
Int. J. Intelligent Information and Database Systems, Vol. 15, No. 1, 2022 57

MEI2JSON: a pre-processing music scores
converter

Charbel El Achkar* and Talar Atéchian
TICKETLAB,
Antonine University,
Baabda, Lebanon
Email: charbel.elachkar@ua.edu.lb
Email: talar.atechian@ua.edu.lb
*Corresponding author

Abstract: Converting music score content from symbolic formats to
simplified data formats is found useful for artificial intelligence purposes. The
conversion can be applied using XSL stylesheets and ontologies to ensure the
preserving of the data quality throughout the transformation. In this paper,
we proposed a new converter capable of transforming music scores encoded
in MEI to JSON format for pre-processing purposes, and future usage into
artificial intelligence techniques. The proposed converter uses an eastern
music score ontology capable of structuring standard music scores content
in addition to elements and attributes specific to eastern music. Thus, the
converter shares the same support for eastern music scores. We illustrate the
conversion process by assessing the performance analysis, the data quality,
and the storage of the proposed converter in comparison with a combined
approach composed of two state-of-the-art converters.

Keywords: MEI; MEI2JSON; music scores converter; MusicPatternOWL;
eastern music.

Reference to this paper should be made as follows: El Achkar, C. and
Atéchian, T. (2022) ‘MEI2JSON: a pre-processing music scores converter’,
Int. J. Intelligent Information and Database Systems, Vol. 15, No. 1,
pp.57–77.

Biographical notes: Charbel El Achkar is currently a PhD student at the
University of Franche-Comté in France. He started his studies in October
2020 through a collaboration between the Antonine University in Lebanon
and the University of Franche-Comté in France. His research interests
are related to music analysis, generation and evaluation through artificial
intelligence techniques. He had published his first research paper in July 2020
at the WIMS 2020 conference. He currently works as a software engineer at
inmind.ai located in Beirut, Lebanon and Abu Dhabi, UAE while pursuing
his research studies.

Talar Atéchian is an Associate Professor at the Faculty of Engineering at the
Antonine University. She received her PhD from the INSA of Lyon, France
in 2010. Her doctoral research focused in optimising routing protocols in
vehicular ad-hoc networks. Currently, her research interest includes audio data
analysis through artificial intelligence techniques.

Copyright © 2022 Inderscience Enterprises Ltd.



58 C. El Achkar and T. Atéchian

This paper is a revised and expanded version of a paper entitled ‘Supporting
music pattern retrieval and analysis: an ontology-based approach’ presented
at 10th International Conference on Web Intelligence, Mining and Semantics,
Biarritz, France, 30 June–3 July 2020.

1 Introduction

Combining artificial intelligence (AI) techniques with software solutions was found
interesting for researchers and developers in the recent decade. The usage of AI helped
in providing digital assistance as well as handling repetitive jobs for employees in their
daily tasks. It helped with digital platforms where the need to reduce errors is one of the
most essential and challenging criteria to improve its performance and reliability. Studies
went deeper until they reached music-related interests. Many researchers and musicians
took benefit of AI in their music-related studies. The latter provided digital assistance
in music annotation platforms such as predicting the next note of a real-time annotated
music score or generating new music scores depending on a pre-defined dataset.

However, both, the prediction of the next note and the generation of an entire music
score require a well-defined pre-processing process to prevent data loss and reach higher
accuracy post-training. This process and especially in music-related fields consist of
applying several progressive tasks, such as finding the needed elements and attributes
of a music score, filter the music score upon the use case, and finally, reshape the data
and convert it to a specific format for training ingestion.

A platform for encoding and analysing eastern music scores named traditional modal
monodies encoder (MM analyser) in Asmar et al. (2018) was capable of encoding a
corpus specific to modal monodies of the Mashreq. The MusicPatternOWL ontology
proposed in El Achkar and Atéchian (2020) assisted in the analysis process of the
encoder ensuring errorless export of eastern music scores encoded in MEI format. The
results of both, the encoder and the ontology, encouraged the use of resultant music
scores in machine learning use cases, by the fact that they provide ready-to-ingest
eastern music scores in MEI format.

While gathering the music scores out of the MM analyser, it was found that the MEI
format is not the optimal format used to feed AI models. MEI is an XML-based format
that holds multiple elements, each element gathers multiple music-related attributes to
encode detailed music score content. This is where we highlight the need to convert
the MEI outputs to simplified formats to reach our target of applying AI techniques on
music score content.

Based on a related work investigation, we found that the MEI format can be
converted to multiple formats such as MIDI and MusicXML. The latter formats were
similar to the MEI in the matter of providing simplified data to the AI models.
MusicXML is also an XML-based format and MIDI represents only recorded and played
audio information. Further investigations led us to discover the MusicJSON format
proposed in Alvaro and Barros (2010) capable of converting MusicXML music scores to
JSON. JSON is an easy-to-use data ingestion format over XML. Its improved readability
and lightweight approach support a bigger amount of information for feeding the AI
models.



MEI2JSON: a pre-processing music scores converter 59

The MEI to MusicXML converters use the MEI encoding tools (https://github.com/
music-encoding/music-encoding) provided by the MEI community for applying MEI
conversions. These tools lack encoding and representing eastern music scores elements
and attributes. Thus, the usage of existing MEI to MusicXML converters at the first
stage, and the conversion of the resultant MusicXML outputs to JSON format at a
second stage, generate JSON data that does not support eastern music score content.

In this paper, we present a new data converter named MEI2JSON that aims to
convert the music scores encoded in MEI to JSON format while preserving their
eastern music score content. The converter is based on the MusicPatternOWL ontology
proposed in El Achkar and Atéchian (2020), in addition to a modified schema of
MEI proposed in Asmar et al. (2018) capable of providing a structured knowledge
extraction of music scores elements and attributes for eastern music encoded in MEI.
The MEI2JSON is also capable of providing an MEI to JSON conversion without the
need to combine multiple converters from multiple sources.

