In-network aggregation trade-offs for data collection in wireless sensor networks
by Ignacio Solis, Katia Obraczka
International Journal of Sensor Networks (IJSNET), Vol. 1, No. 3/4, 2006

Abstract: This paper explores in-network aggregation as a power-efficient mechanism for collecting data in wireless sensor networks. In particular, we focus on sensor network scenarios where a large number of nodes produce data periodically. Such communication model is typical of monitoring applications, an important application domain sensor networks target. The main idea behind in-network aggregation is that, rather than sending individual data items from sensors to sinks, multiple data items are aggregated as they are forwarded by the sensor network. Through simulations, we evaluate the performance of different in-network aggregation algorithms, including our own cascading timers, in terms of the trade-offs between energy efficiency, data accuracy and freshness. Our results show that timing, that is, how long a node waits to receive data from its children (downstream nodes in respect to the information sink) before forwarding data onto the next hop (toward the sink) plays a crucial role in the performance of aggregation algorithms for applications that generate data periodically. By carefully selecting when to aggregate and forward data, cascading timers achieves considerable energy savings while maintaining data freshness and accuracy. We also study in-network aggregation's cost-efficiency using simple mathematical models. Since wireless sensor networks are prone to transmission errors and losses can have considerable impact when data aggregation is used, we also propose and evaluate a number of techniques for handling packet loss. Simulations show that, when used in conjunction with aggregation protocols, the proposed techniques can effectively mitigate the effects of random transmission losses in a power-efficient way.

Online publication date: Fri, 12-Jan-2007

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Sensor Networks (IJSNET):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com