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Abstract: In this paper, well-defined Six Sigma-based repetitive sampling 
control charts (RSCCs) and multiple dependent state sampling control charts 
(MDSSCCs) are proposed. The Six Sigma-based multiple dependent state 
repetitive sampling control charts (MDSRSCCs) are also studied. The average 
run length (ARL) performance of the proposed charts are numerically evaluated 
and compared with the existing RSCCs, MDSSCCs and MDSRSCCs. Since the 
proposed charts are based on the Six Sigma methodology, these charts ensure 
the Six Sigma goal of 3.4 defects per million opportunities. It is observed that 
the proposed charts perform better than the existing ones by means of better 
average run lengths and also suggest minimum process disturbance for smaller 
shifts in the process mean. The charts are easier to apply by the quality 
practitioners. A numerical example is given to illustrate the better performance 
of the proposed control charts. 
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1 Introduction 

In statistical quality control (SQC)/statistical process control (SPC), control charts 
developed by Shewhart (1931) serve as a key technique mainly to monitor a 
manufacturing process and also to prevent products from going out of the given 
specification limits (Aslam et al., 2014a). In fact, given a manufacturing set up with 
product specification limits – lower specification limit (LSL), upper specification limit 
(USL) and target (T), the manufacturer always wishes to produce products of high quality 
meaning that the products produced so will meet the set specification requirements or the 
ones provided by the customers in the form of specification limits (Ravichandran, 2019a). 
Control charts consisting of lower control limit (LCL), upper control limit (UCL) and 
process average, are treated as an important tool for detecting the causes that significantly 
influence the process variation as early as possible. More details about understanding the 
relationship between control limits and specification limits can be found in Ravichandran 
(2019b). 

As discussed by Aslam et al. (2015a, 2015b) and Aldosari et al. (2017), a process of 
interest is always expected to produce products in tune with the set target and the related 
specification limits. However, there is every possibility that a process may experience a 
shift from the target due to internal disturbances (influenced by chance causes) and/or 
external disturbances (influenced by assignable causes). For example, refer to Grant and 
Leavenworth (1996) and Montgomery (2009) for more details about these concepts. 
While traditional control charts introduced by Shewhart (1931) are found to be effective 
in detecting large shifts from the target, the control charts such as cumulative sum 
(CUSUM) charts and exponentially weighted moving average (EWMA) charts are very 
effective in detecting small shifts quickly. Readers are referred to Gadre and Rattihalli 
(2004), Reynolds and Lou (2010), Saleh et al. (2015) and Ravichandran (2017) for more 
on the implications of small and large shifts and their detections. 

It could be seen from literature that researchers have developed many advanced 
control charts (either attribute-type or variable-type) depending on the problem under 
study. While Luo and Wu (2002) developed variable sample size and variable sampling 
interval control charts for fraction defective using the principle of optimisation methods, 
Wu and Jiao (2008) proposed a new control chart for monitoring the process mean based 
on attribute inspection. Similarly, useful studies on variable-type control charts are also 
made by many authors. Schoonhoven et al. (2009, 2011) proposed various design 
schemes by using different estimators for the underlying parameters of variable-type 
control charts. Lee (2011) proposed adaptive range charts with variable parameters. 
Recently, Ravichandran (2017) proposed Six Sigma-based variable-type control chart for 
high quality processes. 

In addition, there are several studies on run rule-based control charts (Champ and 
Woodall, 1987), zone control charts (Jaehn, 1987a, 1987b, 1987c), modified zone control 
charts (Davis et al., 1990), Six Sigma-based zone control charts (Ravichandran, 2019a), 
self-starting charts (Hawkins, 1987; Quesenberry, 1991, 1995; Sullivan and Jones, 2002; 
Keefe et al., 2015), and repetitive sampling (RS) and multiple dependent state sampling 
(MDSS) control charts (Aslam et al., 2014a, 2014b; Aldosari et al., 2017). Also, Aldosari 
et al. (2018) studied the performance of multiple dependent state repetitive sampling 
(MDSRS) control charts. Ravichandran (2019c) proposed Six Sigma-based self-starting 
control charts. 
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It is observed that, the zone control charts have gained momentum that resulted in the 
development of RS, MDSS and MDSRS control charts. Originally, RS, MDSS and 
MDSRS methods have been introduced for studies related to lot acceptance (e.g. 
Sherman, 1965; Balamurali and Jun, 2006). Because of their better performance, these 
sampling methods have been used for the construction of RS control charts (RSCCs) 
(Aslam et al., 2014a), MDSS control charts (MDSSCCs) (Aslam et al., 2015a) and 
MDSRS control charts (MDSRSCCs) (Aldosari et al., 2018). In these charts, double 
control limits are proposed using a pre-set average run length (ARL) value. Because of 
the usage of double control limits, both repetitive and multiple dependent control charts, 
in fact, split the standard control chart limits into three zones either side from the target: 
control zone, doubtful zone and out-of-control zone. In the doubtful zone, sampling is 
repeated to further confirm the state of the process. Ravichandran (2019a) developed Six 
Sigma-based zone control charts. In this paper, we modify the zones appropriately to 
propose more meaningful Six Sigma-based ready to use RSCCs, MDSSCCs and 
MDSRSCCs. Since the proposed charts are based on the Six Sigma methodology, these 
charts ensure the Six Sigma goal of 3.4 defects per million opportunities (DPMO). It is 
observed that the proposed Six Sigma-based charts perform better than the existing 
counterparts by means of better average run lengths and also suggest minimum process 
disturbance for smaller shifts in the process mean. The charts are easier to apply by the 
quality practitioners. 