The remainder of this paper is organised as follows: In Section 2, we discuss the
recent music related ontologies, XML to OWL mapping frameworks, and converters. In
Section 3, we introduce the MEI2JSON converter, describing its main components, their
behaviour, and the role of the MusicPatternOWL ontology inside these components.
Section 4 explores the full implementation of the proposed converter through its
application on an eastern music scores dataset encoded in MEI. In Section 5, we
compare through experiments the proposed converter with a combination of two existent
converters, followed by a conclusion and future work thoughts in Section 6.

2 Related work

Numerous studies were proposed to develop and manage ontologies related to music
score contents. Jones et al. (2017) developed an ontology to semantically annotate and
to reason upon western music scores. The proposed ontology helped in exploring the
benefits of the web ontology language (OWL) in music-related fields. Also, due to
the need of extracting the knowledge out of music data and managing this extraction
process, an ontology took place in Cherfi et al. (2017) to integrate semantic music
elements. This work helped in normalising the representation of music theories in a way
they can be linked together.

Studies went extensive in the music field, especially when both developers and
musicians found fruitful results in their collaborative opportunities. We proposed an
ontology named MusicPatternOWL (El Achkar and Atéchian, 2020) to cover the
structural and behavioural aspects of a pattern analysis algorithm for encoding eastern
music scores. This ontology supports the semantic information retrieval and analysis
processes of music score contents. The paper presented a proof of concept of its usage
with an algorithm proposed in Abou Mrad (2016) and developed in Asmar et al. (2018)
for analysing and encoding traditional modal monodies of the Mashreq, a unique corpus
in eastern music.

Many music scores are usually encoded using symbolic formats such as MEI
(Roland, 2002) and MusicXML (Good, 2001). These formats and especially MEI,
are XML-based formats relying on XML schemas to describe the structure of their
elements and attributes. This is where frameworks like JXML2OWL took place in
Rodrigues et al. (2008) to manually map XML schemas to existing OWL ontologies



60 C. El Achkar and T. Atéchian

and later, automate the transformation of XML instances into individuals of the mapped
ontology. These frameworks helped efficiently transforming the syntactic representation
of data (using XML) to a semantic one (using OWL). This transformation provided
the ability to perform inference on a knowledge-based model for better data exchange
and integrity. Another mapping solution was to develop (Lacoste et al., 2011) an
efficient framework of generating ontologies automatically out of XML instances. This
framework helped in creating a good description of the OWL model and XML instance
files. The introduction of both manual and automatic mapping frameworks (between
OWL ontology and the XML schema) allowed accessing XML encoded data from
Semantic Web applications that are already connected to OWL ontologies. This is
where frameworks like SPARQL2XQuery took place to accentuate the adjacency and
interoperability of both OWL and XML. Therefore, the proposed framework (Bikakis
et al., 2009) was able to evaluate SPARQL queries over XML data after mappings XML
to OWL Schemas.

Mapping frameworks were inspirational especially when the transformation rules
between XML and OWL Schemas could be saved and reused upon demand by storing
them in XSL stylesheets. The usage of XSL files as the holder of mapping rules
encouraged their usage in multiple data formats converters, by the fact that they will
ensure data conversion without losing data quality through the direct mapping between
schemas in terms of datatypes and property rules. As for music-related researches, a
toolkit named music21 took place in Cuthbert and Ariza (2010) to provide software
tools for both musicians with little programming experience and to programmers for
analysing, searching and transforming music scores in symbolic forms. This toolkit
did not use XSL stylesheets but provided several conversions supports to its specific
format. This project supports conversion of several symbolic formats including MEI,
MusicXML, and MIDI (The MIDI Manufacturers Association, 1995). By the evolution
of the MEI format, Verovio, a music engraving library was developed in Pugin et al.
(2014) to provide a visual representation of music scores encoded in MEI into SVG.
This library also provided the capability to convert MusicXML to MEI and vice-versa
based on the MEI XSL stylesheets available on the MEI encoding tools on Github
(https://github.com/music-encoding/music-encoding).

The conversion via Verovio had limited capabilities, it focused on the main elements
and attributes of music scores while excluding others. Also, an MEI related conversion
framework named Meico took place in Berndt et al. (2018) to provide a novel tool
that process MEI encoded music scores. Meico helped in converting MEI data to
multiple symbolic formats like MusicXML. The conversion was based on the same
XSL stylesheets used in Verovio where it also lacked the conversion of all the elements
and attributes of a music score encoded in MEI. Another study presented in Alvaro
and Barros (2010) focused on developing a music composing system named Computer
Music Cloud (CMC) as well as a suitable data representation format named MusicJSON
to efficiently compose and store music scores in the computer music cloud. The
MusicJSON was considered as a music interchange tool between different services of the
CMC. It was used also as a music data unification tool by converting several symbolic
formats including MusicXML to a music representation format in JSON.



MEI2JSON: a pre-processing music scores converter 61

3 The MEI2JSON converter

3.1 Motivation

The MM analyser in Asmar et al. (2018) and the MusicPatternOWL ontology
in El Achkar and Atéchian (2020) treated one of the most primary problems in
music-related platforms. The latter is the lack of support for eastern music encoding
and analysis. The MM analyser helped in encoding and analysing eastern music scores,
and the MusicPatternOWL assisted in that analysis process by ensuring an errorless
knowledge extraction at each progressive step of the encoding. At this stage, we were
able to export lossless music scores encoded in MEI format.

The advantages of combining AI techniques with music-related platforms (presented
in Section 1) motivated us to integrate those techniques and improve the MM analyser.
Similar to any AI use case, the data must be prepared and simplified as much as possible
before its training ingestion in neural networks. Therefore, it was needed to convert
our MEI exports to another data format by the fact that MEI holds many elements and
attributes that can be reduced upon the use case. Based on the music-related converters
presented in Sections 1 and 2, the absence of a converter capable of transforming MEI
music scores into JSON format was noticed, in addition to one of the essential criteria
in question: converting music scores without losing data quality and preventing errors.

