that smooth the image with Gaussian kernels (Zhang  
et al., 2017). Smoothing determines noise suppression and that is important in diagnostic 
settings. 

1.3 The presentation of our method 

Digital images can be represented and stored as matrices of values: the pixel intensity 
values. This property makes it possible to use images in computing through image 
processing algorithms. Image processing is the science that develops computational 
methodologies used to extract useful information from the images. Processing of the 
images is done through numerous algorithms based on the goal to achieve. Digital image 
processing has thus many fields of application. One of the most common and useful is the 
biomedical imaging field like MRI. There is an immense literature on image processing 
in MRI. In this field the most important applications are: segmentation, to extract a 
boundary or a surface (Khin et al., 2020); registration, to align images acquired at 
different time frames (Wang and Li, 2019); and computing performed with the aim to 
extract information from the images (Bryan et al., 2020). 
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One important technique in image processing is edge detection because makes it 
possible to filter the edge between surfaces represented by the images. Due to this impact, 
many edge detection algorithms have been developed throughout the years (Jain et al., 
1995; James, 2016). Edges consist of meaningful features and contain significant 
information such as the boundary between surfaces. Indeed, two regions of an image may 
be characterised by different brightness levels, which correspond to a change in pixel 
intensity. The change may be the indicator of the borderline between surfaces 
(discontinuity) and can be detected through the calculation of the FOD. A location with 
coordinates (x, y) in the image, which belongs to the border between regions of the image 
displaying different brightness, is called an edge point. An algorithm, or more generally a 
method, that can detect the change of pixel intensity between regions and highlight the 
edges between regions of the image is usually called edge detector. Edge detection is one 
fundamental research area within the wide array of subjects covered in computer vision. 
The precursors of edge detection were Canny, Roberts, Sobel and Prewitt (Roberts, 1963; 
Prewitt, 1970; Canny, 1986; Sobel, 1990). In recent times the use of model fitting and the 
consequential calculation of the FOD of the image data has been explored and also 
compared to Sobel and Prewitt edge detection (Yahaya, 2017). 

This paper proposes five polynomial functions (among which is the bivariate linear) 
as models to fit the pixels of the image, so to enforce continuity within the pixel and to 
allow re-sampling. The rationale of this work is to estimate the edges in the image. In 
order to do so, model fitting provides a viable option. The FOD of the model function is 
then revealed to be the edge finder image. The FOD is calculated as the square root of the 
sum of the squares of the two first order partial derivatives respect to the two spatial 
coordinates x and y. The important and relevant feature of the model function is the 
gradient properties embedded through the calculation of finite differences between 
adjacent pixels along the two spatial coordinates and also the gradient that measures the 
covariation of the image pixels along x and y directions simultaneously. The mathematics 
of the methodology here proposed is illustrated in the theory section. The paper also 
presents validation through study of edge detection properties of the model functions and 
shows them to have similar properties. 

As classifiable as methodology requiring the calculation of FOD of an image, our 
methodology does not require threshold of the FOD magnitude. Roberts, Prewitt and 
Sobel methods approximate the FOD of the image. Then, threshold that image. In our 
methodology, threshold is not required, thus the edge detection phase consists in the 
calculation of FOD. The aforementioned methods use the threshold phase as a selective 
process which determines as to if an image point is an edge or not. Conversely, our 
method uses the FOD image as the result of the edge detection process. Along this line of 
thought our procedure makes a difference also with Canny’s hysteresis threshold (Canny, 
1986), by means of which, a point is accepted as candidate edge if it is above an upper 
threshold or if it is above a lower threshold and connected to a surface located above the 
upper threshold. The advantage is clearly that our methodology does not depend on 
arbitrary thresholds. Another interesting aspect that relates to our methodology is the 
model fitting procedure, which is not novel in literature as it was introduced for edge 
detection in Haralick’s paper (1984). However, due to the over-determined non-linear 
system to be solved when using Haralick’s approach, least square solutions need to use 
convolving masks, which determine the edges of the image. Therefore, our approach 
combines model polynomial fitting with calculation of FOD image, and it is a unique 
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approach which was recently initiated in the literature (Yahaya, 2017) and expanded here 
to a larger number of model polynomial functions. 