Remainder of the paper is organised as follows: In Section 2, we discuss elaborately: 

1 various traditional control charts 

2 Six Sigma-based control charts 

3 RS, MDSS and MDSRS control charts to know how developments in this area of 
research have evolved over years. 

The importance of zone control charts is also discussed in this section. Well-defined 
procedures of the proposed Six Sigma-based RS, MDSS and MDSRS control charts are 
given in Sections 3, 4 and 5 respectively. Section 6 is dedicated to numerical results and 
performance evaluation of the proposed Six Sigma-based RSC, MDSSC and MDSRS 
control charts. In this section various observations made from the numerical results with 
regard to these control charts are consolidated. This section presents the findings based 
on comparison with the existing RS, MDSS and MDSRS control charts. While Section 7 
presents an illustrative numerical example, in Section 8 the results are discussed and 
concluding remarks are given. 

2 Traditional, zone, Six Sigma-based, RS, MDSS and MDSRS control 
charts 

Looking at the disadvantages of basic and advanced quality control charts proposed by 
various authors in getting estimators of unknown population parameters such as mean 
and standard deviation, a number of methods have been proposed for the estimation of 
such parameters (e.g., Schoonhoven et al., 2009, 2011). According to Hill (1956) and 
Carr (1989), a well-controlled process is expected to satisfy the respective specification 
requirements. This aspect prompted them to develop modified control charts. Also, 
Aslam et al. (2014a, 2014b) observed that control charts are key techniques in SQC to 
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monitor a manufacturing process and to prevent products from going out of the given 
specification limits. Ravichandran (2017) focused on this to estimate the population 
parameters from the given specification limits that can satisfy Six Sigma quality 
requirements (the goal of 3.4 DPMO). Accordingly, Ravichandran (2017) developed a 
Six Sigma-based control chart keeping in mind the expectations from high quality 
processes. Further, Six Sigma-based zone control charts and Six Sigma-based  
self-starting control charts have also been studied by and Ravichandran (2019a, 2019c). 
Later, while presenting a review of specification limits and control limits from the 
perspective of Six Sigma quality processes, Ravichandran (2019b) argued that both 
control and specification limits should work like hand-in-glove to keep satisfying 
customer needs. 

A typical Six Sigma control chart (SSCC) proposed by Ravichandran (2017) for mean 
has the limits as given below: 

Upper control limit (LCL) 4.5
ˆCentral line (CL)

Lower control limit (UCL) 4.5

ss

ss

x σ n
μ x

x σ n

= +
= =

= −

 (1) 

where 
6[ 4.5 4.5)] 1 6.8 10P Z −− ≤ ≤ = − ×  (2) 

In equation (2), Z is the standard normal variate. The control limits given in (1) will result 
in DPMO of 3.4 either below LCL or above UCL. Note that in equation (1), 

1

1ˆ
m

i
i

μ x x
m =

= =   is the grand mean with 
1

1 , 1, 2, , ,
n

i ij
j

x x i m
n =

= =   where x1j, x2j, …, 

xij, …, xmj is the collection of m samples drawn from the population, each of size n (i.e.,  
j = 1, 2, …, n). Further, we assume that the measurable quality characteristic, say X, with 
a unique specification (LSL, T and USL), follows normal distribution with mean T and 
variance 2 ,ssσ  that is 2~ ( , ),ssX N T σ  with P(T – Kσss ≤ X ≤ T + Kσss) = 1 – α, where α is 
a prespecified probability value such that α = P(X < T – Kσss) + P(X > T + Kσss). Then, 
from T ± Kσss, under the normality assumption we get σss = (USL – T)/6 or  
σss = (T – LSL)/6 as half of the Six Sigma process spread with K = 6. 

Referring to the works of Jaehn (1989), Davis et al. (1990, 1994) and Zhang et al. 
(2016) on zone control charts (ZCCs) and their performances, Ravichandran (2019a) 
proposed Six Sigma zone control charts (SSZCCs) and studied the transition probabilities 
and ARL performance of such SSZCCs. A typical SSZCC has ten zones (five each on 
either side of the chart) as shown in Table 1. 

According to Six Sigma quality program introduced by Motorola, the Six Sigma 
quality process tolerates a shift of ±1.5 times of standard deviation from the target in the 
long process run, since it still results in a defect rate of just 3.4 DPMO (Harry, 1998; 
Lucas, 2002). Hence, SSZCC considers the zones 5 and 6 given in Table 1 as safe zones 
which covers the region 1.5 1.5ss ssT σ n x T σ n− ≤ ≤ +  and is called the target range 
(Ravichandran, 2006). 
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As discussed earlier in the introduction section, since the repetitive sampling 
approach proposed by Sherman (1965) and Balamurali and Jun (2006) for acceptance 
sampling plans is found to be more efficient, Aslam et al. (2014a, 2014b, 2015a, 2015b) 
studied the RSCCs for both attribute and variable-type cases. Unlike the traditional 
control chart, the RSCC uses two pairs of control limits. Accordingly, the process of 
interest is declared to be in control if a plotted statistic falls within the inner control 
limits, while it is declared out-of-control if the statistic is plotted beyond the outer control 
limits. If the statistic is located between the inner and outer control limits, a new sample 
should be gathered and inspected. Clearly, in RSCCs there are six zones, there are six 
zones, three zones in either side from the target. These zones can be classified as control 
zone (or safe zone), doubtful zone and out-of-control zone. In the doubtful zone, the 
sampling is repeated to further confirm the state of the process. The SSZCC proposed by 
Ravichandran (2019a) has ten zones and in this paper we modify the zones appropriately 
as safe, doubtful and out-of-control zones to propose a more meaningful Six Sigma-based 
ready-to-use RSCCs. 
Table 1 The ten zones of SSZCC 