All the reasons mentioned above motivated us to create the MEI2JSON converter
capable of transforming MEI music score to a simplified JSON format while preserving
data quality and reducing data manipulation errors, especially for eastern music score
datasets.

3.2 MEI2JSON components

By definition, “MEI is a community-driven, open-source effort to define a system for
encoding musical documents in a machine-readable structure.” Its schema is developed
using a literal programming XML format and expressed using the Relax NG (RNG)
schema language. This music representation format and other primary ones focus on
supporting occidental music because of its major worldwide usage. Therefore, it is not
accurate for encoding eastern music scores as mentioned in Asmar et al. (2018) and
El Achkar and Atéchian (2020). As stated in Sections 1 and 2, our need is to obtain the
most simplified format out of eastern music scores encoded in MEI for future AI usage.
The absence of a converter capable of handling eastern music elements and attribute at
a first step, and the disability to convert MEI music scores to a simplified format using
a single converter at a second, led us to create the MEI2JSON converter.

The MEI2JSON converter consists of three main components. Each component
is responsible for a specific task to achieve successful MEI to JSON music scores
conversion. As illustrated in Figure 1, any MEI in question should enter the MEI2XML
component at a first phase, redirect the result of the first component to the XML2RDF
component at a second phase, and at last convert the RDF data to JSON through the
RDF2JSON component.



62 C. El Achkar and T. Atéchian

Figure 1 MEI2JSON main components overview

3.2.1 The MEI2XML component

As mentioned earlier, MEI is an XML-based format expressed using the RNG schema
language. Thus, the MEI2XML component re-structures the schema of the MEI,
producing a simplified XML output for the second component. Inside the MEI2XML,
we use the modified MEI schema proposed in Asmar et al. (2018) to keep track of all
the schema structure proposed by the MEI community, in addition to the elements and
attributes proposed in Abou Mrad (2016) and contributed to the MEI schema in Asmar
et al. (2018). These elements and attributes are essential when analysing and encoding
eastern music scores. For this purpose, we configured an XSL stylesheet to embed our
MEI to XML transformation rules. These rules hold structuring aspects to make the
XML output the simplest possible. The proposed method consists of converting the RNG
schema of MEI to a legacy XML schema. This consists of transforming the attributes
of the MEI elements to sub-elements of the element itself and filters the concluding in
the most optimal way possible.

After running the XSL stylesheet over several MEI files, we found that the modified
MEI schema and the custom rules configured, lack consistency and normalisation.
The configuration of custom rules resulted in different forms of output for a single
MEI music score. Thus, we perceived the need to replace our custom rules with
the MusicPatternOWL ontology proposed in El Achkar and Atéchian (2020). The
MusicPatternOWL contains all the rules and restrictions needed to structure a music
score encoded in MEI. It supports the same elements and attributes existent in the
modified MEI schema, in addition to its power to extract and preserve the semantic
information in an errorless manner.

Based on the XML to OWL frameworks mentioned in Section 2, the mapping
between XML schemas and OWL schemas can be build using two different approaches.
In case the OWL schema is existent, the XML and OWL schemas should be mapped
manually, and in case the OWL schema does not exist, the OWL schema can be
generated out of the existent XML schema, and by that, obtain an automatic mapping
between them. Both, manual and automatic mapping approaches are used to transform
the XML instances into OWL individuals. On the other side, our approach was not to



MEI2JSON: a pre-processing music scores converter 63

transform MEI to OWL individuals directly but to transform them to XML instances
with OWL rules included, to structure and filter the needed data and exclude irrelevant
ones. Since the MusicPatternOWL is inspired by the MEI schema and shares the same
contribution as the modified MEI schema proposed in Asmar et al. (2018), a half-way
mapping was already established. As for the MEI2XML component, we completed this
mapping process by configuring an XSL stylesheet holding all the necessary mapping
and transformation rules to convert an MEI music score into a simplified XML format.

The mapping rules are classified into three distinct types:

• class mapping

• datatype property mapping

• object property mapping.

The class mapping concerns creating a link between a node of the modified MEI
schema with an OWL concept of the MusicPatternOWL ontology. The datatype property
mapping links an MEI node to a datatype property of the MusicPatternOWL. The
object property mapping relates two-class mappings to an OWL object property of the
MusicPatternOWL.

As for the transformation rules, in addition to the ones embedded through mapping,
we note the re-structuring shown in the XML representation below, to obtain the optimal
XML output possible. The first representation is a measure of an MEI score entered as
input, and the second one is the same measure converted to the XML output through the
configured XSL stylesheet. Since the MusicPatternOWL ontology excludes meta-data
features, the latter is excluded from the XML output generated, due to the absence of
mapping between the MEI schema and the MusicPatternOWL for this purpose. This
feature is found essential by the fact that it can automatically filter irrelevant data,
focusing on the music-score itself to achieve a successful pre-processing process.

At this stage, the MEI2XML component relies on an XSL stylesheet capable
of transforming MEI scores to XML format, while preserving music elements and
attributes specific to eastern music.