2 Theory 

To calculate the FOD of an image on a pixel-by-pixel basis is possible after model 
polynomial fitting. A 2 × 2 neighbourhood of pixels provides the model function the 
property to embed three gradients. The gradients are finite differences between pixel 
intensity values in the neighbourhood. One gradient is calculated along each of the two 
spatial directions x and y, and one gradient measures the covariation of pixel intensity 
values along the diagonal direction (‘xy’). The model function is designed to act as a high 
pass filter. Thus, the function allows passing spikes of the signal corresponding to the 
gradient existing between surfaces of the image, and rejects adjacent pixels with similar 
or same brightness value. The result is an edge finder image. This section presents the 
math of the bivariate linear model polynomial function [SRE2D(x, y) in equation (1)] and 
the set of model polynomial functions that were chosen for this study [see equations (2), 
(3), (4) and (5)]. 

x y fSRE2D(x, y) f (0, 0) θ x θ y ω xy= + ⋅ + ⋅ + ⋅  (1) 

3 2 
x

2
y f

g(x, y) f (0, 0) θ a (x y) 2(x y) (x y) 1

θ b (x y) (x y)  1 ω c(x y)

 = + ⋅ + + + + + + 
 + ⋅ + + + + + ⋅ + 

 (2) 

2 2 2 2
x y

f

s(x, y) f (0, 0) θ (x a) (y b) θ (a x) (b y)
ω c(x y)

   = + ⋅ − + − + ⋅ − + −   
+ ⋅ +

 (3) 

2 2
x y fh(x,  y) f (0,  0) θ (x a) θ (y b) ω c(x y)   = + ⋅ + + ⋅ + + ⋅ +     (4) 

( )2 2
x y ff (x,  y) f (0,  0) θ ax x 1 θ (by y 1) ω (x y)= + ⋅ + + + ⋅ + + + ⋅ +  (5) 

f(0, 0) is the pixel intensity value to re-sample through the model function and θx, θy, ωf, 
a, b and c are constants. 

xθ f (1,  0) – f (0,  0)=  (6) 

yθ f (0,  1) – f (0,  0)=  (7) 

fω f (1, 1) f (0,  0) – f (1,  0) – f (0,  1)= +  (8) 

We obtain these results: 

( )( ) x fSRE2D(x,  y) x   θ y ω∂ ∂ = + ⋅  (9) 

( )( ) y fSRE2D(x, y) y θ x ω∂ ∂ = + ⋅  (10) 

( )( ) [ ]2
x y fg(x,  y) x  θ a 3(x y) 4(x y) 1 θ b 2(x y) 1 ω c ∂ ∂ = ⋅ + + + + + ⋅ + + + ⋅   (11) 
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( )( ) [ ]2
x y fg(x,  y) y  θ a 3(x y) 4(x y) 1 θ b 2(x y) 1 ω c ∂ ∂ = ⋅ + + + + + ⋅ + + + ⋅   (12) 

( )( ) x y f  s(x, y) x 2 θ (x a) θ (x a) ω c∂ ∂ = ⋅ − + ⋅ − + ⋅    (13) 

( )( ) x y f  s(x, y) y 2 θ (y b) θ (y b) ω c∂ ∂ = ⋅ − + ⋅ − + ⋅    (14) 

( )( ) x fh(x,  y) x 2 θ (x a) ω c∂ ∂ = ⋅ ⋅ + + ⋅  (15) 

( )( ) y fh(x,  y) y 2 θ (y b) ω c∂ ∂ = ⋅ ⋅ + + ⋅  (16) 

( )( ) x ff (x,  y) x θ (2ax 1) ω∂ ∂ = ⋅ + +  (17) 

( )( ) y ff (x,  y) y θ (2by 1) ω∂ ∂ = ⋅ + +  (18) 

The magnitude of FOD of the image is: 