Zone Region in the chart 
10 Above ˆ 4.5 ssμ σ n+  

9 Between ˆ 3.5 ssμ σ n+  and ˆ 4.5 ssμ σ n+  

8 Between ˆ 2.5 ssμ σ n+  and ˆ 3.5 ssμ σ n+  

7 Between ˆ 1.5 ssμ σ n+  and ˆ 2.5 ssμ σ n+  

6 Between μ̂ x=  and ˆ 1.5 ssμ σ n+  

5 Between ˆ 1.5 ssμ σ n−  and μ̂ x=  

4 Between ˆ 2.5 ssμ σ n−  and ˆ 1.5 ssμ σ n−  

3 Between ˆ 3.5 ssμ σ n−  and ˆ 2.5 ssμ σ n−  

2 Between ˆ 4.5 ssμ σ n−  and ˆ 3.5 ssμ σ n−  

1 Below ˆ 4.5 ssμ σ n−  

3 Six Sigma-based repetitive sampling control chart 

A typical RSCC has six zones as shown in Table 2 since the RSCCs proposed by various 
authors (e.g., Aslam et al., 2014a, 2014b) consist of two pairs of control limits (two LCLs 
and two UCLs) each on either side of the control chart instead of the traditional 
Shewhart-type control charts that consist of only one LCL and one UCL. 

The control limits of RSCC are given as: 
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1 1

2 2

2 2

1 1

UCL x k σ n

UCL x k σ n
CL x

LCL x k σ n

LCL x k σ n

= +

= +
=

= −

= −

 (3) 

Table 2 The six zones of RSCC 

Zone Region in the chart 
6 Above 1μ̂ k σ n+  

5 Between 2μ̂ k σ n+  and 1μ̂ k σ n+  

4 Between μ̂ x=  and 2μ̂ k σ n+  

3 Between 2μ̂ k σ n−  and μ̂ x=  

2 Between 1μ̂ k σ n−  and 2μ̂ k σ n−  

1 below 1μ̂ k σ n−  

The standard deviation σ given in Table 2 and in equation (3) is to be estimated from the 
process data if the population standard deviation is unknown. Also, the unknown 
constants k1 and k2 are to be determined by fixing the target in-control ARL. The values 
of k1 and k2 are also dependent on the sub sample size n. 

It may be noted that most of the time, quality practitioners/process operators prefer 
ready-to-use control charts rather than the one that has to be determined every time. Also, 
ever since the concept of Six Sigma came into being, these quality practitioners/process 
operators aim for achieving the Six Sigma goal of 3.4 DPMO. Therefore, given the 
disadvantages/complexities of RSCC and also the overwhelming interest shown by 
quality practitioners/process operators on the use of Six Sigma practices, in this paper we 
propose to develop a Six Sigma-based RSCC which has control limits as follows: 

1

2

2

1

( ) 4.5

( ) 1.5
( )

( ) 1.5

( ) 4.5

ss

ss

ss

ss

UCL SS x σ n

UCL SS x σ n
CL SS x

LCL SS x σ n

LCL SS x σ n

= +

= +
=

= −

= −

 (4) 

In equation (4), the abbreviation SS given in parentheses represents Six Sigma. After 
these control limits are established, a two-step procedure given below may be followed to 
make decision based on a fresh sample. 
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A two-step procedure for Six Sigma-based RSCC 

Step 1 Set i, (i = 1, 2, …, m), take a fresh subsample of size n. Obtain the sample mean 
.iX  

Step 2 Take one of the following decisions: 
1 the process is declared to be out-of-control if either 1( )iX UCL SS>  or 

1( )iX LCL SS<  

2 the process is declared to be in-control if 2 2( ) ( )iLCL SS X UCL SS≤ ≤  

3 if either 1 2( ) ( )iLCL SS X LCL SS≤ ≤  or 2 1( ) ( ) ,iUCL SS X UCL SS≤ ≤  set  
i = i + 2, go to Step 1 to repeat sampling. 