The measure representation in an MEI file
<measure xml:id="m-32" label="1" left="rptstart" n="1">

<staff xml:id="m-34" n="1">
<layer xml:id="m-35" n="1">

<beam xml:id="m-37">
<note xml:id="m-36" dur="8" dur.ges="128p" oct="4" pname="d"
pnum="50" stem.dir="up" snr="\alpha"/>
<note xml:id="m-38" dur="8" dur.ges="128p" oct="4" pname="g"
pnum="55" stem.dir="up" snr="\beta" mnr="yes"/>
<note xml:id="m-40" dur="8" dur.ges="128p" oct="4" pname="f"
pnum="54" stem.dir="up">

<accid xml:id="m-41" accid="s"/>
</note>

</beam>
</layer>

</staff>
<tie xml:id="m-39" endid="#m-40" startid="#m-38"/>

</measure>



64 C. El Achkar and T. Atéchian

The measure representation in the XML output
<measure number="1">

<beam>
<note>

<pname>d</pname>
<oct>4</oct>
<snr>\alpha</snr>
<dur>8</dur>

</note>
<note>

<pname>g</pname>
<oct>4</oct>
<snr>\beta</snr>
<mnr>\beta</mnr>
<dur>8</dur>

</note>
<note>

<pname>f</pname>
<oct>4</oct>
<dur>8</dur>
<accid>s</accid>

</note>
</beam>

</measure>

3.2.2 The XML2RDF component

The usage of XSL stylesheet in the MEI to XML conversion of the first component
encouraged us to take the same approach in the next one. The objective of the
XML2RDF component is to convert the XML data into RDF without losing any
semantic information. Therefore, we decided to use the XSL stylesheet proposed in
Breitling (2009). The latter contains all the standard transformation rules capable of
providing efficient XML to RDF conversion. In other terms, we can apply this converter
to any XML dialect which supports then both, the elements and attributes proposed
in the modified MEI schema in Asmar et al. (2018). At this stage, we were able to
convert MEI scores to XML using MEI2XML and convert the XML to RDF using
the XML2RDF component, without losing any semantic information related to eastern
music scores.

Note that mentioning the support of eastern music scores does not eliminate the
fact that music encoding formats were initially built to support occidental music scores.
Therefore, the MEI2JSON converter supports the latter if encoded in MEI format.

3.2.3 The RDF2JSON component

The previous components of the MEI2JSON converter managed to convert MEI scores
to RDF using several methods to prevent loss of semantic information and data quality.
Thus, the job of the RDF2JSON component is to proceed with the conversion process
to convert the music score encoded in MEI to JSON format. As mentioned in Section 1,
the MEI2JSON converter aims to transform MEI files to JSON for pre-processing
purposes. The pre-processing process, in addition to data cleaning and filtering, consists



MEI2JSON: a pre-processing music scores converter 65

of applying feature engineering selection to choose the needed input variables for
training ingestion. In music-related cases, these input variables are the elements and
attributes of a music score, where we must select the needed ones only, to solve targeted
use cases. As an example, when the use case is to predict the next note of a music score,
we must select the input variables (elements and attributes) that affect only the note
element of a music score. Therefore, we use the MusicPatternOWL ontology proposed
in El Achkar and Atéchian (2020) as element selector and validator in the RDF2JSON
component. This way we can produce the most optimal JSON output by selecting the
needed elements from the music score upon the use case, validating once again the three
mapping types of the MEI2XML component, and finally building the JSON output to
achieve a successful pre-processing process.

It is important to mention that this component excludes the attributes of a music
score since the MEI2XML component transforms the attributes to sub-elements as
shown in the earlier XML representation. Also, the RDF2JSON component contains
a knowledge graph builder so that using SPARQL queries the MusicPatternOWL is
capable of selecting the needed features through a simple query builder. Note that the
query result is passed through JSON libraries to ensure the creation and validity of the
output.

To recapitulate and converge, the MEI2JSON relies on three components. The first
component, the MEI2XML, converts the structure of an MEI music score to XML by
transforming its schema represented in RNG to the XML schema. Its conversion relies
on a mapping between the modified MEI schema presented in Asmar et al. (2018) and
the MusicPatternOWL proposed in El Achkar and Atéchian (2020). This mapping is
implemented in an XSL stylesheet, the core of the MEI to XML conversion. The second
component, the XML2RDF, uses the existing XSL stylesheet proposed in Breitling
(2009) for converting XML to RDF. Since this stylesheet supports any XML dialect, we
only configured this component to reach the RDF format for input in the last component.
The third and last component, the RDF2JSON component uses the MusicPatternOWL
as a music score validator ensuring a lossless flow of information. It converts RDF
data to JSON while implementing the idea of query builder where users can filter and
retrieve their needed music elements upon future AI use cases. Therefore, the unification
of these components constitutes the MEI2JSON capable of transforming eastern music
scores to a ready-to-ingest format in AI models.

4 Implementation

The previous section presented each component of the MEI2JSON converter. It exposed
the role, the composition, and the benefit of each component to achieve a successful
conversion of music scores encoded in MEI to JSON output. The present section
exposes the necessary technical details to achieve the full implementation of the
proposed converter, in addition to the implementation of two combined converters for
further experimental comparison.



66 C. El Achkar and T. Atéchian

Figure 2 MEI2JSON activity diagram



MEI2JSON: a pre-processing music scores converter 67

4.1 MEI2JSON process

Figure 2 presents the MEI2JSON converter through an activity diagram. The first part
of the diagram illustrates the progressive steps of the MEI2XML component to achieve
successful conversion (MEI to XML). The converter pulls an MEI score taken from
an MEI file (.mei extension), loads the custom XSL stylesheet created and converts
if possible, the MEI file to XML. The custom XSL stylesheet named mei2xml.xsl is
the file responsible for handling the conversion needed. Thus, the mei2xml.xsl needs
to be loaded by an XSLT processor to perform this conversion. Therefore, we use the
Saxon XSLT and XQuery processor (Kay, 2010) based on its previous usage in most
of the converters presented in Section 2. In the case of a successful conversion, the
generated XML file will be redirected to the second component to perform further steps.
Otherwise, the system logs the errors so that we can easily find and solve the problems
related to the failure in conversion.

The generated XML file proceeds its path to the XML2RDF component. Like the
previous component, the xml2rdf.xsl proposed in Breitling (2009) is loaded using the
Saxon processor to apply the corresponding conversion to the XML file. Also, the
generated RDF file proceeds to the next component in success cases, and in case of
failure, the error loggings will guide the user to solve the problems faced.

