Load cell-based PID method controlled Segway system modelling and simulation
by Muhammed Mustafa Kelek; Ugur Fidan; Yuksel Oguz; Ibrahim Celik; Tolga Ozer
International Journal of Engineering Systems Modelling and Simulation (IJESMS), Vol. 12, No. 4, 2021

Abstract: In the present study, mathematical modelling and simulation of load cell-based Segway has been done. Four load cells placed on the Segway to provide the control of the system. According to the measured weight information, the dynamic model of the system can be updated instantly. This operation makes the Segway control easier by changing the maximum pitch angle. In order for the system to stay in balance on two wheels, it must move at the appropriate pitching angle and at the desired speed. The control of the suitable pitching angle and speed are controlled by the PID method. As a result of the simulation in Matlab/Simulink environment, Segway's speed information, current information of BLDC and pitching angle can be accessed. As a result of the study, it is thought that the load cell-based Segway can be controlled more effectively.

Online publication date: Wed, 22-Dec-2021

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Engineering Systems Modelling and Simulation (IJESMS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com