Let us define the probabilities 

( )
( )
( )
( )
( )

1 2 2

2 1 2

3 2 1

4 1

5 1

( ) ( )

( ) ( )

( ) ( )

( )

( )

P P LCL SS X UCL SS

P P LCL SS X LCL SS

P P UCL SS X UCL SS

P P X LCL SS

P P X UCL SS

= ≤ ≤


= ≤ ≤ 


= ≤ ≤ 


= < 
= > 

 (5) 

In equation (5), P1 is the probability that the process is in control, P2 and P3 are the 
probabilities that the process requires resampling and P4 and P5 are the probabilities that 
the process is out-of-control. According to Balamurali and Jun (2006) and Aslam et al. 
(2014a), the probability that the process is in-control under RS for the proposed Six 
Sigma-based RSCC can be given as 

( ) ( )
1 1 1

1 4 5 2 3
( )

1 1 ( )rs in
rs

P P PP SS
P P P P P P SS

= = =
+ + − + −

 (6) 

where Prs(SS) in equation (6) is the probability of repetition of sampling and can be 
expressed as 

( ) 2{ (4.5) (1.5)}rsP SS = −φ φ  (7) 

In equation (7), φ(·) represents the cumulative probability of standard normal distribution. 
Accordingly, equation (6) can be expressed as 

2 (1.5) 1( )
1 2{ (4.5) (1.5)}rs inP SS −=

− −
φ

φ φ
 (8) 

It may be noted that if ,x T≠  then the process is not centred and the shift can be 
measured as ssx T Kσ= ±  where K represents the level of shift. Hence, given the shift, 
the in-control probability under RS, denoted by ( )rs inP SS∗  can be given as 

( ) ( )
( ) ( ) ( ) ( )

1.5 1.5 1( )
1.5 4.5 4.5 1.5 1

rs in
K n K nP SS

K n K n K n K n
∗ − + + −=

+ − + − − + − +
φ φ

φ φ φ φ
 (9) 
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Therefore, the in-control ARL for the proposed Six Sigma-based RSCC with shifted 
mean can be obtained as follows: 

1( )
1 ( )rs in

rs in
ARL SS

P SS
∗

∗
=

−
 (10) 

If the process is centred at the target, then we have K = 0 and hence equation (9) will 
reduce to equation (8). Therefore, with K = 0, equation (10) will give in-control ARL for 
the process with centred mean. Accordingly, for a given subsample size n, the in-control 
ARL given in equation (10) can be computed for different values of 0 ≤ k < 1.5. We shall 
consider the values of 1.5 ≤ K ≤ 3 as well for comparison purpose with other existing 
charts in Section 6. 

Remark 3.1: For an initial sample under Six Sigma-based RSCC, probability that the 
process is out-of-control can be given as 

4 5( ) 2[1 (4.5)]rs outP SS P P= + = −φ  

and hence the in-control ARL, with K = 0, can be given as 

4 5

1 1( )
2[1 (4.5)]rs inARL SS

p p
= =

+ −φ
 

4 Six Sigma-based multiple dependent state sampling control chart 

As shown in Table 2 for RSCC, the MDSSCC too has six zones with the same form of 
control limits though the constants are computed differently. Unlike RSCC, in fact, 
MDSSCC utilises the sample information from previous subgroups in addition to the 
current subgroup (Aslam et al., 2014b). Based on this idea, in this paper,  
Six Sigma-based MDSSCC is proposed. Given a set of control limits as shown in 
equation (4), the Six Sigma-based MDSSCC works as given in the following steps: 

A two-step procedure for Six Sigma-based MDSSCC 

Step 1 Set i, (i = 1, 2, …, m), take a fresh subsample of size n. Obtain the sample mean 
.iX  

Step 2 Make one of the following decisions: 
1 The process is declared to be out-of-control if either 1( )iX UCL SS>  or 

1( ) .iX LCL SS<  

2 The process is declared to be in-control if 2 2( ) ( ) .iLCL SS X UCL SS≤ ≤  

3 If either 1 2( ) ( )iLCL SS X LCL SS≤ ≤  or 2 1( ) ( ) ,iUCL SS X UCL SS≤ ≤  then 
decide as follows: 
a the process is in control if the preceding k, 1 ≤ k ≤ i – 1, subsample 

means are in control. 
b Otherwise the process is out-of control. 
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It may be noted that the proposed Six Sigma-based MDSSCC chart involves the 
parameter k, where k is the number of preceding subgroups to be decided by the quality 
practitioner. It is also interesting to note that initially for i = 1 we have k = 0 and then the 
chart behaves like the Six Sigma-based RSCC and essentially if the subsample mean 1X  
falls in the doubtful region given in Step 2.3, then one has to decide if the process is 
either in-control or out-of-control. However, for the next subsample i = i + 1 = 2 we have 

2X  and if 2X  falls in the region given in Step 2.3, then we have only one preceding 
mean, i.e., 1,X  and therefore when ith mean is plotted then we can have 1 ≤ k ≤ i – 1, with 
i ≥ 2. 

Given the probabilities in equation (5) for various regions, in case of Six Sigma-based 
MDSSCC, while P1 is the probability that the process is in control, P4 and P5 are the 
probabilities that the process is out-of-control. However, P2 and P3 are the probabilities 
that no immediate decision is possible unless there are k preceding subsample means that 
are in control. Now, following Aslam et al. (2014b), the probability, denoted by 
Pmdss(SS)in that the process is in-control under MDSS for the proposed Six Sigma-based 
MDSSCC when the process is centred at target can be given as 

( ) ( )1 2 3 1( ) k
mdss inP SS P P P P= + +  (11) 

By using the cumulative standard normal probabilities, equation (11) can be expressed as 

( ) {2 (1.5) 1} 2{ (4.5) (1.5)}{2 (1.5) 1}k
mdss inP SS = − + − −φ φ φ φ  (12) 

For a shifted process, the probability that the process is in control, denoted by 
( )mdss inP SS∗  can be obtained as 