Finally, the generated RDF file is loaded in the RDF2JSON component using
the library (RDFLib, https://github.com/RDFLib/rdflib). This library provides powerful
parsers and serialisers to load the knowledge graph out of RDF/XML data. Once
loaded, the RDF file can be queried through custom SPARQL queries to extract the
semantic information needed for pre-processing purposes. The SPARQL query then can
be customised upon the use case. In case of a successful query, the result will be sorted
and formed in a JSON file as output. The RDF2JSON component ensures the validity
of the JSON file by applying schema syntax definitions such as the JSON schema
proposed in Pezoa et al. (2016). Thus, the MEI2JSON made several progressive steps
passing from a component to another, to achieve a successful conversion of MEI scores
to JSON.

Note that the MEI2JSON converter is currently implemented using the Python
language (Van Rossum and Drake, 2009), although, it can be implemented using other
programming languages since we are loading the XSL stylesheet through command-line
usage of the Saxon library. Also, the RDF related libraries are available in many
programming languages which helps in providing enhanced coverage of the MEI2JSON
converter.

4.2 Meico+MusicJSON process

The related work presented all the converters capable of transforming MEI scores to
other symbolic formats such as MusicXML or MIDI. Also, it was mentioned that the
music community does not have a straightforward approach to convert MEI scores to
JSON.

In this part, we present the usage of two different converters so that once
implemented, they can be used in combination to assess the MEI2JSON converter. The
first converter named Meico can convert MEI scores to MusicXML, and the second one,
the MusicJSON converter can convert MusicXML scores to JSON format.



68 C. El Achkar and T. Atéchian

Figure 3 Meico+MusicJSON activity diagram

Figure 3 presents the combined converters through an activity diagram. The first portion
of this diagram concerns the insertion of the MEI score as input to the Meico converter,
loading the mei2musicxml stylesheet provided by MEI encoding tools (https://github.
com/music-encoding/music-encoding), and converting the MEI score to MusicXML
format. In case of a successful conversion, the obtained MusicXML file proceeds to the
second converter. Otherwise, the system logs the errors found while converting to detect
and solve related problems. The second portion of this diagram concerns the insertion of
the MusicXML file generated by the Meico converter and converting this file to JSON
format using MusicJSON proposed in Alvaro and Barros (2010). In successful cases, the
result will be a valid JSON output that respects the schema proposed by the MusicJSON
contributors.



MEI2JSON: a pre-processing music scores converter 69

It is important to mention that both, the Meico (Berndt et al., 2018) and
Verovio (Pugin et al., 2014) converters rely on the same XSL stylesheet provided
by MEI encoding tools (https://github.com/music-encoding/music-encoding) to run the
transformation over MEI scores and convert them to MusicXML. Also, they use the
same approach of using the command-line interface to apply this conversion which
makes them identical in this matter. Therefore, using Meico with MusicJSON as
the combined approach or using Verovio with MusicJSON will result in the same
experimental results in terms of data quality and complexity metrics.

Note that the MusicJSON converter consists of a package written in JavaScript
programming language, loaded using the Node.js runtime environment to achieve the
corresponding conversion. This package, in addition to the whole process, is called using
Python programming language (Van Rossum and Drake, 2009) for better comparison
with the proposed converter.

5 Experiments

In the implementation section, we presented both the MEI2JSON converter and the two
combined converters Meico+MusicJSON. We elaborated the two processes using activity
diagrams to technically describe the role of each component inside both approaches. In
this section, we aim to compare the MEI2JSON with the Meico+MusicJSON in terms of
performance analysis and the quality of the data produced out of these converters. For
this purpose, we use a dataset of 150 traditional modal monodies music scores encoded
in MEI. These music scores are considered a unique corpus in eastern music. Also, these
MEI scores are the output of the MM analyser, the platform proposed in Asmar et al.
(2018) to analyse and encode eastern music. Thus, the music scores contain elements
and attributes specific to eastern music analysis, in addition to the standard elements
and attributes present in any music score encoded in MEI.

5.1 Dataset

Considering that our primary objective is to provide successful MEI to JSON conversion
of eastern music scores, we chose a dataset related to traditional modal monodies. Modal
monodies are eastern music scores, thus the dataset used in our experiments contains
the following four eastern music modes:

• Hijāz (31 music scores)

• Dūlab Bāyāti (33 music scores)

• Dūlab Rāst (40 music scores)

• Jāhārkā (46 music scores).

Once grouped, we obtain 150 eastern music scores encoded in MEI format. The size of
an MEI score varies between 4.4 to 42.6 kB of music score data. Musicians transcribe
modal monodies from eastern music score books such as Abou Mrad (2016) to MEI
format. They encode and validate their digitalised transcriptions using the MM analyser,
and provide us with the needed MEI scores for further studies.



70 C. El Achkar and T. Atéchian

5.2 Performance analysis

The performance analysis concerns analysing algorithms based on an input size required
to run it. The complexity then is expressed as a function of n, where n is the input
size. In this paper, we compare the MEI2JSON with the Meico+MusicJSON in terms of
two complexity metrics, the time and space complexity. The time complexity describes
the amount of time to run an algorithm, and space complexity reports the amount
of memory space to run an algorithm. We calculated the time complexity through
experimental evaluation, and used the memory-profiler python module to evaluate the
space complexity for both approaches.

5.2.1 Time complexity

Figure 4 presents the time complexity chart for the MEI2JSON and the
Meico+MusicJSON converters. We use an orange-dashed line to visualise the
MEI2JSON converter, and a blue line to illustrate the Meico+MusicJSON converter. The
two approaches use the same number of input (150 music scores) and the same number
of elementary operations performed by the algorithm for better comparison purposes.
Figure 4 shows the same performance of both approaches when the input size is smaller
than 40 music scores. However, the time complexity changes clearly after reaching a
value of 60 music scores, taking a different trajectory for each approach.

Figure 4 Time complexity chart (see online version for colours)

The algorithm of the Meico+MusicJSON is not distinctly affected by the size of
each music score. On the other hand, the proposed MEI2JSON converter lacks this
stability due to his final component, the RDF2JSON component. The usage of the RDF
format for data selection and second validation through the MusicPatternOWL forces
the algorithm to load the entire RDF file inside the knowledge graph of the RDF2JSON
component. The latter slows the converter dependent on the size of the RDF file in
question, the time to load the RDF inside the knowledge graph, and the selection of the
needed elements using SPARQL queries.