( ) ( )2 2
FOD(x, y) (x, y) x (x, y) y   = ∂ Φ ∂ + ∂ Φ ∂     (19) 

Φ(x, y) is either of the model polynomial functions in equations (1) through (5). 
Constants a, b and c were chosen in order to obtain an image that actually acts as an edge 
finder. Tests were conducted with a set of numbers in the range [–2.5, 2.5] and it was 
observed that, with the increment of the absolute values of the constants, the edges on the 
FOD images became sharper. However, this effect was detected up to some point after 
which, increasing or decreasing the values did yield no difference. The values were set 
the same in order to give to all of the three gradients the same level of activity. 

3 Results 

3.1 Experimental determination of the constants of the model polynomial 
functions 

Preliminary investigation was conducted in order to study the effect of the constants of 
the polynomial model functions. The function g(x, y) was chosen for this study. 
Generally when the constant is zero, the corresponding gradient is nullified and so the 
effect is to truncate the edge finding properties of FOD derived from the function. The 
interval of study was kept in the values between [–2.5, 2.5]. The FOD images were 
calculated at steps of 0.5, from –2.5 to 2.5 for all of the three constants. A total of  
33 images were obtained and analysed. The best images are reported in Figure 1. The 
picture shows the effect of the nullification of the gradient along ‘x’ and the gradient 
along ‘y’. It also shows that if the two gradients along ‘x’ and ‘y’ are kept (value of the 
constants non zero), and if the gradient along the covariate direction ‘x y’ is nullified, the 
edges are found anyway. Overall, this study confirms that when the values of ‘a’, ‘b’ and 
‘c’ are the same, most uniform edge finding properties are observable. 
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Figure 1 Edge finder behaviour of g(x, y) model polynomial function on rectangle image 

 

 

(–0.5, 1, 1) (0.5, 1, 1) (0, 1, 1) 

(1, 0, 1) (1, –2.5, 1) (1, 2.5, 1) 

(1, 1, 2.5) (1, 1, 1.5) (1, 1, 0)  

Notes: Noticeably, when a = 0 horizontal edges are not found [see image labelled with  
(0, 1, 1)]. When b = 0 vertical edges are not found [see image labelled with  
(1, 0, 1)]. In all the other cases, the four edges are well defined. Worth noting that 
when the value of c = 0 [see image labelled with (1, 1, 0)] the four edges are found 
because ‘a’ and ‘b’ are non-null. 

3.2 Analysis of the robustness to noise 

Noise was artificially created and introduced into the images to test the method for its 
robustness. Two types of noise were calculated: Gaussian and sinusoidal. Gaussian noise 
had standard deviation set to 2.0. Both Gaussian and sinusoidal noise had a multiplicative 
factor that could be tuned to obtain the desired levels. The factor was set to 500, 1,000 
and 2,000 for the Gaussian and 50, 100 and 200 for the sinusoidal waves. Figure 2 shows 
noise, images with sinusoidal noise added to them, and FODs. From the two rows from 
the top and for each couple of rows, the picture shows an experimental session. FOD 
images were calculated for both noise and images. From top to bottom and for each 
couple of rows, model polynomial functions were: s(x, y), f(x, y), g(x, y). 

Similarly, Figure 3 show two experimental sessions as relevant to Gaussian noise. 
The FOD images in Figure 2 and 3 show that noise can be detected and featured in its 
spatial shape by the FOD images. The cases for which the FOD is not affected by the 
noise (it is robust to noise) are indicated by noise level in yellow colour. Figure 4 show 
an experimental session utilising real MRI data. From left to right the picture shows the 
noise, the noisy image and the FOD of the noisy image. The noise was raised to the level 
of maximal tolerability which is 1000 for Gaussian noise and 15 for sinusoidal noise. 
After these levels the noise is featured in the FODs and its edges are reconstructed. In 
Figure 4, the model polynomial function is SRE2D(x, y). 
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Figure 2 Sinusoidal noise (see online version for colours) 

 

 

 

 