( ) ( ){ }
( ) ( ){ }

( ) ( ){ }
( ) ( ){ }

* ( ) 1.5 1.5 1

1.5 4.5

4.5 1.5

1.5 1.5 1

mdss in

k

P SS K n K n

K n K n

K n K n

K n K n

= + + − −

+ − − − − −
+ − − − 

+ + − −

φ φ

φ φ

φ φ

φ φ

 (13) 

Therefore, the in-control ARL for the proposed Six Sigma-based MDSSCC can be 
obtained as follows: 

1( )
1 ( )mdss in

mdss in
ARL SS

P SS
∗

∗
=

−
 (14) 

If the process is centred at the target, then K = 0 and hence equation (13) will reduce to 
equation (12) and hence equation (14) will result in the in-control ARL for the proposed 
Six Sigma-based MDSSCC with centred mean. Now, for a given subsample size n, ARL 
given in equation (14) can be computed for different values of 0 ≤ k < 1.5 and 1 ≤ k < i. 
We shall consider the values of 1.5 ≤ K ≤ 3 as well for comparison purpose with other 
existing charts in Section 6. 
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5 Six Sigma-based multiple dependent state repetitive sampling control 
chart 

Similar to that of RSCC and MDSCC, the multiple dependent state repetitive sampling 
control chart (MDSRSCC) too has six zones with the same form of control limits though 
the constants are computed differently (refer to Table 2 for zones). It may be noted that 
unlike MDSSCC, in case of MDSRSCC, samples are repeated if at any point of time the 
subsample mean falls in the doubtful region and the preceding k subsample means are not 
in control (Aldosari et al., 2017, 2018). In this paper, the Six Sigma-based MDSRSCC is 
proposed. Given a set of control limits as shown in equation (4), the Six Sigma-based 
MDSRSCC works as given in the following steps: 

A two-step procedure for Six Sigma-based MDSRSCC 

Step 1 Set i, (i = 1, 2, …, m), take a fresh subsample of size n. Obtain the sample mean 
.iX  

Step 2 Make one of the following decisions: 
1 The process is declared to be out-of-control if either 1( )iX UCL SS>  or 

1( ) .iX LCL SS<  

2 The process is declared to be in-control if 2 2( ) ( ) .iLCL SS X UCL SS≤ ≤  

3 If either 1 2( ) ( )iLCL SS X LCL SS≤ ≤  or 2 1( ) ( ) ,iUCL SS X UCL SS≤ ≤  then 
decide as follows: 
a the process is in control if the preceding k, 1 ≤ k ≤ i – 1, subsample 

means are in control. 
b otherwise set i = i + 1, go to Step 1 to repeat sampling. 

It may be noted that similar to that of MDSSCC, the proposed Six Sigma-based 
MDSRSCC also involves the parameter k, where k is the number of preceding subgroups 
to be decided by the quality practitioner. Here also, it may be note that initially for i = 1, 
we have k = 0 and the MDSRSCC behaves like the Six Sigma-based RSCC/MDSSCC 
and essentially if the subsample mean 1X  falls in the region given in Step 2.3, then one 
has to move on to repeat sampling. For the next subsample i = i + 1 = 2, we have 2X  and 
if 2X  falls in the doubtful region given in Step 2.3, then we have only one preceding 
mean, i.e., 1,X  and therefore when ith mean is plotted then we can have 1 ≤ k ≤ i – 1, with 
i ≥ 2. 

With the various probabilities given in equation (5), in case of MDSRSCC, P2 and P3 
are the probabilities that the process requires resampling whereas the purpose of other 
probabilities remains the same. Then, according to Aldosari et al. (2018), the probability, 
denoted by Pmdsrs(SS)in, that the process is in-control for the proposed Six Sigma-based 
MDSRSCC with centred mean can be obtained as 
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where Prs(mdsrs)(SS) in equation (15) is the probability of repetition of sampling under 
MDSRS and is given as 

( ) ( ){ }( ) 2 3 1( ) 1 k
rs mdsrsP SS P P P= + −  (16) 

Using the cumulative probability of standard normal distribution, equation (15) can be 
expressed as 

{ }
{2 (1.5) 1} 2{ (4.5) (1.5)}{2 (1.5) 1}( )

1 2{ (4.5) (1.5)} 1 {2 (1.5) 1}

k

mdsrs in k
P SS − + − −=

− − − −
φ φ φ φ

φ φ φ
 (17) 

It may be recalled that if ,x T≠  then the process is not centred and the shift can be 
measured as ssx T Kσ= ±  where K represents the level of shift. Given the shift, the  
in-control probability under the proposed Six Sigma-based MDSRSCC, denoted by 

( )mdsrs inP SS∗  can be expressed as 
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 (18) 

Therefore, the in-control ARL for the proposed Six Sigma-based MDSRSCC can be 
obtained as follows: 

*
1( )

1 ( )mdsrs in
mdsrs in

ARL SS
P SS

∗ =
−

 (19) 

It may be noted that if the process is centred at the target, then K = 0 and hence  
equation (18) will reduce to equation (17) and hence equation (19) will result in the  
in-control ARL for the proposed Six Sigma-based MDSRSCC with centred mean. Now, 
for a given subsample size n, ARL given in equation (19) can be computed for different 
values of 0 ≤ K < 1.5. We shall consider the values of 1.5 ≤ K ≤ 3 as well for comparison 
purpose with other existing charts in Section 6. 
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6 Numerical results and performance evaluation 

