Design and testing of a braking control logic for independently driven electric wheels
by M. Vignati; G. Canonico; A.O. Salustri; E. Sabbioni; D. Tarsitano
International Journal of Vehicle Systems Modelling and Testing (IJVSMT), Vol. 15, No. 2/3, 2021

Abstract: Anti-lock braking control strategies have the aim of avoiding the wheel locking condition, in order to reduce the stopping distance and preserve the handling of the vehicle during the braking manoeuvres. Furthermore, the spreading of electric vehicles offers the possibility of adopting new powertrain layouts. Among those, the most interesting is represented by vehicles with independently driven wheels, i.e., one motor per wheel. This paper proposes a braking control logic particularly intended for independently driven electric wheel, in which the electric motor brakes the wheel and handled the wheel dynamics to avoid locking in braking. The control strategy is based on the estimation of the longitudinal force exchanged between the tyre and the road made possible by the motor torque estimation. The knowledge of the braking force allows to improve the braking performance with respect to conventional acceleration based strategies. The effectiveness of this strategy has been verified both in numerical simulation with a full car vehicle model and in a dedicated test-bench that reproduces the quarter car longitudinal dynamics.

Online publication date: Wed, 26-Jan-2022

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Vehicle Systems Modelling and Testing (IJVSMT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com