MEI2JSON: a pre-processing music scores converter 71

Therefore, the Meico+MusicJSON outperforms the MEI2JSON in terms of time
complexity due to the dependency of the latter on the size of each music score. Note that
the number of operations of the Meico+MusicJSON augmented quickly after exceeding
a value of 140 music scores as input size. This unpredicted augmentation could result
in a draw between the two approaches when using bigger datasets.

5.2.2 Space complexity

Regarding the space complexity, we use the memory-profiler python module to
monitor the memory consumption of both the Meico+MusicJSON and the MEI2JSON
converters. Figures 5 and 6 present the memory consumption (in MiB) expressed as a
function of time to respectively estimate the space complexity of Meico+MusicJSON
and MEI2JSON. The space complexity in both graphs is calculated by running the
memory-profiler on the algorithms using the entire dataset of 150 music scores.

In Figure 5, we can visualise an approximate constant line with a value of 48.0 MiB
during the whole process. We interpret the chart by the fact that the Meico converter
start by loading the mei2musicxml.xsl stylesheet to convert the MEI score to MusicXML.
This loading allocates an amount of memory equal to 48.0 MiB until the conversion
completes. Once completed, the MusicJSON converter allocates an amount of 48.7 MiB
to load its package and convert the MusicXML scores to JSON format (from 310 to
330 millisecond in Figure 5). The entire process took 330 milliseconds to convert the
150 music scores to JSON.

As for Figure 6, we can visualise two main variations of memory consumption. The
first is a continuous line taking a value of 48.0 MiB from the beginning till a time
equal to 380 milliseconds. The second is an approximate line to 72.0 MiB from 380
milliseconds to the end (630 milliseconds). The first line stable on 48.0 MiB concerns
loading the custom mei2xml.xsl stylesheet responsible of converting the MEI scores to
XML format. Once the first conversion completes, the same memory consumption is
given to load the xml2rdf.xsl stylesheet responsible for converting the XML format to
RDF. Both stylesheets use the processor proposed in Kay (2010), which explains the fact
that they have the same memory consumption (from 0 to 380 milliseconds). Therefore,
the MEI2XML and XML2RDF components allocate the same amount of memory.

Once the role of the XML2RDF component completes, the line chart varies to
reach a value stable on 72.0 MiB approximatively, to highlight the third component,
the RDF2JSON. The load of the RDF results using the proposed library (RDFLib,
https://github.com/RDFLib/rdflib) is responsible for reaching this memory consumption
value. This library handles the loading of RDFs into the knowledge graph at first, and
querying the needed elements out of the RDF file loaded in second. The entire process
took 630 milliseconds to convert the 150 music scores to JSON.

Note that MEI2JSON’s last component is the part responsible for increasing the
time and memory consumption in comparison with the Meico+MusicJSON approach.
Therefore, the RDF2JSON component is responsible for increasing the space complexity
and the time complexity as seen in the previous interpretations. Improving this
component in the future can make the proposed converter outperform the two combined
ones in terms of time and space complexity.



72 C. El Achkar and T. Atéchian

Figure 5 Space complexity chart – Meico+MusicJSON (see online version for colours)

Figure 6 Space complexity chart – MEI2JSON (see online version for colours)

5.3 Data quality assessment

The performance of converters is usually evaluated by calculating its complexity
and ensuring it preserves the quality of the data produced out of its transformation.
In Figure 7, we present four different data quality metrics used on both the
Meico+MusicJSON and the MEI2JSON converters to assess their quality preserving
upon the used dataset. The MEI2JSON metrics are visualised using orange bars in the
histogram, and the Meico+MusicJSON’s using blue bars.

Before explaining the quality metrics, we note the usage of the jsonix
(https://github.com/highsource/jsonix) mapping library to obtain a JSON schema out of
the modified MEI schema proposed in Asmar et al. (2018). Thus, we used the resulted
JSON schema and the MusicJSON schema to respectively evaluate the output of the
Meico+MusicJSON and the MEI2JSON converters upon each metric. It is valuable to



MEI2JSON: a pre-processing music scores converter 73

mention that the mandatory elements in this experiment concern the note element and
its attributes, including the eastern music score ones.

Figure 7 Histogram – data quality metrics (see online version for colours)

Below we present the assessment metrics to compare both approaches:

• Availability is a metric used to measure whether all the necessary elements of a
music score are present in a specific dataset. The dataset in this matter concerns
the output generated out of both converters. We measure the availability of both
approaches by calculating the percentage of music score fields that have values
entered into them. The MEI2JSON resulted in an availability percentage of 98.2%
and the Meico+MusicJSON of 63.9%. The gap between both results is mainly
due to the lack of support of the modified MEI schema in the Meico+MusicJSON
approach. This lack is responsible for discarding undefined elements and
preserving only the standard occidental music score elements. In this case, the
undefined elements are the ones related to eastern music scores.

• Accuracy is a metric used to evaluate the correctness of the music score in
question. We measure the accuracy of both approaches by calculating the
percentage of the correctly converted music score elements compared to the initial
values. Since the future usage of the converted music scores is in the AI field, we
chose to estimate accuracy using the accuracy score function provided by
Pedregosa et al. (2011). Considering the usage of several essential elements for
encoding music scores, we estimate the accuracy as a multilabel approach. We
calculate the accuracy at the level of multiple elements, each element containing
multiple labels. As shown in the equation below, the accuracy is the sum of
accuracies at the level of each music element divided by N - the number of music
score elements used. The true label are the labels of the initial music elements
before conversion and the output label are the labels of elements after JSON or
MusicJSON conversion. It is important to mention that since music score
elements have labels encoded as characters in MEI, we had to use the
LabelEncoder function provided by Pedregosa et al. (2011) to convert characters
to numeric. This way the element’s labels would be compatible for usage in the
accuracy score function.