In order to numerically evaluate the performance of the proposed Six Sigma-based 
RSCC, MDSSCC and MDSRSCC, the ARL values are computed for different parameter 
settings for the respective charts as shown in Table 3. This table also briefs how these 
charts work and what happens once initial plot of mean is done. The ARL values for all 
the three proposed control charts are now computed based on the parameter settings and 
given in Tables 4, 5 and 6 respectively for Six Sigma-based RSCC, MDSSCC and 
MDSRSCC. The observations drawn from these tables are consolidated and given below: 

1 When initial sample is plotted, the in-control ARL values are same for all the three 
types of proposed control charts. This is due to the reason that when the process is 
centred (or in-control), i.e., K = 0, and when there is no preceding subsample, i.e.,  
k = 0, the MDSRSCC will reduce to MDSSCC and both the charts will reduce to the 
RSCC with the initial sample (refer to Remark 3.1). This can be seen from the ARL 
values given in the shaded rows of Tables 4 and 5. In fact, the ARL values shown in 
the shaded row of Table 4 represent that the process is in the initial stage and it is 
given here to compare with those of Six Sigma-based MDSSCC and MDSRSCC for 
initial case. 

2 For all the charts, as the process shift increases beyond K = 0, the ARL values keep 
decreasing steadily, meaning that when the shift increases the charts are able to 
detect the out-of-control situation quickly. Therefore, the proposed control charts 
outperform the existing charts because of higher ARL with regard to false alarm true 
alarm rates (Ravichandran, 2019a) 

3 In all the three charts, for a given shift level K, when the subsample size n increases, 
the ARL values are decreasing meaning that the estimator obtained becomes more 
robust as the subsample size increases and hence detection of out-of-control situation 
is accomplished at much higher rate. 

4 In cases of MDSSCC and MDSRSCC, as the number of preceding subsamples, k, 
increases, it is observed that the ARL values keep decreasing and this means that 
higher the preceding subsamples, quicker the detection of the process that is out-of 
control. 

5 While the inner control limits of the proposed Six Sigma-based RSCC is within ±1.5 
of the standard deviation, the existing RSCCs have the inner control limits ±1.0 or 
even less in most of the situations (Aslam et al., 2014a). This implies that even when 
a sample mean is closer to the process mean (or target), the existing RSCCs suggest 
for a resample which may not be warranted. 

6 In case of the proposed Six Sigma-based MDSSCC and MDSRSCC, the difference 
between the inner control limits and the outer control limits is within ±3 of the 
standard deviation, where as existing MDSSCC and MDSRSCC have the inner 
control limits that are too close to the outer control limits with a difference of ±1.0  
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approximately (Aslam et al., 2014b; Aldosari et al., 2018). Due to this fact, it may 
not be significant to look for multiple decisions since the process has already moved 
close to the outer control limit. Also, there is a likelihood that a subsample mean that 
is closer to the outer control limit may result in deciding the process as in-control 
process. 

7 It is clear that the proposed Six Sigma-based RSCC/MDSSCC/MDSRSCCs suggest 
for a resample only if the sample mean exceeds an allowable shift of ±1.5 times of 
the standard deviation. This avoids the frequent resampling and process disturbances. 
This has prompted the researchers (e.g., Carr, 1989; Davis et al., 1990) to develop 
modified ZCCs that suggest that as long as the shift in the process mean is around 
the target, no much or frequent adjustments are warranted. This leads to the 
conclusion that the proposed Six Sigma-based RSCCs, MDSSCCs and MDSRSCCs 
perform far better than their existing counterparts and ensure the Six Sigma goal of 
3.4 DPMO. 

Table 3 Parameter settings considered for numerical evaluations 

Parameter 
Six Sigma-based chart type 

Description 
RSCC MDSSCC MDSRSCC 

Shift (K) K = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, 1.5, 2.0, 3.0 When K = 0 the 
resulting values are 
in-control ARLs  

Subsample 
size (n)  

n = 10, 20, 30, 40, 50 Not applicable 

Preceding 
subsample 
(k) 

Not applicable k = 0, 1, 2, 3, 4 k = 0, 1, 2, 3, 4 
subsamples 

When k = 0, the 
resulting ARL 
values are for initial 
stage before 
repetition is effected. 
Hence all the three 
charts will have the 
same in-control ARL 
values for K = 0 and 
k = 0 

How the 
chart 
works 

The chart starts 
with the initial 
plot of mean. 
After each plot 
of mean, the 
chart repeats 
sampling if  
in-control or  
out-of-control 
decision is not 
reached. 

The chart starts 
with initial plot 
of mean. For 
each plot of 
mean, in-control 
or out-of-control 
decision is 
reached. It uses 
the nature and 
counts of  
pre-defined  
in-control 
preceding 
subsamples if 
required for a 
decision. 