 
Noise 50 100 200 

Noise 50 100 200 

Noise 50 100 200 

Noise 50 100 200 

Noise 50 100 200 

Noise 50 100 200 

 

Notes: From the two top rows, from left to right: noise, three images with noise levels: 50, 
100 and 200. FOD of the noise image, FODs of the noisy images (in second, fourth 
and sixth rows from the top). The model polynomial function is s(x, y) in first and 
second rows from the top; f(x, y) is the model polynomial function used in third and 
fourth rows from the top; and g(x, y) in the two bottom rows. Values of constants 
were [a, b, c] = [2.5, 2.5, 2.5]. The FOD images show both robustness to noise in one 
case (see noise level in yellow colour) and also that the noise can be featured and 
detected in its spatial extent. Sinusoidal noise is one of the most difficult noises to 
deal with if the frequency is not known and if the amplitude is low. 
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Figure 3 Gaussian noise (see online version for colours) 

 

 

 

 

Noise 500 1000 2000 

Noise 500 1000 2000 

Noise 500 1000 2000 

Noise 500 1000 2000 

 

Notes: From left to right, in the two rows from the top the picture shows noise, three 
noisy images with noise levels: 500, 1,000 and 2,000, and FODs (in second and 
fourth row from the top). The model polynomial function is h(x, y) and values of 
constants were [a, b, c] = [2.5, 2.5, 2.5]. The FOD images show both robustness to 
noise (see noise level in yellow colour) and also that the noise can be featured and 
detected in its spatial extent. 

Figure 4 In each row, from left to right: Gaussian noise, noisy MRI and FOD of the noisy MRI 

 

 

Noise 1000 1000 

Noise 15 15  

Note: Noise levels (1,000 for Gaussian noise and 15 for sinusoidal noise) were set to test 
the robustness. The model polynomial function was SRE2D(x, y). 
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3.3 Validation 

The rationale of the validation is to ascertain that the SRE2D and the other functions 
offer similar edge detection performance. The assumption is justified by the fact that all 
of the functions possess three gradients (along ‘x’, along ‘y’ and along the covariate 
direction ‘xy’) and thus their FODs are expected to show similar characteristics as edge 
detectors. The validation of the assumption was conducted using the FODs as edge 
detector in a test set of magnetic resonance images across various modalities  
(T1-weighted, T2-weighted, and angiography). 

Figure 5 MRI (OASIS database) in (a). FOD calculated with h(x, y) in (b), (c), (d) and (e) 

   

  

(a) (b) (c) 

(d) (e) 
 

Note: The values of the constants were: (a, b, c) = (1.0, 1.0, 1.0) in (b); (a, b, c) = (0.0, 
1.0, 1.0) in (c); (a, b, c) = (1.0, 0.0, 1.0) in (d); and (a, b, c) = (0.0, 0.0, 1.0) in (e). 

Figure 5 gives an illustration of the FOD image [see (b)] of an MRI (a) obtained using 
h(x, y) as model function [equation (4)] and shows that best results are obtained when the 
three gradients and all equally active [see (b)]. Figure 6 shows some set results obtained 
using theoretical images fitted with four model functions [see equations (2), (3), (4) and 
(5)]. Figure 6 also shows the kurtosis (Caviedes and Gurbuz, 2002) of each theoretical 
image. Kurtosis was adopted to be the direct measure of image brightness and so results 
of FOD and kurtosis are compared. The expectation from FODs is to have brighteness 
topography as close as possible to kurtosis, so to have confirmation of effective edge 
detection. Figure 6 shows that the expectation on the FODs is met given their topography 
so closely matching the topography of kurtosis images. The error measure: sum of 
squared differences (SSD) between FOD and kurtosis; is displayed in the bottom row in 
Figure 6. SSD images were calculated after binarisation of FOD and kurtosis images, and 
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they were zero except for those shown in (p), (q) as relevant to the rectangle [see top row, 
(a)] and the sinc signal [see fourth row from the top, (j)]. 