74 C. El Achkar and T. Atéchian

For example, and before using the accuracy score function, we use the
LabelEncoder to transform the labels of the PitchName element from
[a, b, c, d, e, f, g] to [0, 1, 2, 3, 4, 5, 6] so that we can calculate the accuracy of the
PitchName using accuracy score at first, calculate the accuracy of the remaining
elements, sum all the accuracies and divide them by the number of elements used.
Finally, we multiply the resulting accuracy by 100 to obtain the accuracy value as
a percentage.

Accuracy =
∑

accuracy score(true label, output label)

N
× 100

The Meico+MusicJSON resulted in an accuracy of 82.4%, and the MEI2JSON an
accuracy of 92.5%.

• Consistency is a metric used to evaluate the synchronicity of music score in terms
of data types and schema structure. We measure this metric by calculating the
percentage of data types that match across different records. We use the schema
structure of both approaches to detect the structure and data types changes while
passing from a component/converter to another.

Similar to accuracy calculation, we took the same approach to calculate the
consistency at the level of data types per music score element. Therefore, we use
the LabelEncoder function to transform data type values to numeric labels and
use the v measure score function provided in Pedregosa et al. (2011) to estimate
consistency of music score elements.

By definition the v measure score clusters the labels given a ground truth. In our
case, it clusters the element’s data type labels reflecting the consistency of the
latter elements. The v measure score function takes as parameters the following:
The true label which stands for the element’s data type labels before using the
MEI to JSON or MusicJSON converters. The output label whichs stands for the
element’s data type labels after MEI to JSON or MusicJSON conversion. The last
parameter, β, is the ratio of weight attributed to homogeneity and completeness.
We will leave this value to its default meaning that the resultant score should
have the same weight regarding homogeneity and completeness. The
v measure score results in a score between 0.0 and 1.0. The greater the result, the
better is the consistency.

Once the v measure score is calculated against all the essential elements of a
music score, we sum all the resultant scores, divide them by N - the number of
music score element used. Finally, we multiply the whole result by 100 to obtain
the final consistency value as a percentage.

Consistency =
∑

v measure score(true label, output label, β)

N
× 100

As shown in Figure 7, the consistency percentage of Meico+MusicJSON is equal
to 82% and the MEI2JSON equal to 94%. This slight improvement of the
MEI2JSON over the combined approach is due to the existence of the
MusicPatternOWL ontology present in the first and last converter, to structure and
filter the music score elements in question.



MEI2JSON: a pre-processing music scores converter 75

• Validity is a metric used to measure how well data conforms to the required value
attributes. We measured the validity by calculating the percentage of music score
elements and attributes that have values within the domain of acceptable values.
We used the JSON schema of both approaches, in addition to the syntax
definition proposed in Pezoa et al. (2016) to calculate the validity metric. Both
approaches resulted in a validity percentage of 100%. This high percentage is due
to MusicJSON’s built-in validator in the first approach and the presence of the
MusicPatternOWL ontology in the second.

5.4 Storage assessment

The previous assessment reflected the outperforming of the MEI2JSON converter over
the Meico+MusicJSON in terms of data quality metrics. The current assessment presents
the storage reduction of both approaches at different input size scales.

Table 1 Storage overview table

Numbers of inputs (files) 10 20 30 40 50 60

Initial input size (in kB) 58.9 115.3 208.1 267.5 546.2 861.4
Meico+MusicJSON output size (in kB) 58.5 113.9 191.4 249.5 398.0 542.6
MEI2JSON output size (in kB) 55.9 100.7 146.9 181.4 224.7 259.1

70 80 90 100 110 120 130 140 150 Reduction (%)

1,100 1,200 1,500 1,900 2,200 2,500 2,800 3,100 3,300 ——
658.7 704.3 829.9 1,000 1,200 1,300 1,400 1,500 1,700 45.3
305.2 325.4 346.5 414.3 450.2 497.0 542.6 595.6 645.8 74.1

In Table 1, we demonstrate the storage allocation of both conversion approaches using
the same input size scale as the complexity study. The first row of the table presents
the different scales of input sizes. The second corresponds to the initial size of the MEI
music scores before conversion. The third and the last concern the output sizes of the
Meico+MusicJSON and the MEI2JSON converter. The input and output sizes expressed
in kiloBytes (kB). While assessing the storage, it was clear that the Meico+MusicJSON
reduced the storage allocation depending on the input size. Therefore, we calculated
the average reduction percentage that resulted in a decrease of 45.3%. On the other
side, the MEI2JSON was able to reduce the storage with an average of 74.1%.
Thus, the MEI2JSON is capable of reducing the storage by 28.8% more than the
Meico+MusicJSON approach. This improvement is beneficial for database systems
where it can ensure the integrity of music score using one of the most optimal format
possible, the JSON format. Also, it has a positive influence on our pre-processing target,
since ingesting smaller inputs makes the neural network handle bigger datasets while
keeping the hardware in healthy conditions.

To briefly summarise our experiments, we calculated the time and space complexity,
the data quality metrics, and the storage assessment of both converters using an
eastern music dataset presented at the beginning of Section 5. The Meico+MusicJSON
approach outperformed MEI2JSON in terms of time and space complexity. The latter
outperformed Meico+MusicJSON in terms of data quality assessment and storage
assessment. Thus, the MEI2JSON proved its role as a converter for eastern music scores



76 C. El Achkar and T. Atéchian

from MEI to JSON format where other converters focused primarily on supporting
occidental music scores. On the other hand, the comparison between the previously
mentioned converters will normally differ using occidental music scores. The existing
solution should outperform the MEI2JSON in terms of data quality metrics since
occidental music scores are in continuous development in the MEI community. These
continuous updates are supported by the MEI converters like Meico (Berndt et al., 2018)
since they use the latest versions of the MEI encoding tools (https://github.com/music-
encoding/music-encoding).However, the MEI2JSON relies on the MusicPatternOWL
proposed in El Achkar and Atéchian (2020) that supports eastern music scores more
than the occidental because of the latter’s continuous updates.