The chart starts 
with initial plot 
of mean. After 
each plot of 
mean, the chart 
repeats sampling 
if in-control or 
out-of-control 
decision is not 
reached even 
after checking 
the nature and 
counts of  
pre-defined  
in-control 
preceding 
subsamples. 
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Table 4 ARL values for Six Sigma-based RSCCs 

Shift (K) 
Subsample size (n)  

10 20 30 40 50 
0.0 (initial) 147,160.00 147,160.00 147,160.00 147,160.00 147,160.00 
0.0 142,857.14 142,857.14 142,857.14 142,857.14 142,857.14 
0.1 55,555.55 32,258.06 20,790.33 14,345.31 10,362.91 
0.2 10,638.29 4,629.63 1,970.09 971.53 525.52 
0.3 3,663.00 707.71 207.68 75.62 31.74 
0.4 971.82 116.06 24.37 7.21 2.94 
0.5 266.52 20.57 3.76 1.53 1.12 
1.0 1.53 1.00 1.00 1.00 1.00 
1.5 1.00 1.00 1.00 1.00 1.00 
2.0 1.00 1.00 1.00 1.00 1.00 
3.0 1.00 1.00 1.00 1.00 1.00 

Table 5 ARL values for Six Sigma-based MDSSCCs 

Shift (K) Preceding 
sample (k) 

Subsample size (n) 
10 20 30 40 50 

0.0 0 147,160 147,160 147,160 147,160 147,160 
1 55.995 55.995 55.995 55.995 55.995 
2 30.007 30.007 30.007 30.007 30.007 
3 21.402 21.402 21.402 21.402 21.402 
4 17.142 17.142 17.142 17.142 17.142 

0.1 0 66,377 38,939 25,690 18,141 13,414 
1 42.724 33.789 27.455 22.801 19.288 
2 23.147 18.491 15.182 12.740 10.889 
3 16.673 13.449 11.149 9.445 8.148 
4 13.479 10.972 9.176 7.841 6.822 

0.2 0 18,142 6,420 3,018 1,645 985 
1 22.801 12.672 8.261 5.939 4.562 
2 12.740 7.377 5.005 3.740 10.889 
3 9.445 5.672 3.981 3.069 2.518 
4 7.841 4.863 3.512 2.776 2.325 

0.3 0 5,217 1,260 467 216 115 
1 11.253 5.169 3.205 2.324 1.853 
2 6.617 3.317 2.227 1.732 1.468 
3 5.132 2.762 1.962 1.592 1.391 
4 4.434 2.525 1.864 1.549 1.371 
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Table 5 ARL values for Six Sigma-based MDSSCCs (continued) 

Shift (K) Preceding 
sample (k) 

Subsample size (n) 
10 20 30 40 50 

0.4 0 1,645 298 96.000 41.000 21.000 
1 5.939 2.642 1.745 1.382 1.207 
2 3.740 1.911 1.407 1.205 1.110 
3 3.069 1.727 1.343 1.183 1.102 
4 2.776 1.665 1.329 1.179 1.101 

0.5 0 569 84.000 25.585 11.050 5.974 
1 3.505 1.682 1.249 1.099 1.039 
2 2.395 1.372 1.133 1.053 1.022 
3 2.086 1.316 1.122 1.051 1.021 
4 1.968 1.304 1.121 1.051 1.021 

1.0 0 11.050 2.046 1.197 1.035 1.005 
1 1.099 1.002 1.000 1.000 1.000 
2 1.053 1.002 1.000 1.000 1.000 
3 1.051 1.001 1.000 1.000 1.000 
4 1.051 1.001 1.000 1.000 1.000 

≥1.5 0 1.677 1.014 1.000 1.000 1.000 
1 1.000 1.000 1.000 1.000 1.000 
2 1.000 1.000 1.000 1.000 1.000 
3 1.000 1.000 1.000 1.000 1.000 
4 1.000 1.000 1.000 1.000 1.000 

Table 6 ARL values for Six Sigma-based MDSRSCCs 

Shift (K)  Preceding 
sample (k) 

Subsample size (n) 
10 20 30 40 50 

0.0 0 147,160 147,160 147,160 147,160 147,160 
1 144,533 144,533 144,533 144,533 144,533 
2 142,256 142,256 142,256 142,256 142,256 
3 140,284 140,284 140,284 140,284 140,284 
4 138,576 138,576 138,576 138,576 138,576 

0.1 0 11.965 8.301 6.659 5.670 4.993 
1 11.838 8.228 6.607 5.631 4.962 
2 11.731 8.167 6.565 5.600 4.938 
3 11.639 8.117 6.532 5.576 4.920 
4 11.562 8.075 6.504 5.557 4.906 
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Table 6 ARL values for Six Sigma-based MDSRSCCs (continued) 

Shift (K)  Preceding 
sample (k) 

Subsample size (n) 
10 20 30 40 50 

0.2 0 5.670 3.787 2.957 2.474 2.155 
1 5.631 3.769 2.947 2.468 2.151 
2 5.600 3.756 2.941 2.465 2.149 
3 5.576 3.747 2.937 2.463 2.148 
4 5.557 3.741 2.934 2.462 2.148 

0.3 0 3.527 2.299 1.788 1.529 1.365 
1 3.512 2.295 1.797 1.528 1.365 
2 3.501 2.293 1.796 1.528 1.365 
3 3.494 2.291 1.795 1.528 1.365 
4 3.480 2.290 1.795 1.528 1.365 

0.4 0 2.474 1.631 1.121 1.051 1.101 
1 2.462 1.630 1.324 1.179 1.101 
2 2.460 1.629 1.324 1.179 1.101 
3 2.459 1.629 1.324 1.178 1.101 
4 2.459 1.629 1.324 1.178 1.101 

0.5 0 1.882 1.300 1.121 1.051 1.021 
1 1.880 1.300 1.121 1.051 1.021 
2 1.879 1.300 1.121 1.051 1.021 
3 1.878 1.300 1.121 1.051 1.021 
4 1.878 1.300 1.121 1.051 1.021 