Figure 6 Theoretical images in (a), (d), (g), (j) and (m); FOD calculated with f(x, y) in (b); FOD 
calculated with g(x, y) in (e); FOD calculated with h(x, y) in (h). FOD calculated with 
s(x, y) in (k); FOD calculated with g(x, y) in (n); kurtosis of theoretical images in:  
(c), (f), (i), (l) and (o); SSD images in (p), (q), as relevant to the cases presented in the 
first row from the top and the fourth row from the top  
(see online version for colours) 
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Note: The other SSD images were zero. 
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Figure 7 Magnetic resonance images in (a), (b), (c), (d) and (e); FODs calculated with h(x, y) in 
(f) and (i); FODs calculated with f(x, y) in (g), (h) and (j); FODs calculated with 
SRE2D in (k), (l), (m), (n) and (o) 
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Results are presented in Figure 7 comparing performance of functions reported in the 
theory section, and in Figure 10 comparing the performance of bivariate linear model 
(SRE2D) and bivariate cubic model (B32D) (Yahaya, 2017). The FOD images were then 
direct Fourier transformed so to calculate the k-space magnitude and results are presented 
in Figures 8 and 11. Histograms of k-space magnitude images of FOD were calculated 
and plotted as shown in Figures 9 and 12. Average, standard deviation, and skewness of 
each histogram was calculated and reported in Tables 1 and 2. Value of statistics and  
t-tests indicate large degree of similarity between couple of histograms, which reflects the 
similarity between k-space images. 
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Figure 8 K-space magnitude images of the FOD displayed in Figure 7; (a), (b), (c), (d) and (e) 
are the k-space images of Figures 7(f), 7(g), 7(h), 7(i) and 7(j); (f), (g), (h), (i) and (j) 
are the k-space images of Figures 7(k), 7(l), 7(m), 7(n) and 7(o) 

  

 

 

 

  

(a) (f) 

(b) (g) 

(c) (h) 

(d) (i) 

(e) (j) 
 

Each k-space image is representative of edge detection performance of FOD and thus 
representative of model function fitted to image data. The model functions and the 
derived FODs perform similarly. Such evidence is however clearly indicated by visual 
inspection of the images in Figures 7, 8, 10 and 11. Moreover, results in Figure 10 
indicate that FOD calculated fitting bivariate linear model function (SRE2D) is sharper 
than FOD calculated fitting bivariate cubic polynomial (B32D). Sharpness is though 
accompanied by removal of background noise. 
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Figure 9 Histograms of k-space images displayed in Figure 8, (a), (b), (c), (d) and (e) are the 
histograms of Figures 8(a), 8(b), 8(c), 8(d) and 8(e) (f(x, y) and h(x, y) are the model 
polynomial functions); (f), (g), (h), (i) and (j) are the histograms of Figures 8(f), 8(g), 
8(h), 8(i) and 8(j) (SRE2D is the model polynomial function) (see online version  
for colours) 
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Figure 10 Magnetic resonance images in (a), (b), (c) and (d); FOD calculated with B32D model 
polynomial function (Yahaya, 2017) in (e), (f), (g) and (h); FOD calculated with 
SRE2D model polynomial function in (i), (j), (k) and (l) 

   

   

   

   

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

(h) 

(i) 

(j) 

(k) 

(l) 
 



   

 

   

   
 

   

   

 

   

   18 G. Mirku et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 11 K-space magnitude images of the FOD displayed in Figure 10, (a), (b), (c) and (d) are 
the k-space images of Figures 10(e), 10(f), 10(g), 10(h); (e), (f), (g) and (h) are the  
k-space images of Figures 10(i), 10(j), 10(k), 10(l) 
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Figure 12 Histograms of k-space images displayed in Figure 11, (a), (b), (c), (d) are the 
histograms of Figures 11(a), 11(b), 11(c), 11(d) (B32D is the model polynomial 
function); (e), (f), (g), (h) are the histograms of Figures 11(e), 11(f), 11(g), 11(h) 
(SRE2D is the model polynomial function) (see online version for colours) 
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Figure 13 Comparison across methods (Spontón and Cardelino, 2015), (a) test magnetic 
resonance angiography, (b) SRE2D (our method), (c) Roberts, (d) Prewitt, (e) Sobel, 
(f) Haralick, (g) Marr-Hildreth (Gaussian kernel), (h) Marr-Hildreth (LoG kernel). 
Roberts, Prewitt and Sobel gradient threshold: 0.1 (see online version for colours) 