6 Conclusions

In this paper, we proposed the MEI2JSON converter that covers the transformation
of music scores encoded in MEI to JSON format for pre-processing purposes. As
explained, the proposed converter consists of three components. The components rely
on the MusicPatternOWL ontology to achieve information retrieval and structure music
score content throughout the conversion process. We compared the MEI2JSON with
a combined approach composed of two existent converters, Meico and MusicJSON.
We used a dataset of 150 eastern music scores encoded in MEI to obtain the needed
results. The experiment results were promising by the fact that our converter was able
to outperform the combined converters in terms of data quality and storage assessment.
The converter proved its capability of preserving the quality of the data while reducing
the allocated storage space. However, the combined approach still outperforms the
MEI2JSON in terms of analysis performance. The outperformance was mainly due
to the behaviour of the last component, the RDF2JSON component. Our future work
should focus on improving the analysis performance of the MEI2JSON, in addition to
deploying the proposed converter on several database systems to ensure its integrity
upon diverse datasets.

References

Abou Mrad, A. (2016) Éléments de sémiotique modale. Essai d’une grammaire musicale pour les
traditions monodiques, Éditions Geuthner et Éditions de l’Université Antonine.

Lvaro, J.L. and Barros, B. (2010) ‘MusicJSON: a representation for the computer music cloud’,
Proceedings of the 7th Sound and Music Computer Conference, Barcelona.

Asmar, M., Atéchian, T., Martin, S.L. and Mrad, N.A. (2018) ‘Traditional modal monodies generative
grammar encoding in the music encoding initiative’, Proceedings of the International Conference
on Technologies for Music Notation and Representation, Concordia University, pp.95–103,
DOI: 10.5281/zenodo.1289693.

Berndt, A., Waloschek, S. and Hadjakos, A. (2018) ‘Meico: a converter framework for bridging the
gap between digital music editions and its applications’, Proceedings of the Audio Mostly 2018
on Sound in Immersion and Emotion (AM’18), DOI: 10.1145/3243274.3243282.

Bikakis, N., Gioldasis, N., Tsinaraki, C. and Christodoulakis, S. (2009) ‘Querying XML data with
SPARQL’, DEXA 2009.

Breitling, F. (2009) ‘A standard transformation from XML to RDF via XSLT’, ArXiv abs/0906.2291.



MEI2JSON: a pre-processing music scores converter 77

Cherfi, S.S-S., Guillotel, C., Hamdi, F., Rigaux, P. and Travers, N. (2017) ‘Ontology-based annotation
of music scores’, K-CAP 2017.

Cuthbert, M. and Ariza, C. (2010) ‘Music21: a toolkit for computer-aided musicology and symbolic
music data’, Proceedings of the 11th International Society for Music Information Retrieval
Conference, ISMIR 2010, pp.637–642.

El Achkar, C. and Atéchian, T. (2020) ‘Supporting music pattern retrieval and analysis: an
ontology-based approach’, Proceedings of the 10th International Conference on Web Intelligence,
Mining and Semantics (WIMS 2020), Biarritz, France, pp.17–20, Association for Computing
Machinery [online] https://doi.org/10.1145/3405962.3405973.

Good, M. (2001) ‘MusicXML for notation and analysis’, in Hewlett, W.B. and Selfridge-Field,
E. (Eds.): The Virtual Score: Representation, Retrieval, Restoration, pp.113–124, MIT Press,
Cambridge (MA); London (UK).

Jones, J., Braga, D., Tertuliano, K. and Kauppinen, T. (2017) ‘MusicOWL: the music score ontology’,
Proceedings of the International Conference on Web Intelligence.

Jsonix [online] https://github.com/highsource/jsonix (accessed 23 October 2020).
Kay, M (2010) Saxon the XSLT and XQuery Processor [online] https://www.researchgate.net/

publication/247443507 Saxon the xslt and xquery processor (accessed 23 October 2020).
Lacoste, D., Sawant, K. and Roy, S. (2011) ‘An efficient XML to OWL converter’,

Proceedings of the 4th India Software Engineering Conference 2011, ISEC’11, pp.145–154,
DOI: 10.1145/1953355.1953376.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M.,
Perrot, M. and Duchesnay, E. (2011) ‘Scikit-learn: machine learning in Python’, Journal of
Machine Learning Research, Vol. 12, No. 12, pp.2825–2830.

Pezoa, F., Reutter, J.L., Suárez, F., Ugarte, M. and Vrgoc, D. (2016) ‘Foundations of JSON schema’,
WWW 2016.

Pugin, L., Zitellini, R. and Roland, P. (2014) ‘Verovio: a library for engraving MEI music notation into
SVG’, Proceedings of the 15th International Society for Music Information Retrieval Conference,
Taipei, Taiwan, pp.107–112, ISMIR, DOI: 10.5281/zenodo.1417589.

RDFLib [online] https://github.com/RDFLib/rdflib (accessed 22 October 2020).
Rodrigues, T., Rosa, P. and Cardoso, J. (2008) ‘Moving from syntactic to semantic organizations using

JXML2OWL’, Computers in Industry, Vol. 59, pp.808–819, DOI: 10.1016/j.compind.2008.06.002.
Roland, P. (2002) ‘The Music Encoding Initiative (MEI 01 2002)’, Proceedings of the First

International Conference on Musical Applications Using XML, pp.55–59.
The MIDI Manufacturers Association (1995) MIDI 1.0 Detailed Specification, Document version 4.2,

revised 1995, Los Angeles, CA.
The Music Encoding Initiative [online] https://github.com/music-encoding/music-encoding (accessed

22 October 2020).
Van Rossum, G. and Drake, F.L. (2009) Python 3 Reference Manual, CreateSpace, Scotts Valley, CA.