1.0 0 1.051 1.001 1.000 1.000 1.000 
1 1.051 1.001 1.000 1.000 1.000 
2 1.051 1.001 1.000 1.000 1.000 
3 1.051 1.001 1.000 1.000 1.000 
4 1.051 1.001 1.000 1.000 1.000 

≥1.5 0 1.000 1.000 1.000 1.000 1.000 
1 1.000 1.000 1.000 1.000 1.000 
2 1.000 1.000 1.000 1.000 1.000 
3 1.000 1.000 1.000 1.000 1.000 
4 1.000 1.000 1.000 1.000 1.000 

7 Numerical example 

In this section we consider a numerical example to illustrate the application of the 
proposed Six Sigma-based RSCC/MDSSCC/MDSRSCCs with the existing 
RSCC/MDSSCC/MDSRSCC. We consider the example used by Ravichandran (2016) to 
study the Six Sigma-based X-bar Control chart. Twenty samples (i.e., m = 20) each with 
five subsamples (i.e., n = 5) are taken from a process where the quality characteristic 
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represents the thickness of a transparent film with specification limit given as 180 ± 7. 
The population mean (or the target T) and the standard deviation σss = (USL – T)/6 are 
obtained as 180 and 1.166667 respectively. The means of the 20 subsamples are given as 
184.0, 179.6, 184.4, 179.8, 179.2, 181.4, 178.4, 183.8, 180.0, 178.6, 179.6, 182.8, 182.4, 
180.8, 178.0, 182.6, 178.6, 181.4, 181.4, 178.6. 

The actual process mean μ̂ x=  and the process standard deviation σ are computed as 
180.6 and 2.04 respectively. Now, Six Sigma-based control chart is constructed using 
equation (4) and is shown in Figure 1. Similarly, we have constructed the existing RSCC 
(Figure 2) and MDSRSCC (Figure 3) with the parameters given in Aslam et al. (2014a, 
2014b) for RSCC and in Aldosari et al. (2018) for MDSRSCC. That is, in Figure 2, the 
parameters used are n = 5, k1 = 3.052, k2 = 0.9699 and in Figure 3 we considered n = 5,  
k1 = 2.9996, k2 = 2.7784 for computing the control limits. In all, it is assumed that the 
parameter k = 2, representing the preceding number of subsample to be checked in the 
event that no decision is taken. 

We have compared Figures 1 and 2 for the performance of Six Sigma-based RSCC 
and the existing RSCC. It can be seen that while the proposed chart declares subsample 
number 15 as out-of-control, this subsample suggests for resampling in case of existing 
RSCC. This means that the proposed chart is capable of detecting the shifts at an early 
stage itself. Similarly, we compared Figures 1 and 3 for the performance of  
Six Sigma-based MDSRSCC with the existing MDSRSCC by assuming k = 2. In the 
proposed chart subsample 15 shows that the process is out-of-control whereas the 
existing MDSSCC in Figure 3 asks for checking the preceding two subsamples and 
decides the process is in control. Also, in Figure 1, subsample 7 says the process needs 
resampling whereas in Figure 3, the subsample is well in-control. This is mainly due to 
the reason that the inner control limits are too close to the outer control limits. These 
contrasting observations demonstrate that the proposed Six Sigma charts are superior to 
the existing counterparts in the early detection of shifts. 

Figure 1 Six Sigma-based RSCC/MDSSCC/MDSRSCC (see online version for colours) 
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Figure 2 Existing RSCC based on Aslam et al. (2014a)  
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Figure 3 Existing MDSRSCC based on Aldosari et al. (2018) 
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8 Discussion and Conclusions 

In this paper, well-defined Six Sigma-based RS, MDSS and MDSRS control charts are 
proposed. It is observed that unlike the existing RSCC, MDSSCC and MDSRSCC, the 
proposed control charts consider a more meaningful and ready-to-use control limits from 
the perspective of Six Sigma quality practitioners/process operators. The  
Six Sigma-based RSCC, MDSSCC and MDSRSCC are designed in such a way that the 
Six Sigma goal of 3.4 DPMO is ensured without much disturbance to the process when 
the process mean is closer to the target. We have numerically evaluated the performance 
of the proposed Six Sigma-based RSCC, MDSSCC and MDSRSCC, and the results are 
compared with the existing RSCC, MDSSCC and MDSRSCC. From the ARL values it is 
observed that the proposed chart performs better for increased subsample size as the 
estimator of interest becomes robust and hence the shift is detected at a higher rate. 
Further, it is observed that the proposed charts perform better than the existing ones by 
means of better average run lengths for detecting false alarm and true alarm in the 
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process and also suggest for minimum process disturbance for smaller shifts in the 
process mean as expected by most practitioners/process operators. From the numerical 
example, we have shown that the proposed Six Sigma-based control charts perform better 
than the existing counterparts in early detection of the out-of-control process situations. 

Like any traditional control charts, the proposed Six Sigma-based charts in this paper 
have some limitations and provide scope for further study as well. The proposed charts 
cannot be used as it is to monitor a process for attributes. Applicability of the existing 
‘run rules’ to the proposed charts needs further study. Also, it is important to check if the 
process is used for a long run and hence the allowance of ±1.5 sigma shift is meaningful. 
Under this case, reasonable large subsamples may be used. 
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