 

 

 

 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

 

Notes: Haralick radius threshold from the centre of the pixel: 0.4. Marr-Hildreth (Gaussian 
kernel) blur standard deviation: 3, n (kernel size): 25; zero-crossing threshold: 0.07. 
Marr-Hildreth (LoG kernel) blur standard deviation: 3, n (kernel size): 29; zero-crossing 
threshold: 0.13. http://demo.ipol.im/demo/35/. The methods run over the internet 
connection in 0.79 sec. SRE2D runs in less than second too. 
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Table 1 Statistic values of the histograms displayed in Figure 9 

Statistics (A) (B) (C) (D) (E) 
Skewness 1.1812 2.6221 2.3715 2.359 1.3684 
Average 144.56 144.67 144.02 144.45 146.07 
Std. dev. 169.21 253.23 240.01 228.71 192.5 
Statistics (F) (G) (H) (I) (J) 
Skewness 1.1695 2.635 2.3649 2.3674 1.3453 
Average 144.56 144.65 143.98 144.39 146.02 
Std. dev. 168.9 252.93 240.17 228.73 191.33 
t-test 1 0.999 0.998 0.997 0.997 

Notes: Values are numerically close showing similarity of performance in edge detection 
of FOD of SRE2D and FOD of competing functions [see equations (2), (3), (4) 
and (5)]. The t-test throw additional evidence of similarity between FODs 
performance. The numerical values plotted in the histograms were scaled in the 
range [0, 255], however the raw images from which the histograms were 
calculated contain data in broader range represented through 64 bits real numbers. 

Finally, Figure 13 displays comparison across methods. Magnetic resonance angiography 
in (a) is chosen to be the test image. The FOD calculated from SRE2D(x, y) model 
function [see (b)] is compared to Roberts, Prewitt, Sobel, Haralick and Marr-Hildreth 
methods. The figure legend reports on the parameters used to run the methods. FOD of 
SRE2D is able to visualise physiological connectivity of human brain vessels. 
Table 2 Statistic values of histograms displayed in Figure 12 

Statistics (A) (B) (C) (D) 
Skewness 3.042 1.5658 1.3 1.94 
Average 157.79 158.52 157.18 156.73 
Std. dev. 332.66 231.44 201.27 223.02 
Statistics (E) (F) (G) (H) 
Skewness 3.0914 1.5745 1.3217 1.9378 
Average 157.81 158.51 157.15 156.73 
Std. dev. 334.32 234.04 204.84 223.06 
t-test 0.999 0.999 0.998 1 

Notes: Values are numerically close showing that edge detection performance of FOD of 
SRE2D and FOD of B32D are similar. The t-test adds more evidence in support to the 
similarity of performance. The numerical values plotted in the histograms were scaled 
in the range [0, 255], however the raw images from which the histograms were 
calculated contain data in broader range represented through 64 bits real numbers. 

4 Discussion 

4.1 The literature 

Edge detection is a filtering technique that extracts the boundary between areas of an 
image characterised by different pixel brightness. The process of edge detection is 



   

 

   

   
 

   

   

 

   

    Edge detection in two-dimensional images through model polynomial fitting 21    
 

    
 
 

   

   
 

   

   

 

   

       
 

comparable to that one of a high pass filter because edges are spikes of high frequency 
signal. The process of unravelling edges of an image has been pivotal in machine vision, 
image understanding and image processing since when disciplines like computer vision 
exist (Jain et al., 1995; James, 2016). In the pioneering works found in the literature, edge 
detection process depends on differential operators which compute FODs, such as Canny, 
Roberts, Prewitt and Sobel operators (Roberts, 1963; Prewitt, 1979; Canny, 1986; Sobel, 
1990), or second order derivatives such as Marr-Hildreth and Haralick operators (Marr 
and Hildreth, 1980; Haralick, 1984), and find zero crossing points across the image which 
target the boundary between objects and surfaces of the image (Spontón and Cardelino, 
2015). Common approaches (such as Marr-Hildreth algorithm) also use Gaussian and 
Laplacian or, in alternative, Laplacian of the Gaussian (which calculates the second order 
derivative of the image), as smoothing preprocessing step; and then threshold achieves 
edge detection (Spontón and Cardelino, 2015). To calculate first and second order 
derivatives with convolutional filters, as described in the literature, is however quite 
different as opposed to pixel-by-pixel model polynomial fitting. Model polynomial fitting 
is proposed in this paper as the solution for the calculation of FOD, which turns into an 
edge detector when the departing polynomial includes spatial gradients. And, this is the 
case of all the model polynomials reported in this work including bivariate linear function 
SRE2D. Moreover, the use of convolutional filters such as Gaussian or Laplacian 
decreases dramatically the speed of computation because of the large number of 
numerical operations to be performed at the pre-processing step before threshold. 

4.2 The novelty 

This paper describes an approach to edge detection that is based on model polynomial 
fitting and calculation of FOD of the image. Model polynomial fitting makes this 
approach different from Roberts, Prewitt and Sobel operators, which approximates the 
FOD with convolutional masks (Roberts, 1963; Prewitt, 1979; Sobel, 1990); and closer to 
Haralick’s (1984) approach that fits the data with discrete orthogonal polynomials. It has 
been observed in recent literature that the calculation of the FOD of an image on the basis 
of pixel-by-pixel fitting of model polynomial function yields excellent results as far as 
edge detection is concerned (Yahaya, 2017). Thus, motivated by the aforementioned 
results, this paper proposes the bivariate linear model function and a set of additional 
model polynomial functions. The paper evaluates edge detection properties of the 
function FODs across similar competing model functions designed with the specific 
purpose to compare edge detection characteristics. The FOD is defined by the square root 
of the sum of the squares of the first order partial derivatives of the model polynomial 
function fitted to the image data. The calculation of the FOD is carried out through 
calculus on a continuous function fitted to the image pixels. The calculation of first and 
second order partial derivatives of an image fitted with polynomials is also of recent 
inception, it yields to re-sampling techniques capable to extract information from images, 
and it has found a number of applications in MRI processing of the human brain (Ciulla, 
2019a, 2019b, 2020; Ciulla and Agyapong, 2019). The key to edge detection property of 
the model function is the mathematical expression of gradients in the formula of the 
function. It is shown in this paper that three gradients (two along the principal coordinate 
directions ‘x’ and ‘y’, and one that covers the covariate ‘xy’ direction) are sufficient to 
determine effective edge detection properties of the FOD of the model functions. 
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4.3 Conclusions 

All of the model polynomial functions presented in this paper were found to have similar 
edge detection behaviour. The reason and the key to the successful performance of edge 
detection using model polynomial fitting to the image, is to design the function with three 
gradients: one for each spatial direction and one for the covariate direction. In addition, 
the polynomial functions here reported are parametric in the constants ‘a’, ‘b’ and ‘c’. To 
obtain optimal performance, it was observed that the value of the constants needs to be 
the same. Indeed by doing so, the three gradients are equally active and can equally 
detect edges along the three aforementioned directions. Moreover, the value of the 
constants can be kept reasonably small (inside the range [–2.5, 2.5]). In conclusion, a 
computationally fast approach to edge detection in two-dimensional images has been 
presented. It is based on model polynomial fitting, and as evaluated across the spectrum 
of five model functions, it shows a viable option for edge detection. Future work might 
assess the relative contribution to edge finding behaviour of the gradients of each model 
function and determine an overall optimal function for edge detection using its FOD. 
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However, we have learned that the optimal results in edge detection are obtained keeping 
the constants in the range [–2.5, 2.5]. Moreover, to equally use the three gradients of the 
model functions, the constants can be set to the same value, ensuring equity in edge 
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